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Abstract 
 

In this paper a new class of self-scaling VM-algorithms for nonlinear 

optimization are investigated. Some theoretical results are given on the scaling 

strategies that guarantee the global and super linear convergence of the new proposed 

algorithms. Numerical evidence on thirty two well-known nonlinear test functions is 

generally encouraging. 

 

Introduction 

     Consider the nonlinear optimization problem 
nRx

min


f(x), where f is a 

nonlinear differentiable function. Assume that an exact line search is used 

at the beginning of each iteration k, and that for an estimate vector xk  there 

is a symmetric and positive definite matrix Bk. The new iteration is 

computed by 

         k,
1

kk g Bd                                                                       …(1) 

         1k,dxx kkk1k                                                             …(2) 

where gk is the gradient of the objective function at xk. k is a steplength 

satisfies the Wolfe conditions with exact line search strategy, i.e. 

        k
T
kkkkkk dg )x(f)dx(f                                                  …(3) 

        k
T
kk

T
kkk dg d)dx(g                                                            …(4) 

for  
2

1
      0    and 1       .  

It is important for dk to be a descent direction so that  

       )x(f)dx(f kkkk   

for some 0k  . Thus  we most have  

      0gd k
T
k   

where )f(x   g kk   
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Quasi-Newton Methods 
 Here  

       1k1k1k g Hd                                                                              …(5) 

with Hk+1 , an approximation to  

       )f(x   G 1k
2

1k    which satisfy the QN-condition defined by: 

       kk1k yH                                                                                   …(6a) 

where 

       k xk+1 – xk  

        yk = gk+1 – gk  

A family of Hk+1 satisfy (5) is Broyden family  

           

                                                                  …(7) 

 

 

 

where  

            
kk

T
k

kk

k
T
k

k
k

yHy

yH
 - 

yS

S
L                                                                  …(8) 

and k  is free parameter.Quasi Newton methods are quite efficient but 

need to store Hk and require O(n
2
)multiplications per iteration to update Hk .                                                                                                                                                                                        

     Note that this is done only for a quadratic model. But for non quadratic 

models, see(Al-Bayati,1993,Al-Bayati&Al-Assady,1994 and Al-Bayati,2001). 

for the details of standard VM steps. For the next iteration Bk+1 is updated 

by Al-Bayati’s VM-update i.e. 

k
T
k2

k
T
k

kk
T
k

kk
T
k

k
T
kkk

k1k yy . 
)ys(

yBs

sBs

BssB
BB                                …(9) 

See ( Al-Bayati,1991) for more details and properties of this algorithm. 

 

New Suggestion 
     In this section we describe the prototype for the new suggested class of 

algorithms with self-scaling strategies: 

Algorithm (1): 

(1) For an starting point x1 and non singular matrix V1 ; set k =1. 

(2) Terminate if   ,   
21kg is small positive real number. 

(3) Compute 

…(6b) 

 L)LyH(y              

 

T

kkkk
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kk
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


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kk
T
kk gVVd   1  

kkkk dxx  1   

k is computed by exact line search . 

(4) Update 

T
kk2

k
T
k

kk
T
k

kk
T
k

k
T
kkk

kk y y  . 
)s (y

y V s 

s V  s

V s s V
VW   

(5) Compute the scaling parameter 0  k   and 0  k  such that kk   . If 

wi represents the column of Wk put Ck = diag [c1 , c2 , …., cn] where 

  

 

 

 

 

 

 

(6) Set Vk+1 = Wk Ck  

(7) set k = k +1 and go to step (1) 

Note that:  

1- In the above algorithm 
















 1k        W C W     

V VB

V VB

T
1k

2
1-k

T
1k

T
kkk

T
111

                                                 …(11) 

and the update is performed directly on Vk . 

2- It will be shown that one has considered freedom in choosing k and k 

of every iteration while still maintaining global convergence of the 

above algorithm . 

 

The Global Convergence of the New Algorithm (1) 
     In this section, we will prove that the new algorithm suggested in 

section (3) with an appropriate choice of the scaling parameters is globally 

convergent on strictly convex objective functions. 

Lemma 1: For any nn matrices A and C, where C in diagonal matrix 

Tr (ACA
T
) = tr (AA

T
) + tr [(C – I) A

T
A]    ...(12) 

Where tr, denotes trace of any matrix. 

(10) 
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Proof: For any two matrices A and B  

     tr (AB) = tr (BA) 

 tr (ACA
T
) = tr (CA

T
A) 

        = tr (AA
T
) + tr (CA

T
A) - tr (A

T
A) 

Eq. (12) follows directly from the last equality # 

Lemma 2: Let h(u) = ln u – u for u > 0 

Let 1 > 0 , 2 > 0   3 and 4   

x  (0, 1] and y  (0, x]  h(y) – h(x)  3   …(13) 

And  

x  [2 , ) and y  [x , )  h(y) – h(x)  4  …(14) 

Proof: To prove eq.(13) we first note that h(u) is strictly concave and its 

maximum occurs at u =1. If x  (0, min (1, 1)) we conclude that for any y 

 (0, x]. 

h(y) – h(x)  0 since h(u) is strictly increasing for 0 < u  1. 

     On the other hand, if x  [min (1 , 1), 1] then for any y  (0, x] we 

have h(y) – h(x)  h [min (1 , 1), - h(1)]. Thus eq.(13) holds in either case 

with 3 = h [min (1 , 1) - h(1)]. We can prove eq.(14) in a similar line with 

4 = h [max (2 , 1)-h(2)]. Details and explanations may be found in  

(Byrd et al, 1987). 

      Now let G(x) denote the Hessian matrix of f at x.  

Let D( x ) =  nRx ; f(x)  f( x ) be the level set of  f  at x .  

Let x1 be the starting point. Assume also 

(1) f is twice continuously differentiable. 

(2) D(x1) is convex. 

(3)  m > o and M     z  R
n
 and x  D(x1) 

m 
2

 z  z
T
 G(x) z   M 

2
 z   

     These three assumptions readily imply that f is strictly convex in D(x1). 

Also  a unique minimizer x
*
 of f in D(x1) and for any positive define 

matrix B, we define  

 (B) = tr (B) -  ln (det (B))                                                      …(15) 

     This result has been used by (Byrd & Nocedal,1989;Griewank, 1991)in 

their analysis of QN methods. 

Let us define  

kkk

kk
T
k

k
s B  s 

s B s
θ Cos                                                              …(16) 
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So that k is the angle between the search direction dk and the steepest  

- descent direction – gk . Define also 

k
T
k

kk
T
k

k
s s

s B s
q                                                                            …(17) 

     Also assume that the scaling parameters k and k are bounded such that 

for all k. 

 k  max  , k  min                                                                …(18) 

for some max and min . 

      The following new theorem provides the foundation for the proof of 

global convergence of our new suggested algorithm given in section (3). It 

generalizes a similar result given by (Byrd & Nocedal, 1989)for their 

algorithm but for the case of unscaled BFGS algorithm. 

Theorem: Let x1 be a starting point for which f satisfies eq.(12) and let B1 

be a positive definite starting Hessian approximation. Let {xk} be generated 

by the new proposed algorithm with k and k satisfying eq.(18) and for 

any (0, 1)  a constant 1  for any k >1 the relation Cos j  1 holds 

for at least [Pk] values of j  [1, k]. 

Proof: First we note that the symmetric matrices Bk = Vk
T
kV = Wk-1 

2
1-kC T

1-kW  generated by the algorithm are positive definite, because the Wk-1 

are nonsingular as a consequence of the ( Al-Bayati , 1991) update, and the 

Ck-1 are nonsingular by construction.  

    Using the definition (15) of  , eq.(11) and lemma (4.1), we have  

 (Bk+1) = tr (Bk+1) -  ln (det (Bk+1)) 

   )) WC (W(det  ln) WC (Wtr T
k

2
kk

T
k

2
kk   

)(Cdet  ln  )W W(det ln  - )] W W) I-C ( [ tr ) W(Wtr 2
k

T
kkk

T
k

2
k

T
kk 

)(Cdet ln  ) W W) IC (( tr ) W(W ψ  2
kk

T
k

2
k

T
kk   

 



n

1i

2
i

2

i
2
i

T
kk Cln   w ) IC ( ) W(W ψ   

Where wi is the i th Column of Wk now scaling up and down the set of 

indices of the column Wk as  

  kik σ w :n 1,  iI    …(19) 

and  

  kik μ w :n 1,  iJ                                                             ...(20) 

and  ]),1[( niRtc      otherwise 
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  Therefore by define of the scalar ci in our new proposed algorithm  

       































































k

k

k

k

i
2

i

k
2

2

i2

i

k
2

Ji
2

i

2
2

i2

i

2

Ii
2

i

k
2

2

i2

i

2
T

kk1K

 w
ln w )1

 w
(

 w

μ
ln w )1

 w

μ
(                

 w

σ
ln w )1

 w
() W(W ψ)(B ψ

R

k

k





 

 

 

 ) -(ln -) w  - w(ln 

)μ -μ(ln -) w  - w(ln      

)σ -σ(ln -) w  - w(ln   ) W(W ψ 

2

k

2

k

2

i

2

i

i

2

k

2

k

2

i

2

Ji

i

2

k

2

k

2

i

2

Ii

i

T

kk

k

k

k



















R

 

     We will now involve lemma (4.2) with 1 = max and 2 = min since 

ki σ w   for i Ik whereas ki μ w  for i  Jk and ki w  for i  Rk we 

can therefore apply eq.(13) to each term of the first summation, and eq.(14) 

to each term of the 2nd summation to obtain 

 δn δn ) w(w ψ )(B ψ 43

T

kk1k                                                     …(21) 

for the constants 3 and 4 given by lemma (4. 2). 

     Now step (4) of our new suggested algorithm (1) indicates that the 

matrix T
kk  WW  is Al-Bayati’s update of Bk.Therefore by the same 

procedure of (Byrd & Nocedal, 1989)we can claim that  (Bk+1) is bounded 

and cosj  B1 .To ensure that the new algorithm generates a sequence of 

{xk} that converge to x
* 
, i.e.  

 






1

k x
k

x    …(22) 

and     fk+1 – f
*
  r

k
 (f1 – f

*
)                                                                 …(23) 

for some constant  r  [0, 1) 
     To prove (23) let us start with fk+1 – f

*
  (1 - 6 cos

2
 k) (fk – f

*
) see 

(Byrd et al, 1987)for the theoretical explanations.  

     Now since cosj  1 then  

fk+1 – f
*
  (1 - 6 

2
1β ) (fk –f

*
)  r

k
 (fk –f

*
) 

with  r = (1 - 6 
2
1β )  [0, 1)  where   11(

6

,
)

B

M

Bkm




 
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The assumption on f also imply that  *
k

2
*

k ff  x- x m 
2

1
   …(24) 

 Therefore combining (24) with (23) we obtain  








 
 













 )r(
m

)f(f 2
)ff( )

m

2
(  x

0

2

1
2

1
*

12

1

1k

*
k

2

1

1

*
k

k

k

k

x   

    (since the series is geometric series and it converges to a finite sum) 

This proves the global convergence of our new proposed algorithm (3.1)# 

 

 Super Linear Convergence 
     First we define the following quantities to be used in this section: 

     2

1

*k
2

1

*k GBGB


  ,         k
2

1

*k WGW


    …(25) 

     k
2

1

*k s Gs   ,          k
2

1

*k yGy


    …(26) 

    
k

T
k

k
T
k

k
s y

y y
M   ,         

k
T
k

k
T
k

k
s s

s y
m    …(27) 

     
k

T
k

kk
T
k

k
s s

s B s
q   ,        

kkk

kk
T
k

k
s B s

s B s
Cos    …(28) 

     where G* is the Hessian of f at the minimizer x* . 

We have shown (see lemma 4.2) that the limiting behavior of kq and 

kCos is enough to characterize the asymptotic rate of convergence of a 

sequence of iterates {xk} generated by a quasi-Newton algorithm. Their 

result which can be seen as a restatement of the (Dennis & More , 1977) 

characterization, is reproduced in the following lemma. 

 Lemma: Suppose that the sequence of iterates {xk} is generated by 

algorithm (1)-(2) using some positive definite sequence {Bk}, and that  

k = 1 whenever this value satisfies Wolfe conditions (3)-(4). If  

xk  x* then the following two conditions are equivalent : 

(i) The steplength k = 1 satisfies conditions (3)-(4) for all larg k and the 

rate of convergence is superlinear. 

(ii) 1q Cos k
k

k
k

limlim 


  …(29) 

Proof: Proof this lemma can be found in (Byrd &Nocedal, 1989). The next 

theorem specifies conditions on the scaling parameters k and k that allow  

kq and kCos , produced by Algorithm 3.1, to exhibit the desirable limiting 
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behavior of Lemma 5.1 . Such conditions involve following quantities: 


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and 


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2
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1
-

*   

And whether or not they sum finitely. Note that k and k need not be 

positive. Recall that the sets Ik and Jk defined by (19) and (20) contain the 

indices of the columns that are scaled down at iteration k. We are now 

ready to state the theorem. 

Theorem: Let f, x1, B1, k and k satisfy the assumptions in theorem 4.3 . 

In addition, assume that G is Lipschitz continuous at x*. Let {xk}  x* be 

generated by Algorithm 3.1; then if  

     


1k

k   …(32) 

    


1k
k  

    


1k
k    ...(33) 

the iterates converge superlinearly. 

Proof: From the definition (15) of  and from (11), (12) and (25), we have 

)G  WC  W(Gdet ln  - )G  WC  W tr(G )B( 2

1
 -

*
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1
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1
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*
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*1k    

...(31) 
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 Since T
kk  WW

~
is the matrix obtained by updating Bk using the 

(Al-Bayati,1991)formula,which is invariant under the transformation 

(25)– (28), we have:  
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     Therefore, using (35) in (34), we have: 
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 By Theorem 4.3, we know that the iterates converge to  

x* r-linearly. Using this and the Lipschitz continuity of G at x* , it is not 

difficult to show (Byrd & Nocedal, 1989)that:  

        


  1) - m~ln  - M
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jj

             …(37) 

Moreover, the hypothesis of the theorem guarantees that the last two 

summations in (36) are bounded above. Therefore, in order for )B
~

( 1 k  to 

remain positive as   k , the sum of the nonpositive terms in the square 

brackets must also be bounded. This can only be true if:  
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Which implies that both kq~  and 1  
~

cos k
2  . Hence, superlinear 

convergence follows from Lemma (5.1) #.  

Now in the following section we describe a specific and modified 

implementation of algorithm 3.1 and make use of theory developed so far 

to show that it is globally and superlinearly convergent for strictly convex 

objective functions.  

 

Algorithm 
     Automatic column scaling (Al-Bayati, 1991)VM-algorithm. This is a 

modified version from our first proposed algorithm (3.1). 

(0)Choose x1 and a nonsingular and lower matrix V1 ; set k = 1. 

(1) Terminate if a stopping criterion is satisfied.  

(2) Find an orthogonal matrix Qk such that Lk = Vk Qk is lower triangular.  

…(36) 
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Compute: kk1k C  W     

(5) Set k = k + 1 and go to step (1).  

Note that: at each iteration k begins with lower matrix Vk which defines 
T
kkk V V  B   . Also since Fkk Q V  L   we have that T

kkk L L  B   . This 

allows V to compute the search direction by two triangular solves.  

 

Numerical Results 
In order to asses the value of this new technique, numerical tests 

were carried out on a number of unconstraint optimization problems. As a 

standard for the purpose of comparison, the test functions, (from general 

literature) were solved using two different VM-algorithms. 

(i) The standard BFGS algorithm. 

(ii) The new proposed algorithm 6.1 (which it has been proved to                                                                                                                                                                  

be global and superlinear convergent). 

     All the numerical results were presented in table (1)-(4). All the 

algorithm terminate whenever 5
1k

T
1k 101g g 

  and the two algorithms 

use exactly the same line search strategy, namely, the cubic fitting 

technique directly adapted from that published by ( Bunday, 1984). 

Analysis of the four tables shows that the new proposed VM-

algorithm is superior to the standard BFGS algorithm. The superiority of 

the new algorithm is clear for high dimensionality test problems because 

the automatic scaling strategy. 
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Table (1): Comparison between standard BFGS algorithm with the new 

proposed algorithm n = 4 . 

Test Function 
New algorithm Standard BFGS 

NOI NOF NOI NOF 

Resonbrok (-1.2, 1, …) 12 41 31 93 

Cubic (1.2, 1, …) 7 34 8 26 

Freud (30, 3, …) 7 23 7 27 

Powell (3, -1, 0, 1, …) 18 81 22 84 

Wood (-3, -1, -3, -1, …) 28 100 56 159 

Dixon (-1, …) 10 27 14 37 

Miele (1, 2, 2, 2, …) 19 78 25 94 

Cantrell (1, 2, 2, 2, …) 15 85 13 63 

Total 116 469 176 583 
 

Percentage improvement of the new algorithm compared against standard 

BFGS algorithm 
BFGS 100 % NOI 100 % NOF 

New 65.9 80.4 

 

 
Table (2): Comparison between standard BFGS algorithm with the new 

proposed algorithm n = 40 . 

Test Function 
New algorithm Standard BFGS 

NOI NOF NOI NOF 

Resonbrok (-1.2, 1, …) 14 42 132 398 

Cubic (1.2, 1, …) 10 42 9 29 

Freud (30, 3, …) 8 25 8 29 

Powell (3, -1, 0, 1, …) 37 101 35 100 

Wood (-3, -1, -3, -1, …) 126 399 201 576 

Dixon (-1, …) 43 90 60 123 

Miele (1, 2, 2, 2, …) 24 92 30 105 

Cantrell (1, 2, 2, 2, …) 16 91 13 63 

Total 278 882 488 1423 
 

Percentage improvement of the new algorithm compared against standard 

BFGS algorithm 
BFGS 100 % NOI 100 % NOF 

New 56.9 61.9 
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Table (3): Comparison between standard BFGS algorithm with the new 

proposed algorithm n = 100 . 

Test Function 
New algorithm Standard BFGS 

NOI NOF NOI NOF 

Resonbrok (-1.2, 1, …) 18 55 169 521 

Cubic (1.2, 1, …) 10 40 13 37 

Freud (30, 3, …) 8 25 8 29 

Powell (3, -1, 0, 1, …) 41 128 42 129 

Wood (-3, -1, -3, -1, …) 21 68 37 114 

Dixon (-1, …) 93 192 129 262 

Miele (1, 2, 2, 2, …) 28 104 31 107 

Cantrell (1, 2, 2, 2, …) 16 91 14 69 

Total 235 700 443 1268 
 

Percentage improvement of the new algorithm compared against standard 

BFGS algorithm 
BFGS 100 % NOI 100 % NOF 

New 53 55.2 

 

 
Table (4): Comparison between standard BFGS algorithm with the new 

proposed algorithm n = 200 . 

Test Function 
New algorithm Standard BFGS 

NOI NOF NOI NOF 

Resonbrok (-1.2, 1, …) 17 51 159 483 

Cubic (1.2, 1, …) 9 37 13 39 

Freud (30, 3, …) 8 23 10 32 

Powell (3, -1, 0, 1, …) 39 117 40 120 

Wood (-3, -1, -3, -1, …) 32 99 56 165 

Dixon (-1, …) 89 183 123 249 

Miele (1, 2, 2, 2, …) 28 104 31 107 

Cantrell (1, 2, 2, 2, …) 16 91 14 69 

Total 238 705 446 1264 
 

Percentage improvement of the new algorithm compared against standard 

BFGS algorithm  
BFGS 100 % NOI 100 % NOF 

New 53.3 55.7 
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Final Remarks 
     We have described in this paper the conditions under which new 

automatic self-scaling algorithms based on the direct form of (Al-Bayati, 

1991) VM-Update can be proved to be globally and super linearly 

convergent. Also some sort of numerical experiments have been done to 

inform the effectiveness of the new proposed algorithms. It is also possible 

to describe another similar algorithm based on the inverse scaled-BFGS 

algorithm. A column scaling algorithm which was proposed by (Siegel, 

1991) may be modified and implemented with this family of algorithms. 

     However, values of k, k selected in the new algorithm may be 

described (in more details) in our further work. It might occasionally be 

better to increase k and to decrease k . in any case, the theory developed 

in this paper will prove to be useful for analyzing the global and super 

linear convergence of these algorithms.Finally this idea may be extended to 

constrained optimization problems see (Al-Bayati & Hamed, 1998) for 

more details. 
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Appendix 
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List of symbols 
Meaning              Symbol 

is the dimensions of the problems n 
is the K-th step of iterations K 
is the twice differentiable real value function F 
is the local minimum of f(x) x

* 
is an approximation to x

* 
x 

is the n ×1 gradient vector of f(x) g 
is the n ×1 search direction vector d 
is the n ×n Hessian matrix G 
is the n ×n  approximation to G

 -1
 matrix H 

is the n ×n  approximation to G
 
   matrix B 

is the n ×1 difference vector between two successive gradients Y 
is the n ×1 difference vector between two successive points v 
is the positive scalar which minimizes f(x- λHg) λ 
is the exact line search ELS 
is the inexact line search ILS 
is the Quasi-Newton QN 
is the Variable metric VM 
is the Conjugate Gradient CG 
is the number of function evaluations NOF 
is the number of iterations NOI 
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 خوارزميات ذوات التقارب الشامل والسرعة فوق الخطية في الأمثلية اللاخطية

 

 

 مها صلاح الصالح  و    عباس يونس البياتي
 كلية علوم الحاسبات والرياضيات

 جامعة الموصل
 

 الخلاصة
 

في هذا البحث تم التطرق إلى صنف جديد من خوارزميات المتري المتغير وفق تقنية خاصة بالقياا   
الذاتي . وتم كذلك دراسة بعض النتائج النظرية التي تؤكد التقارب الشامل والسرعة فوق الخطية للخوارزميات 

( دالاة ييار خطيا     23تعمال )الجديدة المقترحة مع دراسة عملية تؤيد كفاءة الخوارزميات المقترحة. وباسا 
 معروفة.

 

 


