On $p\theta$ -open sets in topological spaces

Nehmat K. Ahmed * and Sami A. Hussein **
*College of Scientific Education - University of Salahaddin
**College of Basic Education - University of Salahaddin

Abstract

The aim of this paper is to introduce and study some properties of pre- θ -open sets, and study a new class of spaces, called $p\theta$ -regular space. Determine some properties of $p\theta$ -regularity and compare with other types of regular spaces.

Introduction

julian Dontchev, Maximilian Ganster and Takashi Noiri (2000) has introduced the concept of $p\theta$ -open sets in topological spaces. The purpose of the present paper is to introduced and investige a new separation axiom called $p\theta$ -regular space, by using such sets, we have proved that $p\theta$ -open and θ -open set are identical in $p\theta$ -regular spaces.

Definitions and Preliminaries

By a space X we mean a topological space on which no separation axioms is assumed, we recall the following definitions, notational conventions and characterizations. The colsure(resp., Interior) of a subset A of X is denoted by ClA(resp.,IntA). A subset A of X is said to be preopen(Mashour A.S., Abd-El-Monsef M.E. and El-Deeb S.N.,1982) (resp.,pre-regular p-open (Ganster,1987), θ -open(Velico,1968), p θ -open (Ganster, 2000), δ -open(Velico, 1968), p δ -open(Hussein, 2003) of a space X, if and only if $A \subseteq InclA(resp., A=pIntApClA,if$ for each $x \in A$, there exist an open(resp.,preopen,open,preopen) set G, such that $x \in G \subset clG \subset A$,(resp., $x \in G \subset pclG \subset A$, $x \in G \subset IntClG \subset A$, $x \in G \subset pIntpClG \subset A$). The family of all preopen(resp.,pre-regular p-open, θ -open, θ set of a space X, is such that $x \in G \subset clG \subset A$, (resp., $x \in G \subset pclG \subset A$, x $\in G \subset IntClG \subset A$, $x \in G \subset pIntpClG \subset A$). The family of all preopen (resp.,pre-regular p-open, θ -open, θ -open, θ -open, θ -open, θ -open) set of a space X, is denoted by PO(X) (resp. PRPO(X), $\theta O(X)$, $P\theta O(X)$, $\delta O(X)$, $P\delta O(X)$). The complement of preopen (resp., pre-regular p-open, θ -open, p θ -open,

δ-open,pδ-open)set is called preclosed(resp.,pre-regular p-closed, θ-closed, Pθ-closed, δ-closed, pδ-closed) set. The intersection of all preclosed (resp., θ-closed, δ-closed, pδ-closed)sets containing A is called preclosure (resp., θ-closure and $P\theta$ -closure, δ-closure, pδ-closure).and is denoted by pclA (resp., cl_θ A and pcl_θ A, δ-clA, pcl_δ A) The union of all preopen (resp., θ-open, δ-open, pδ-open)sets contained in A is called preinterior (resp., θ-interior and $P\theta$ -interior, δ-interior, pδ-interior) and is denoted by pIntA (resp., θ-IntA and pInt_θ A, δ-IntA, pInt_δ A). A space X is said to be submaximal (Ganster,1987) if and only if every dense subset of X is open set. A space X is said to be pre-T₂ (Mashour et al,1982) if for each x,y∈X, such that x≠y,there exist disjoint preopen sets G,H,such that x ∈G and y∈H. A space X is said to be p*-regular (Ahmad,1990)(resp., p**-regular) iff for every x∈X,and every preclosed set F such that x∉F,there exist disjoint preopen(resp.,open) set G,H such that x ∈G and F⊂H.

Definition 1:

Let A be any subset of aspce X. A piont $x \in X$ is in the preclosure of A(briefly $x \in pclA$) (resp., $x \in cl_{\theta}A$, $x \in pcl_{\theta}A$, $x \in pcl_{\delta}A$) if and only if, for each $G \in PO(X)$ (resp., $G \in T$, $G \in PO(X)$, $G \in P\delta O(X)$) containing $G \notin T$ 0 (resp., $G \notin T$ 1). For properties of definition 1 see (Hussein, 2003).

Theorem (1):

The following are equivalent about a space X:

1-X is Alexandroff.

2-Any intersection of open sets is open.

3-Any union of closed sets is closed.

Theorem (2): (Ganster, 1987)

A space X is submaximal iff every preopen set is open.

Theorem (3): (Ahmad, 1990)

 $pCl(G_1xG_2) \subseteq pCl(G_1)xpCl(G_2)$.

Theorem (4): (Dontchev et al. 2000)

Let (Y, τ_Y) be a subspace of a space $X . A \subset Y$, if $A \in PO(X)$, then $A \in PO(Y)$.

Theorem (5): (Ganster&Jafari, 2002)

If $Y \in PO(X)$ and $A \in PO(Y)$, then $A \in PO(X)$.

Some properties of pre-θ-open sets

Lemma 1:

Each pre- θ -open sets can be written as a union of preopen set.

Proof:

Let $A \in P\theta O$ (X) then for each $x \in A$ there exist $B \in PO$ (X) s.t. $x \in B \subset pclB \subset A$, then $\bigcup \{x; x \in A\} \subset \bigcup_{x \in B} B \subset A$ Therefore $A = \bigcup_{x \in B} B$

Lemma 2:

Any union of $P\theta$ -open set is $P\theta$ -open.

We have the following diagram of implications and any other implication, except these resulting by transitivity can not be add in general

$$\begin{array}{ccc} \theta O(X) ---- \to P \theta O(X) ----- \to P O(X) \\ \downarrow & \downarrow \\ \delta O(X) & --- \to P \delta O(X) \end{array}$$

it is clear that from diagram every $p\theta$ -open set is preopen set, and every θ -open set is $P\theta$ -open set. but the converse may not be true in general as in the following example shown.

Example 1 :Let X={a, b, c},and τ_1 ={ Φ , X, {a}}, τ_2 ={ Φ , X,{a, b}},then PO(X, τ_1)={ Φ , {a}, {a, b}, {a, c}, X} and P θ O (X, τ_1)={ Φ , X}. Also P θ O (X, τ_2)=P (X)/{{c}} but θ O (X, τ_2)={ Φ , X}.

Remark 1:

The intersection of two $P\theta$ -open sets need not be $P\theta$ -open set in general **Example 2**:Let $X = \{a, b, c\}, \tau = \{\Phi, X, \{a, b\}\}, \text{ then } \{a, c\} \in P\theta O(X) \text{ and } \{b, c\} \in P\theta O(X) \text{ but } \{a, c\} \cap \{b, c\} = \{c\} \notin P\theta O(X).$

Lemma 3:

 $\theta O(X)$ and $P\theta O(X)$ are identical if (X,τ) is submaximal.

Proof :From diagram we have every $\theta O(X)$ is $P\theta O(X)$, so to show that $\theta O(X)$ is $P\theta O(X)$ are identical, we have only to show that $P\theta O(X)$ is $\theta O(X)$. Let $A \in P\theta O(X)$ then for all $x \in A$, there exist $G \in PO(X)$ s.t. $x \in G \subset PclG \subset A$, but since X is submaximal, we have $PO(X) = \tau$, so that $G \in \tau$ therefore PclG = clG, it follows that $x \in G \subset clG \subset A$, hence $A \in \theta O(X)$.

Proposition 1:

If (\bar{X},τ) is P^* -regular, then every open set is P θ -open.

Proof:Let $A \in \tau$, we have to show that $A \in P\theta O(X)$, $A \in PO(X)$ by theorem 3.2.1 [1]. For each $x \in A$, there exist $B \in PO(X)$ such that $x \in B \subset PclB \subset A$, which implies that $A \in P\theta O(X)$.

Corollary 2: PO (X) and P θ O (X) are identical if X is p*-regular space.

Proposition 2:

Let X_1 , X_2 be two topological spaces and $X=X_1 \times X_2$, let $A \in P\theta O(X_i)$ for I=1,2, then $A_1 \times A_2 \in P\theta(X_1 \times X_2)$.

Proof : Let $(x_1, x_2) \in A_1 \times A_2$ then $x_1 \in A_1$ and $x_2 \in A_2$ since A_1 , $A2 \in P\theta O(X_i)$, there exist preopen sets G_1, G_2 such that $x_1 \in G_1 \subset pClG_1 \subset A_1$ and . $x_2 \in G_2 \subset pClG_2 \subset A_2, (x_1, x_2) \in G_1 \times G_2 \subset PclG_1 \times PclG_2 \subset A_1 \times A_2$ but $G_1 \times G_2 \subset pCl(G_1 \times G_2)$, and $pCl(G_1 \times G_2) \subset pClG_1 \times pClG_2$ it follows that $(x_1, x_2) \in G_1 \times G_2 \subset Pcl(G_1 \times G_2) \subset A_1 \times A_2$ so that $A_1 \times A_2 \in P\theta(X_1 \times X_2)$.

Proposition 3:

Let (Y,τ_Y) be a subspace of a space (X,τ) . If $A \in Y$ and $A \in P\theta O(X)$ then $A \in PO(Y)$

Proof:Let $A \in P\theta O(X)$, to show that $A \in PO(Y)$ we have $A \in P\theta O(X)$, then for each $x \in A$, there exist $G \in PO(X)$ such that $x \in G \subset Pcl_x G \subset A$, but $G \in PO(X)$ and $G \subset A$, but $A \subset Y$, then $G \subset Y$ so that $G \in PO(Y)$ by theorem(3), hence $G \subset Pcl_x G$, but $G = G \cap Y \subset Pcl_x G \cap Y \subset A \cap Y = A$ so for each $x \in A$, there exist $G \in PO(Y)$ such that $x \in G \subset Pcl_y G \subset A$, so that $A \in P\theta O(Y)$.

Proposition 4:

Let (Y, τ_Y) be a subspace of a space X, If $Y \in PO(X)$ and $A \in P\theta O(Y)$, then $A \in P\theta O(X)$.

Proof: follows from theorem (4).

Proposition 5:

A space X is pre-T₂ iff for each $x,y \in X$, such that $x \neq y$, there exist preopen sets G,H, such that $x \in G$ and $y \notin pClG$.

Proof: Obvious.

Theorem (6):

A space X is pre- T_2 if and only if every sengelton set is pre- θ -closed **Proof:** (Necessity)

Let $H=\{a\}$, and let $b\notin H$, we have $a\neq b$, since X is pre-T2 by theorem5, there exist a preopen set G such that $b\in G$ and $a\notin pClG$, $pClG\cap H=\varphi$, therefor $b\notin pCl_{\theta}H$, it follows that H pre- θ -closed set. (Sufficiency) Let $a,b\in X$ such that $a\neq b$, and let $H=\{a\}$, by hypothesis H pre- θ -closed, we have $b\notin pCl_{\theta}H$, there exist a preopen set G such that $b\in G$, $pClG\cap H=\varphi$, then $a\notin pClG$, $a\in X/pClG$, $X/pClG\cap G=\varphi$, G and X/pClG are preopen setswhich containing b, a respectively, therefor X is pre- T_2 .

Pθ-regular space

Definition 1:

A space X is said to be P θ -regular iff for each P θ -closed set F and a point $x \in X$ such that $x \notin F$, there exist two open sets G and H such that $x \in G$, F \subset Hand $G \cap H = \Phi$.

Proposition 1:

Each P^{**} - regular space is $P\theta$ -regular.

The converse of the a above lemma is not true in general as the following example show

Example 1: Let $X=\{a, b, c\}$, and $\tau=\{\Phi, \{a\}, \{b\}, \{a, b\}, X\}$ then PO $(X)=\tau$, and P θ O(X)= $\{\Phi, X\}$, then X is P θ -regular which is not P**-regular.

Theorem (1):

For any topological space (X,τ) the following are equivalent:-

i- (X,τ) is P θ -regular

ii-For every $x \in X$ and every $P\theta$ -open set A containing x there exists an open set B such that $x \in B \subset clB \subset A$.

iii-Every Pθ-closed set F is the intersection of all closed nbd of F.

iv-For every non-empty subset A of X and every P θ -open subset B of X such that $A \cap B \neq \Phi, \exists$ an open sets C of X such that $A \cap C \neq \Phi$ and $clC \subset B$.

v-For every non-empty subset A of X and every Pθ-closed subset F of X such that $A \cap F = \Phi$, there exist two open sets B and C s.t. $A \cap B \neq \Phi$, $B \cap C = \Phi$ and $F \subset C$.

Proof:(i) \rightarrow (ii) Let A be a P θ -open set of X containing x, X\A is P θ -closed subset of X and $x \notin X \setminus A$ by(i), there exist two open subsets B and C such that $x \in B$, X\A \subset C, and B \cap C= Φ , therefore $x \in B \subset X \setminus C \subset A$ hence $x \in B \subset ClB \subset ClX \setminus C \subset A$ which implies that $x \in B \subset ClB \subset A$

- (ii) \rightarrow (iii): Let F be P θ -closed , and $x \notin F$, then $x \in X \setminus F$, and $X \setminus F$ is a P θ -open subset of X, using(ii) there exists an open set B such that $x \in B \subset clB \subset X \setminus F$, hence $F \subset X \setminus clB \subset X \setminus B$ consequently $X \setminus B$ is a closed nbd of F to which x dose not belong , this prove(iii).
- (iii) \rightarrow (iv) let $\Phi \neq A \subset X$, and B be any P θ -open subset of X s.t. $A \cap B \neq \Phi$, let $x \in A \cap B$, since $x \notin X \setminus B$ is P θ -closed so there exists a closed nbd of $X \setminus B$, say E such that $x \notin E$, let $X \setminus B \subset D \subset E$, where D is an open set, then $C = X \setminus E$ and $x \in C$, and $A \cap C \neq \Phi$ also $X \setminus D$ being closed, $clC = cl(X \setminus E) \subset X \setminus D \subset B$, hence $clC \subset B$.
- (iv) \rightarrow (v): let $\Phi \neq A \subset X$,and F be any P θ -closed subset X such that $A \cap F = \Phi$, then $A \cap X \setminus F \neq \Phi$ and $X \setminus F$ is P θ -open subset using (iv) there exists an open

Journal of Kirkuk University -Scientific Studies, vol.2, No.3,2007

subset B of X such that $A \cap B \neq \Phi$ and B \subset clB \subset X\F.Putting C=X\clB then F \subset C \subset X\B and C is open, this implies (v).

(v) \rightarrow (i): Let $x \notin F$ where F is P θ -closed , and let $A=\{x\}\neq \Phi$,then $A\cap F=\Phi$, and hence using(v) \exists two open sets B and C such that $A\cap B\neq \Phi$, $B\cap C=\Phi$, and $F\subset C$ which implies that (X,τ) is P θ -regular.

Proposition 2:

A topological space (X,τ) is P θ -regular iff for every $x \notin F$, F is P θ -closed, \exists two open subsets G and H s.t. $x \in G$ and $F \subset H$ and $clG \cap clH = \Phi$.

Proof: The sufficiency follows directly, and necessity follows from theorem 4.1 ii.

Proposition 3:

If A is clopen subset of X, then A is P θ -open set.

Proof: If $A=\Phi$, there is nothing to prove, if $A\neq\Phi$, let $x\in A$, then $x\in A\subset pclA=A\cup clIntA\subset A$.

Theorem 3:

If X is Alexandroff and P θ -regular space, then every p θ -open set A is clopen set.

Proof:Let A be P θ -open set, then by (theorem 4.1 ii), there exist an open set G_x such that $x \in G_x \subset clG_x \subset A$, hence $A = \bigcup_{x \in A} \{clG_x, x \in A\}$ it

follows that A is open set since X is Alexandroff space union of any closed set is closed $\bigcup_{x \in A} clG_x$ is closed, then A is closed. Therefore A is closed as well as open.

Theorem 4:

If X is P θ -regular space then P θ O (X)= θ O (X).

Proof: Let $A \in P\theta O(X)$, since X is $P\theta$ -regular, by theorem (4.1ii) for each $x \in A$, There exist an open set G such that $x \in G \subset clG \subset A$, therefor $A \in \theta O(X)$ The converse part follows from above diagram

Theorem 5:

A space X is P θ -regular if PO $(X,\tau)=\tau$.

Proof: It is not hard and therefore it is omitted.

Theorem 6:

Every P θ -regular and p T_o -space (X, τ) is a T_2 -space.

Proof: Let $x, y \in X$, such that $x \neq y$, since X is $preT_o$ -space, then, there exist a preopen set A containing x but not y, A is $P\theta$ -open set containing x but not y, since X is $P\theta$ -regular and $x \in A$, \exists an open set B s.t. $x \in B \subset clB \subset A$.

Journal of Kirkuk University –Scientific Studies, vol.2, No.3,2007

Hence B and X\clB are open subsets of X such that $x \in B$, $y \in X \setminus clB$ and $B \cap X \setminus clB = \Phi$ which implies that X is a T_2 -space.

Theorem 7:

If XxY is $P\theta$ -regular then both X and Y are $P\theta$ -regular.

Proof: Let $x \in A$, where A is P θ -open subset of X, then for every $y \in Y$, $(x,y) \in AxY$ where AxY is P θ -open subset of XxY(by Theorem4.1)usingP θ -regularity of XxY \exists an open set G of XxY Such that $(x,y) \in G \subset cl_{XxY}G \subset GxY$ Putting G=UxV where U and V are open set in XxY respectively. Then $(x,y) \in UxV \subset cl_{XxY}Uxcl_{XxY}V \subset AxY$, therefore $x \in U \subset cl_{XxY}U \subset A$, then X is P θ -regular. Similarly we can prove that Y is P θ -regular.

References

- Ahmad N.K., (1990): On some types of separation axioms. M.Sc. Thesis college of Science, University of Salahaddin.
- Alexandroff P.S., Diskrete Rume Rec,.(1937): Math. Sbornik, pp.501-518.
- Dontchev J., Ganster M and Noiri.T,. (2000): On p-closed spaces.Internat. J.Math. Math.Sci.Vol.24, pp.203-212.
- Ganster M., (1987): preopen and resolvable spaces. Kyunpook Math.J., Vol.27, pp.135-143.
- Ganster M, and Jafari S., (2002): On PC-compact spaces. Mem. Fac.Sci. Kochi.univ.ser A (Math) Vol.23, pp. 19-26.
- Hussein S.A., (2003): Application of $p\delta$ -open sets in topological spaces. M.Sc. Thesis, College of Education, Univ. of Salahaddin.
- Mashour A.S., Abd-El-Monsef M.E. and El-Deeb S.N.,(1982): On precontinuous and weak precontinuous mapping, proc. Math. Phys. Soc. Egypt, Vol.53, pp.42-52.
- Navalagi G.B., Further properties of pre-T₀, pre-T₁ and pre-T₂ spaces, topology Atlas preprint, #428.
- Velico N.V., (1968): H-closed topological spaces, Amer. Math. Soc. Trans Vol.2, pp.103-118.

Journal of Kirkuk University -Scientific Studies, vol.2, No.3,2007

$p\theta$ — النصاء التبولوجي في المجموعة المفتوحة

نعمت خضر أحمد* سامي علي حسين**

*كلية التربية _ جامعة صلاح الدين

**كلية التربية الاساس _ جامعة صلاح الدين

الخلاصة

هدف من هذا البحث هو تقديم ودراسة المجموعات المفتوحة من النمط P ، وادخال صنف جديد من الفضاءات المنتضمة سميتP ، دراسة بعض خواصها ومقارنتها مع الفضاءات الاخرى .