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Abstract- Applying automatic control on gantry cranes to move loads with minimal sway

angle is considered as a challenge due to the crane system uncertain parameters and a robust
automatic control is needed. In this paper a sliding mode controller is applied to overcome the
crane  system  uncertainties  and  achieve  the  desired  performance.  Some  labor  is  spent  to
transform the system to the regular form and an error function is written depending on the
transformed variables then a switching function in terms of the error function is constructed
and a sliding mode controller is designed to make the error function reach zero so the crane
moves to the specified displacement with minimum sway angle. Stability analyses are
provided  to  show  that  the  system  is  stable  under  the  control  we  proposed.  Simulations  are
held by software to validate the effectiveness of our work and prove that the proposed control
is successful in giving our system the preferred behavior then Results are discussed and some
point view is to be put.
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1. Introduction
     The general definition of a crane is a
mechanical system designed to lift and move
loads through a hook suspended from a
movable  arm  or  trolley.  Gantry  Cranes,
Figure 1, are widely used in industrial and
civil environments to transfer heavy loads
(e.g. containers). Safety and economical
constraints require that both the load swing
and the transfer time are kept as small as
possible.
     In the standard industrial practice human
operators manually drive the crane, aided in
some cases by expensive automatic anti-sway
systems. When a human operator attempts to
maneuver payloads using an overhead gantry
crane like that sketched in Figure 2, the
oscillations induced into the payload by the
motion of the trolley can be significant.
These oscillations make it difficult to
manipulate the payload quickly and with
positioning accuracy.
     Manufacturers are currently trying to
develop fully-automated drive systems which
would get free from the driver's ability a
successful crane operation. That will ensure a
repeatable and better service, but affordable
commercial products are not yet available.
     The  usual  goal  is  to  achieve  zero  swing
only  at  the  end  of  the  transport,  and  a  two-
stage control structure is often used: a
“tracking” controller during the load transfer,
and a “stabilizing” one to be switched on
when a suitable vicinity of the destination
point is achieved. However, dangerous load
swing may appear during the transport, and
this should be certainly avoided.
     Many works have been done in
controlling the overhead crane. The authors
in [1] and [2] adopted input shaping control
method but the input shaping must be pre-
calculated accurately according to the system
model. These approaches lacked robustness

to external disturbances and couldn’t damp
residual swing well.
     Moreover, zero initial condition must be
satisfied. Alessandro Giua et. al., [3]
proposed feedback control methods. Besides
needing accurate system model and onerous
matrix computation, the above methods were
greatly affected by system linearization and
system parameters uncertainty.
     Inspired from the behavior of expert crane
drivers, most of existing approaches consist
of a two-stage procedure: off-line
trajectory/path planning, carried out in
accordance with proper optimization criteria,
and on-line tracking by traditional
controllers. Optimal control techniques have
been widely used to address the path
planning problem [4]. Specific paths
minimizing traveling time, energy
consumption or proper performance indexes
linked to the swing angle and its derivative
have been proposed in the literature.
Nevertheless, due to model uncertainties and
many other implementation factors, it often
happens that the actual crane behavior
significantly differs from the “optimal”
desired one [4].
A serious drawback must be faced at the
design  stage:  an  overhead  crane  is  an  under
actuated  system,  as  the  tow  degrees  of
freedom (the horizontal load coordinate and
the swing angle) must be controlled using
only one control actions (the trolley force).
Fuzzy logic control (FLC) is independent of
system model and has some robustness. Lee
[5] used fuzzy logic only in anti-swing
control and applied position servo control for
positioning and swing damping. In [6], fuzzy
logic adapted to both positioning control and
swing damping. However, because of the
large number of fuzzy rules, it was difficult
to  set  both  rules  and  parameters  of  the
controller only according to experiences.
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Sliding mode control (SMC) is a robust
design methodology using a systematic
scheme based on a sliding mode surface. The
main advantage of sliding mode control is
that the system uncertainties and external
disturbances can be handled under the
invariance characteristics of system’s sliding
mode state with guaranteed system stability.

In this work the ability of the sliding
mode to handle system uncertainties is to be
proved and a sliding mode controller is
applied  to  a  two  dimensional  gantry  crane
which it must reach a desired position with
minimum sway angle.
This paper is organized as follows: in section
2 the mathematical model for the crane is
derived. Sections 3 and 4 discuss sliding
mode control. Section 5 is devoted for
stability analysis. In section 6 a simulation is
held and in section 7 some remarks and
conclusions are took in consideration.

2. Mathematical Model

We consider a container crane (Fig. 3)
actuated by one DC motor that generate the
mechanical forces acting on the trolley. By
taking the trolley position , the rope length
, the swing angle and their time derivatives

as the state variables, assuming that the load
can be regarded as a material point and that
the rope is always stretched (so that the
swing angle can be uniquely defined) the
following motion equations can be derived
using the Euler- Lagrange procedure .
For simplicity, the following assumptions are
made:

(a)The trolley and the load can be regarded
as point masses [7].

(b)Friction force, which may exist in the
trolley, can be neglected.

  (c)  Elongation  of  the  rope  due  to  tension
force is negligible.

(d)The trolley and the load move in the x-y
plane [7].

(e) The DC motor parameters are neglected
so the horizontal force acting directly on the
trolley is proportional to the controller signal
[8].

          Figure (1): An equivalent diagram for the suspended load

For the system in Fig.3, a generalized
coordinate  can be taken as = [ ] .
Then the kinetic energy function and the
potential energy function are given as
follows:

  = + ( )

= + + 2 cos (1)

     cos ( cos ) (2)

Where mt and ml are the trolley and the load
masses respectively,  and  are the load
Cartesian coordinates.
     Constructing the system Lagrangian

 and using  Euler-Lagrange’s
equation defined as:

,    = 1,2 (3)

Let the generalized input Q be [0, ] .
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Applying (1), (2) and (3), we obtain the
following equations of motion:

( ) cos sin (4)
cos sin = 0 (5)

where  is the horizontal force acting on the
trolley. Equation (5) can be written also by
defining  in the form

cos( ) sin( ) = 0 (6)

Since  is generated by a DC motor which is
operated due to an electrical voltage  then

 is written as

(7)

where  is the DC motor constant.Substitute
for  and Rearrange (4) and (5) result in the
following form

=
( )

( ) tan +         (8)

=
( )

( ) tan sin

tan                                                                          (9)

3. Sliding Mode control
   Sliding mode control was first proposed
and elaborated by several researchers from
the former Russia, starting from the sixties
(Emel'yanov and Taran; Utkin,). The ideas
did not appear outside of Russia until a
survey paper by Utkin [9] was published in
English.
Sliding mode control is a discontinuous
feedback control forces the system states to
reach and remain on a specific surface within
the state space (called sliding surface).
     The main goal of the control is to move
the load to the desired position while
ensuring  that  the  sway  angle  is  so  small
(ideally zero). The first stage of design is the
selection  of  the  discontinuity  surface  such
that sliding motion would exhibit desired

properties. Before we establish our sliding
manifold, the system should be in regular
form,  it  means  if  we  have  a  system  of ( )
variables and ( ) control  actions  then
( ) of the set of differential equations
of  the  system  will  appear  without  control
action. For our system described by (8) and
(9) there are two configuration
variables( ) and one actuation force
( ) which appears in both equations. To
transform our system to the regular form we
need first  to get an output function such that
its second derivative contains the following
term

sec( ) (10)

with  a  remainder  as  a  function  of and .
This task may be accomplished if we
consider the following relation (the
derivative of the output function):

sec( )                     (11)

where  is the proposed output that will
transform  the  system  model  to  a  regular
form. Then when we differentiate  the first
two terms will be equal to those in (11) as
can be seen here:

( ) ( ) ( )
                       = ( ) ( ) ( )

( ) ( ) ( )
( ) ( )                        (12)

     As  a  result,  the  required  output  is  simply
computed by integrating (11) as follows:

+ ( )
 = ln ( ) ( )           (13)

From (13) the crane model transforms to the
regular form according to the following state
transformation rules:
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  ( ) ( ) (14)

where  and  are the new coordinate
variables that transform the system
dynamical model to a regular form. The
regular form for
the crane dynamical model is

tan ( sec ) (15)

=
( )

( ) tan +  

                                                                                 (16)

     Thus the system described by (8) and (9)
with x and  variables are transformed to
regular form described in (15) and (16). In
these equations the control action
disappears from (15) where  is dependent
only on  while in (16) the control action
appears.
To construct the switching surface, the error
function is defined first as follows:

( ) (17)

     The aim is to make this error function
reach zero value by choosing an appropriate
switching function, the switching function
may be written as:

(18)

     The above equation represents our sliding
manifold in terms of  and the crane system
must reach and remain in this manifold till it
reaches  the  origin  and  thus  a  discontinuous
controller is needed for this task, in the next
step a discontinuous sliding mode controller
is discussed and designed in order to carry
this task which will drive the system
equilibrium point and gain system stability.

4. Controller design
     The second stage of the design procedure
is the selection of discontinuous control
enforcing sliding mode in manifold s(x) = 0.
A condition for the sliding mode to exist is
that the switching function and it’s time
derivative should be opposite in sign, writing
that as the following:

< 0 (19)

where

(20)

Since  appears in  that means the control
action will appear in . Rearrange equations
and isolate the terms with  to make  in the
following form

< 0 (21)

back to (17)
[ ] (22)

Assuming that our controller is of the form
) (23)

where ( ) is the sign function defined as

( ) = 1 > 0
1 < 0

then (22) becomes
[ )]                   (24)

     Using the fact that | || |  and
( ) = | | then (24) becomes

| || | | |

= | |[ | |] (25)

     In the above inequality, < 0 if and
only if the bracket[ | |] > 0.  Thus  we



IJCCCE Vol.14, No.1, 2014 Sliding Mode controller Design for a Crane
                                                                                     Container System

                                                                                                                                                                                    .

63

get the following conditions for the gain of
the sliding mode controller (refer to (22))

> | | For > 0 (26)

and

< | | For < 0 (27)

     Hence a controller which is in the form
indicated in (23) with the value of k that have
been calculated must bring the system
trajectory to the surface = 0 and  keep  it
within that surface.

5. Stability analysis

     When applying the sliding mode control
action, the state will reach after a finite time
to the surface = 0(utkin 1992[9]). This is
ensured via the inequality (25) with gain
selection based on (26) and (27).After that it
will be convenient to analyze the system
stability within this surface

= 0 (28)

     The above equation is a first order
differential equation, using calculus the
solution may be written as

exp[ ] (29)

where  is the error function initial value,
thuse decays with a time constant c and note
that c  >0 or otherwise the error function
value will diverge to an infinite value.
Now when the error function value = 0
then (17) can be written as

= ( + )                      (30)

Substituting (30) in (15) results in

( )( sec ) (31)

     In (30), the stability will be considered for
the following set

= ( ) < ( ) (32)

pick  the  following  point  from  set  as
follows:

assume that  the  swing  angle  and it’s
derivative are sufficiently small i.e.

0and 0, then (31) becomes

(33)
the solution for (33) is in the form

(34)

where ,  are constants depend on the
initial condition, and  are the roots of the
characteristic equation for the differential
equation in (32)

=

=

(35)

     To ensure that the system in (34) is
asymptotically stable,  and  must be <
0, this can be ensured only if  and  are
> 0.
     Choosing appropriate values for  and
then  and   converges to 0 and as a result

which is the sway angle also converges to
0 due to (30), and finally the trolley position
x approaches the desired position
according to (14).
     The analysis that we have gone through
shows the ability of the sliding mode
controller in regulating the state to the origin
by controlling the trolley motion. The system
stability was insured by choosing a positive
values for , and , while the dynamic
characteristic depends on the selection of
appropriate values.
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6. Simulation results

To validate our work the system with the
suggested control is simulated using
MATLAB. The simulation parameters given
below are taken from an experimental
pendulum system built by Feedback
Instruments Ltd [11].

Trolley mass = 2.4 
Load mass = 0.23 
Rope length = 0.4 
DC motor constant = 8 
Desired trolley position = 1 

,  and c are chosen to be0.5, 0.5, 1
respectively.

The above values are used in calculation
controller gain (A8) which is found to be

2.The figures from (4)to (10) show the
system variables and performance when the
controller we designed in section 4 is applied
to the crane system. Switching function
versus time and error function are displayed
in figures (4) and (5) respectively. Trolley
position is shown in figure (6) and approach
the desired distance in about 5 sec. while the
swing angle do not exceed ±4 deg. as shown
in figure (7). The sway angle velocity is
shown in figure (8). The controller signal is
shown in figure (10) and note how it chatters
in a high frequency in order to keep the
system states inside the switching manifold.

Figure (4): Switching function vs. time.

Figure (5):phase plot for error function.

Figure (6):Trolley position vs. time.
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Figure (7): Sway angle vs. time.

Figure (8): Sway angle velocity.

Figure (9): Phase plot for sway angle.

Figure (10): control signal vs. time.

     To validate that the controller designed in
our work is robust to the variations we
repeated the simulation with a change of
100%  in load mass, i.e. = 2 =
0.46 where  is the nominal load mass
value used in designing the sliding mode
controller here. The results are shown below
through figures (11) to (17).

Figure (11): Switching function vs. time for = 0.46 .
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            Figure(12): phase plot for error functionfor = 0.46  .

              Figure(13) : Trolley position vs. time for = 0.46  .

                  Figure(14): Sway angle vs. time for = 0.46  .

         Figure (15): sway angle velocity vs.time for = 0.46  .

Figure (16): Phase plot for sway angle for = 0.46 .

Figure (17): Control signal vs. time for = 0.46  .
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     In the simulations we done previously we
assumed the controller as a sign function
( )) , because this function can
have only the values 1 or +1 this causes
the control signal to chatter in a high speed
between these two values in order to keep the
system having the desired performance, this
phenomenon is frequently not preferred and
may have a drawbacks on the physical
system devices. A solution is to use a smooth
function to eliminate the chattering
phenomenon; we suggested using the
Arctangent function defined as

( ) ( ) (36)

which have a smooth response, defined at
= 0and have a maximum value ranges

between± , then the controller becomes in
the following form

tan ( ) (37)

where  is an arbitrary number with an
appropriate value used to make the arctan
function  as  close  as  possible  to  the  sign
function. Substitute for  in (23) then

tan ( ) (38)

knowing that tan = | | tan | |and
repeating the steps in (24) and (25) as the
following

| || | | | tan | |

      = | | tan | | | |               (39)

Equation (38) induce that

>
| |

| | For   > 0 (40)

and
<

| |
| | For   < 0  (41)

     For | | 0.01 and taking a suitable value
for , say 60 then (40) yields that 6. In
this case the state reaches the switching
manifold asymptotically and finally it
reaches  a  compact  set  around  the  origin  but
no longer reaches the origin since the
disturbance is of a non-vanishing type at the
origin (one can refer to [12] for the definition
of the non-vanishing disturbances). In [13]
the stability was proved but with an ultimate
bond. This bound is given by

= {( ) : | | < 0.01, | | 0.01}

where  is a compact invariant set.
     The system is simulated again using the
controller  defined  in  (36)  and  the  results  are
plotted  in  the  following  figures  with =
0.23  .

Figure(18): Switching function vs. time using arctan function.

         Figure (19): phase plot for error function using arctan
function.
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Figure(20): Trolley position vs. time using arctan function.

Figure (21): Sway angle vs. time using arctan function.

Figure (22): Control signal vs. time using arctan function.

     To show that the controller using arctan
function is also robust to model variations the
load mass will be doubled to become 0.46
kg.

     The simulations will be repeated to show
the time response of the system.

Figure (23):  Switching function.

Figure (24): Phase plot for error function.

Figure (25): Trolley position.
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Figure (26): Sway angle vs. time.

Figure (25): Control signal.

7. Conclusions

     In this paper a sliding mode control have
been proposed for a two dimensional
overhead crane to move the load to the
desired position with minimum sway angle.
In section2we first modeled the crane system
where a full nonlinear model for the gantry
crane is derived and represented by (8) and
(9) after considering some assumptions. In
section 3 we succeeded in transforming the
gantry crane model to the regular form then
an error function is written using the new
system variables and a switching function is
constructed in terms of that error function.

     A sliding mode controller is designed in
section 4 depending on the switching
function which will force the state trajectory
to reach the sliding surface = 0 and remain
on that surface. In section 5 stability analyses
are made to prove that the system is
asymptotically stable within the sliding
surface. The proposed discontinuous
controller assigned in (23) with suitable
value of k was able to transfer the load to the
desired position ( m in our case) within time
interval approximately 5sec.while the sway
angle did not exceed ±4deg. which
considered very acceptable value and the
oscillation vanishes as the load reaches the
desired position with minimum sway angle.
     The swing angle velocity is found to be no
more than ±25deg. /sec. which is in the
range we specified for them in appendix, this
shows that our controller was able to keep
the system variables in ranges specified for
them.
     In addition the proposed control has
proved it’s robustness by giving the desired
performance  in  spite  of  change  in  the  load
mass which has been doubled. The problem
of chattering is took in consideration and a
solution to this problem has been put by
using the arctan function and see how the
control signal obtained by simulation is
smooth compared by the signal obtained
from the signum function.
     The work and results we had gone
through proves the sliding mode control
ability to control the system we proposed in
spite of system uncertainties by choosing an
appropriate stable switching function and
calculating the value of k that makes the
controller able to bring the switching
function to origin.
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Appendix (A). Calculating the value of k:
From (17), (18) and (20) we have

( )

Derive (16) yields

= ( )
( )                                           (A1)

Derive the above equation

= ( )
( )

+ ( + ) ( )
(( ) )

(A2)

Substitute (A1) and (A2) in (19) yields

)
( )

+ ( ) ( )
(( ) )

+
( )

( )
(A3)

Derive (10) then we have

={ )[ ( ) ] + [ ( ) tan( ) ]} +
( tan( ))( ( ) )

( )
[( ) tan +

sin ]                                                                  (A4)

Substitute ,  and  from (14), (15) and
(A4) respectively in (A3) we get

=
cos

(sin )
[( ) tan sin

]

{ )[ ( ) ] + [ ( ) tan( ) ]}

+ ( tan( ))( ( ) )
cos

(sin )
[(

) tan sin ] ( )

{ ( ) })

( ) + 1

+( ( ) { ( ) })

)
2( )

(( ) + 1)

( 1( ( ) { ( ) }) + )
( ) + 1

(A5)

Then
=

cos
(sin )

[( ) tan sin ]

{ )[ ( ) ] + [ ( ) tan( ) ]}

+ ( tan( ))( ( ) )
cos

(sin )
[(

) tan sin ] ( )

{ ( ) })

( ) + 1

+( ( ) { ( ) })

)
2( )

(( ) + 1)

( 1( ( ) { ( ) }) + )
( ) + 1

                                                                                (A6)
And

=
cos

(sin ) [1

+ (tan( ))( ( ) )]
(A7)

To evaluate and  these  assumptions  are
taken in consider:
The sway angle and it’s derivative  with
time are supposed to range between the
following values

/18 /18

/6 /6

The desired travelling distance  is specified
as = 1 and so 1.1 1.1.
The trolley velocity is considered to be as
follows

So that
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1.25 1.25 .
Using the values suggested above the
maximum value that F can have is
approximately 15.6 and the minimum value
for  is approximately 8. Since is negative
in sign then (26) is used

<
| |

< 15.6
8     or 1.95 (A8)

This  value  for was obtained under the
assumption that the sway angle and it’s
derivative are approximately zero. In our
work we will take = 2 to get sure that the
controller  will  be  able  to  bring  the  system to
the origin even if the sway angle and/or it’s
derivative are little bit more or less than
values that have been suggested.
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