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Abstract 

 

     Let R be a commutative ring with identity and M be a unitary R-module. 

An R-module M is called finitely annihilated if there exists a finitely 

generated R-submodule N of M such that ann(M)=ann(N).Our main 

purpose in this work is to study this property in some known classes of 

modules such as quasi-injective, multiplication and other modules. We 

prove that: 

1-If M is a quasi-injective R-module, then M is finitely annihilated if and 

only if M is finendo. 

2-If M is a multiplication R-module, then M is finitely annihilated if and 

only if M is finitely generated. 

3-M is a faithful finitely annihilated R-module if and only if M is a 

compactly faithful R-module. 

 

Introduction 
     Let R be a commutative ring with unity and let M be a unitary R-module 

.C. Faith called an R-module M is bounded if there exist an element 

x M such that ann(M)=ann(x)(Faith,1970), and he studied some 

properties of these modules. Also other properties of bounded modules 

were studied in(Ameen,1992).John A. Beachy and William D.Blair gave a 

generalization  to the bounded module concept (Beachy&Blair,1978). They 

called an R-module M is finitely annihilated if there exists a finite 

set nxxx ,...,, 21 ,Where , 1,2, ,ix M i n    , such that
 

  1 2( ) , , , nann M ann x x x . It is clear that every bounded R-module is 

finitely annihilated. In section one, we study some properties of finitely 

annihilated R-modules. In section two, we present sufficient conditions for 

quasi-injective modules to be finitely annihilated and we study some 

properties of quasi-injective R-modules satisfy finitely annihilated property. 
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We prove that if M is a finitely annihilated quasi-injective R-module, then 

M is finitely generated over End(M)(Th.2.1). Also we prove that if M is a 

quasi-injective R-module, then M is finitely annihilated if and only if M is 

finendo(Corollary 2.2). Section three is devoted to study finitely 

annihilated property in the class of multiplication R-modules. We look for 

necessary or sufficient conditions for multiplication R-modules to be a 

finitely annihilated R-module. We prove that if M is multiplication R-

module, then  M is  finitely annihilated if and only if M is  finitely 

generated(Prop.3.1).In section four , we study  finitely annihilated property 

in other classes of modules such as quasi-Dedekind, compressible, F-

regular and compactly faithful. 

 

Some Basic Properties of Finitely Annihilated modules. 

     In (Beachy&Blair, 1978), an R-module M is called finitely annihilated 

if there exists a finite set  1 2, , nx x x in M such that, 

    1 2, , nann M ann x x x . In this section, we present an equivalent 

statement for this concept. Furthermore, we study some properties and give 

a characterization for this concept. The proof of the following remark is 

easy and hence is omitted. 

Remark1.1: 
     Let M be an R-module. M is finitely annihilated if and only if 

   ann M ann N
 
for some finitely generated R-submodule N of M. 

Examples and Remarks 1.2: 

1-Every torsion free R-module, where R is an integral domain, is finitely 

annihilated. 

2-Every finitely generated R-module is finitely annihilated. But the 

converse is not true. For example Q (the set of all rational numbers) as a 

 Z-module is finitely annihilated but not finitely generated, 

3-
p

Z  as a Z-module is not finitely annihilated. 

4-The homomorphic image of finitely annihilated R-module may not be 

finitely annihilated. For example a Z-module Q is finitely annihilated but 

Q

Z
is not finitely annihilated Z-module. 

5- The direct summand of finitely annihilated R-module may not be finitely 

annihilated. For example, the Z-module 
p

M Z Z   is finitely annihilated 
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 but 
p

Z 
is not finitely annihilated. The proof of the following proposition is 

straightforward and hence is omitted.  

Proposition 1.3:  

     Let M be an R-module and let I be an ideal of R such that ( )I ann M . 

Then M is finitely annihilated R-module if and only if M is finitely 

annihilated 
R

I
-module. The following result is an immediate consequences 

of  Prop.1.3. 

Corollary 1.4: 

     Let M be an R-module. Then M is a finitely annihilated R-module if and 

only if M is a finitely annihilated 
)(Mann

R
-module 

 Proposition 1.5:- 

     Let 
1M  and 

2M  be two finitely annihilated R-modules. Then  

1 2M M  is a finitely annihilated R-module. 

Proof:  

     Since 
1M is finitely annihilated, there exists a finitely generated  

R-submodule 
1N  of 

1M  such that    1 1ann M ann N . Similarly, there 

exists a finitely generated R-submodule 
2N  of 

2M such that 

   2 2ann M ann N . It is clear that    1 2 1 2ann M M ann N N   . 

Now, let  1 2r ann N N  , then    , 0,0r x y   for all 
1x N  and for 

all 
2y N , that is    , 0,0rx ry  . Hence 0rx  , for all 

1x N , and 

0ry  , for all 
2y N . This implies that

 
       1 2 1 2r ann N ann N ann M ann M    . 

Whence
                  1 2r ann M M  . 

This prove that 
        1 2 1 2ann N N ann M M   . 

Therefore                 1 2 1 2ann M M ann N N   , 

proving that 1 2M M  is finitely annihilated. The following result is an 

immediate consequence of Prop.1.5. 

Corollary 1.6:  
     A finite direct sum of finitely annihilated R-modules is finitely 

annihilated. However, an infinite direct sum of finitely annihilated R-

modules may not be a finitely annihilated R-module, as it is shown in the 

following example. 
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Example 1.7: 
pZ as a Z-module is finitely annihilated for all prime p by 

1.2(2), but pZ is not a finitely annihilated Z-module. 

The following characterization is appeared in (Beachy&Blair, 1978)  

Proposition 1.8:  

     M is finitely annihilated R-module if and only if 
 
R

ann M

 is embedded 

in kM , where k is a positive integer. The following remark is needed in 

the proof of next proposition. 

Remark 1.9: 
     Let M be an R-module. If N is E-submodule of  M , where E= End(M), 

then N is R-module of M. 

Proof:  
     It is easy. 

The following result is a consequence of Remark 1.9. 

Proposition 1.10:  
     Let M be an R-module. If M is a finitely annihilated E-module, where 

E= End(M), then M is a finitely annihilated R-module. 

Proof:  
     Since M is finitely annihilated E-module, then there exists a finitely 

generated E-submodule N of M such that    E Eann M ann N .Let 

 1 2, , sx x x be a set of generator of N, where , 1,2, ,ix N i s  .Thus 

  1 2, , sN x x x . Let K be an R- submodule of M generated by 

 1 2, , sx x x . We claim that    R Rann M ann K . Let  r ann K , and 

define :f M M such that  f(m)=rm,  for all m in M. Thus 

  0, 1,2,i if x rx i s    .By Remark 1.9, N is an R-submodule of M. Let 

n  N,then      1 1 2 2 s sn h x h x h x    , where , 1,2, ,ih E i s   . Hence 

             1 1 2 2 1 20 0 0 0s s sf n rn h rx h rx h rx h h h           

and consequently f (N) =rN=0. Therefore  Ef ann N .But 

   E Eann M ann N  so that   Ef ann M . This means that f(M)=rM=0. 

Whence ( )r ann M . It is clear that     ann M ann K .◘ Recall that an 

R-module M is said to be finendo if it is finitely generated over End(M) 

(Faith,1970). 

Corollary 1.11:  
     Let M be an R-module. If M is finendo, then M is finitely annihilated. 



 

Journal of Kirkuk University – Scientific Studies , vol.3, No.2,2008 

 

 

Proof:  
     Since M is finendo, thus M is finitely generated over End(M).By 

1.2(2),M is finitely annihilated E-module. Thus by Prop.1.10, M is finitely 

annihilated R-module. In the following proposition, we investigate the 

behavior of finitely annihilated property under localization.  

Proposition 1.12:  

     If M is a finitely annihilated R- module, then 
SM  is a finitely 

annihilated 
SR -module, where S is a multiplicatively closed set of R. 

Proof:  
     Suppose that M is a finitely annihilated R-module, then there exists a 

finitely generated R- submodule N of M such that    ann M ann N . 

Since N is finitely generated, then 
SN is finitely generated and 

    
SR SS

ann N ann N .It is clear that ann
RS

(M
S
)ann

RS

(N
S
). Let  

    
SR S S

r
ann N ann N

s
  . Thus    r ann N ann M   and t  S. Let 

, , ,S

m
x M x m M s S

s
    .Whence  

0r m rm

t s ts ts
   . This implies 

that ( )
SR S

r
ann M

t
 . Therefore    

S SR S R Sann M ann N
  
which proves that 

SM is a  finitely annihilated 
SR -module. 

 

Finitely Annihilated Modules and Quasi-Injective Modules. 

     An R-module M is said to be quasi-injective if for each R-submodule N 

of M and every R-homomorphism from N to M can be extended to an R- 

endomorphism of M (Faith, 1970). In this section, we look for conditions 

for quasi-injective modules to be finitely annihilated. We begin with the 

following theorem which gives a condition under which the converse of 

Corollary 1.11 is true. 

Theorem2.1:  
     If M is a quasi- injective finitely annihilated R-module, then M is 

finendo. 

 Proof: 

By prop. 1.8,    0
( )

g kR
M

ann M
  is exact. We claim that 

  ( , )
, , 0

( )
RHom g Ik

R R

R
Hom M M Hom M

ann M

 
  

 

 is exact. 
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Let ,
( )

R

R
Hom M

ann M


 
  

 

. Since g is monomorphism, then 

g(
)(Mann

R )LM k ,,where L is an R- submodule of kM . Let 

11 :
( )

g j kR
j g L M M

ann M

 
     

where j  is the injection homomorphism. Consider the following diagram 

 

 

   

 

 

 

where  i  is the inclusion mapping. Since M is quasi-injective, then kM is 

quasi-injective (Faith, 1970).Thus there exists a homomorphism 

: k kM M  such that  i  . That is L  . Let  

: k kM M M      , where  : kM M  be the canonical  

projection. Thus  

  1,Hom g I I g I g I g I j g g

I j I

       

  

   

 
 

Therefore  ,Hom g I is onto, and consequently

 
  ( , )

, , 0
( )

RHom g Ik

R R

R
Hom M M Hom M

ann M

 
  

 

 

 is exact.  But Hom R (M k ,M)=[Hom R  (M, M)] k (Kasch,1982) 

,and  Hom R (M k ,M)= Hom
)(Mann

R  (M k ,M) (Kasch,1982). 

 And also Hom(
)(Mann

R
,M) M as 

( )

R

ann M
modules . Therefore 

 
( )

, 0

k

R

ann M

Hom M M M
 

  
  

is exact. But Hom
)(Mann

R  (M, M)= 

 Hom R (M, M)=End(M) (Kasch,1982), so ( ) 0
k

End M M  is exact . 

Put E=End(M), we have 0kE M   is exact in E-module. Thus M
D

E k

 , 

where D is an E-submodule of 
kE . Since 

kE is finitely generated,  

M
k 

 

M
k 


M
k 

 

L 


M
k 

 

i
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then 
kE

D
is finitely generated. Therefore M is finitely generated as E-

module. That is, M is finitely generated over End(M) and consequently M 

is  finendo. ◘  

The following result follows from Th.2.1 and Corollary.1.11. 

Corollary 2.2:  

     Let M be a quasi-injective R-module. Then M is finitely annihilated if 

and only if M is finendo. An R-module M is called semi-simple if every R-

submodule of M is a direct summand (Kasch, 1982). Since semi-simple R-

module is quasi-injective (Faith, 1970), we have the following corollary. 

 Corollary 2.3:  
     Let M be a semi-simple R-module. Then M is finitely annihilated if and 

only if M is finendo. Recall that an R-module M is called Q-module if 

every R-submodule of M is quasi-injective (Mohammad, 2005). 

Proposition 2.4:  
     Let M be Q-module. Then the following statements are equivalence: 

1-Every R-submodule of M is finitely annihilated. 

2-Every R-submodule of M is finendo. 

3-Every R-submodule of M is finitely generated over End(M). 

Proof: 

(1) (2) suppose that every R-submodule of M is finitely annihilated. Let 

N be an R-submodule of M. Thus N is a quasi-injective finitely annihilated 

R-submodule. By Th.2.1, N is finendo. 

(2) (3) Since ( ) ( )End N End M , then N is finitely generated over 

End(M). 

(3) (1) Assume L is an R-submodule of M which is finitely generated 

over End(M). Thus there exist 1 2, , , nx x x L  such that for each y L , 

1 1 2 2( ) ( ) ( ), ( ), 1,2, ,n n iy f x f x f x f End M i n      . Let X be a 

finitely generated R-submodule of M generated by 1 2, , , nx x x .It is clear 

that X L .We claim that ann(L)=ann(X). Let ( )r ann X , 

then 0, 1,2, ,irx i n   .Let s L .Then      1 1 2 2 n ns g x g x g x   

,where ( ), 1,2, ,ig End M i n   . Thus 

     1 1 2 2 0n nrs g rx g rx g rx     . So ( )r ann L . Therefore 

( ) ( )ann X ann L . Since ( ) ( )ann L ann X , then ( ) ( )ann L ann X . 

Whence L is finitely annihilated◘. 
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Proposition 2.5: 

 Let M be an R-module and let 
( )

R

ann M
is a semi-simple ring. Then M is a 

finitely annihilated R-module if and only if M is finendo. 

Proof:  

By Corollary1.4, M is a finitely annihilated 
( )

R

ann M
-module. But 

( )

R

ann M
is 

semi- simple, then M is an injective 
( )

R

ann M
-module (Kasch, 1982),and 

hence M is a quasi-injective 
( )

R

ann M
-module. Thus M is a quasi-injective 

R-module .Whence M is finendo (Th.2.1).The converse follows from 

Corollary.1.11. ◘. Recall that an R-module M is said to be fully stable if 

( ( )) ,M Rann ann x x x M   (Abass, 1990). 

Proposition 2.6:  
     Let M be a fully stable quasi-injective R-module. Then M is  finitely 

annihilated if and only if M is finitely generated. 

Proof:  
     If M is finitely annihilated, then there exists a finitely generated R-

submodule N of M such that ann(M) =ann(N).By (Abass,1990), M satisfies 

the double annihilator condition on finitely generated R-submodules. 

Hence      M R M Rann ann M ann ann N and consequently M=N. 

Whence M is finitely generated. 

The converse is clear. ◘. 

Corollary 2.7:  
     Let M be a fully stable semi-simple R-module. Then M is finitely 

annihilated if and only if M is finitely generated. 

 

Finitely Annihilated Property with Multiplication Modules. 

An R- module M is said to be multiplication module if for every R-

submodule N of M, there exists an idea I in R such that N=IM 

(Barnard,1981) .The following proposition shows that the converse of  

1.2(2) is true in the class of multiplication modules. 

Proposition 3.1:  
     Let M be a multiplication R-module. M is finitely annihilated if and 

only if M is finitely generated. 
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Proof:  
     Since M is a finitely annihilated R-module, then there exists a finitely 

generated R-submodule N of M such that Ann (M)=ann(N). By 

(Low&Smith, 1990), M is finitely generated. The converse follows from 

1.2(2).The condition multiplication in Prop.3.1 can not be dropped. For 

example Q as Z-module is finitely annihilated, but Q is not finitely 

generated and not multiplication. 

Corollary 3.2:   
     If M is a finitely annihilated multiplication R-module, then 

End(M)
)(Mann

R
 . 

Proof:  

     It follows from Prop.3.1 and (Naoum, 1990).In the class of 

multiplication modules the converse of Prop.1.10 is true as the following 

proposition indicate that. 

Proposition 3.3   
     Let M be a multiplication R-module and E=End(M). M is a finitely 

annihilated R-module if and only if M finitely annihilated E-module. 

Proof:  
If M is a finitely annihilated R-module, then by Corollary 1.4, M is a 

finitely annihilated 
( )

R

ann M
-module. But M is multiplication, then 

End(M)  
)(Mann

R
 (Corollary 3.2). Thus M is a finitely annihilated E-

module .The converse follows from Prop.1.10. ◘ Recall that an R-module 

M is torsionless if and only if  
*

ker 0
f M

f


 , where * ( , )M Hom M R  

(Low&Smith, 1990), and the trace of an R-module M is 

*

( ) ( )
f M

T M f M


  (Low&Smith, 1990). Now, we have the following 

proposition. 

Proposition 3.4:   
     If M is a torsionless multiplication R-module and T(M) is finitely 

generated , then M is finitely annihilated. 

Proof:  

Since T(M) is finitely generated , then there exist m i M and 

f i M * ,1 in, such that { f i ( m i ):1 in } generates T(M). Let N be the 
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R- submodule of M generated by the set  :1im i n  .We have to show 

that ( ) ( )ann M ann N . Let  r ann N , *m M and f M  then 

         
1 1

0
n n

i i i i i i

i i

f rm rf m r f m f rm 
 

     , where 

, 1,2, ,i R i n   . Thus  
*

ker 0 ,
f M

rm f


  and hence rM=0.Therefore 

 r ann M and consequently ( ) ( )ann N ann M . It is clear that 

( ) ( )ann M ann N . This completes the proof that M is finitely annihilated. 

Recall that an R- submodule N of an R-module M is dense in M if 
*, ( ) 0f M f N    , then f=0 (Naoum, 1990). 

Proposition 3.5:  

     If M is a torsionless multiplication R-module and contains a finitely 

generated dense R-submodule N, then M is finitely annihilated. 

Proof:  

     It is clear that ( ) ( )ann M ann N  . Let  r ann N , then 

      *0 0,rf N f rN f f M     . But N is dense R-submodule, then 

*0,rf f M   . That is * 0rM   . This means that  *r ann M . But M is 

torsionless, so *( ) ( )ann M ann M  (Low&Smith,1990).Whence
 

 r ann M . Therefore ( ) ( )ann N ann M  .This shows that M is finitely 

annihilated. ◘ An R-module M is called non-singular if  

  ( ) : 0Z M m M ann m isessential inR    

where a nonzero R-submodule N of M is called essential if  0N K 
 

for each nonzero R-submodule K of M (Kasch,1982). Let L and D are R-

submodules of M, then    : :L D r R rD L   . 

Proposition 3.6:  
     If M is a non-singular multiplication R-Module such that M contains an 

essential finitely generated R-submodule, then M is finitely annihilated. 

Proof:  
     Let N be an essential finitely generated R-submodule of M. It is clear 

that that ( ) ( )ann M ann N . Since N is essential in M. then for 

allm M ,we have   :N m is essential in R (Ahmad,1992).Let 

( )r ann N , then     : 0rm N m  .Thus   : ( )N m ann rm . 
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But   :N m is essential in R, so ( )ann rm is essential in R. Since M is non-

singular, then rm=0 for all m in M. that is rM=0, and hence ( )r ann M . 

Therefore ( ) ( )ann N ann M . Whence M is finitely annihilated. ◘. 

Corollary 3.7 :  
     If M is a multiplication R-module and contains a finitely generated  

essential R-submodule N with Z(N)=0, then M is  finitely annihilated. 

Proof:  

     It is enough to prove that M is non-singular, that is  ( ) 0Z M  . Suppose 

that  ( ) 0Z M  , then there exists a nonzero element m M such that  

ann(m) is essential in R. But N is essential in M, then there exist r  R such 

that 0 rm N  . Since ( ) ( )ann m ann rm , so ( )ann rm  is essential in R. 

Thus ( ) 0rm Z N   . Therefore rm=0 which is a contradiction. Hence 

( ) 0Z M   , that is , M is non-singular. By Prop.3.6, M is finitely 

annihilated. ◘. 

Corollary3.8:  

     Let R be a ring such that ( ) 0Z R  . If M is multiplication torsionless R-

module which contains a finitely generated essential R-submodule, then M 

is  finitely annihilated.  

Proof:  

     It follows from (Ahmad,1992)and Prop.3.6. ◘  

The closure of an R-submodule N of M denoted by 

     : :Cl N m M N m isan essential ideal in R  . It is clear that 

 N Cl N and        (0) : 0 :Cl m M m ann m isessential in R Z M     

(Goldie.1964). 

Proposition3.9:  
     Let M be a non-singular R-module. If  M  contains a finitely generated 

R-submodule N such that  Cl N M , then M is  finitely annihilated. 

Proof: 

     Let  r ann N . Then
 

  : 0rm N m  . Thus     :N m ann rm . But 

  :N m is essential in R, so ( )ann rm  is essential in R. Whence 

   0rm Z M  . That is rm=0 for all m in M. Thus  r ann M and 

consequently
  ( )ann N ann M  . Since

  ( )ann M ann N  , 

so  ( )ann N ann M . This proves that M is finitely annihilated. ◘ 
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We end this section by the following proposition. 

Proposition3.10:  
     If M is a faithful multiplication module over integral domain, then M is 

finitely annihilated. 

Poof:  
     By (Ahmad, 1992), M is torsion free and by 1.2(1), M is finitely 

annihilated. ◘ 

 

Finitely Annihilated Property with Some Types of Modules. 

     In this section, we study the relationship between finitely annihilated 

modules and other modules. An R-module M is said to be prime if 

   R Rann M ann N for every non-zero submodule N of M (Beachy, 1976). 

It is clear that every prim R-module is finitely annihilated, but the converse 

is not true in general as the following example shows.
nM Z Z  as Z-

module is  finitely annihilated module, but not a prim R-module, 

since        0 0 0Z nann M and ann Z nZ    . And an R-module M is 

said to be quasi-Dedekind if every nonzero R-submodule N of M is quasi-

invertible, where an R-submodule N of M is called quasi-invertible if 

, 0
M

Hom M
N

 
 

 
(Mijbass, 1997). It is known that every quasi-Dedekind 

module is prime (Mijbass, 1997) , and as an immediate consequence of this 

result the following proposition. 

Proposition4.1:  
     If M is a quasi-Dedekind R-module, then M is finitely annihilated. 

Recall that an R-module is said to be Dedekind module if every submodule 

of it is invertible and an R-module is called prufer module if every finitely 

generated submodule of it is invertible (Al-Alwan,1993). In particular, 

every Dedekind module and every prufer module is quasi-Dedekind 

(Mijbass,1997) . We get the following corollaries that are direct results 

from the Prop.4.1 

Corollary 4.2:  
     if M is Dedekind R-module, then M is finitely annihilated module. 

Corollary 4.3:  

     If M is prufer R- module, then M is finitely annihilated module.  

An R-module is called compressible if every non-zero submodule of M 

contains an isomorphic copy of M (Desale & Nicholoson, 1981). 
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Proposition4.4:  
     If M is a compressible R-module, then M is finitely annihilated module. 

Proof:  

     If M=0, then there is nothing to prove. Assume M  0. Let N be a finitely 

generated non-zero R-submodule of M and let  r ann N where r R . 

Since M is compressible, then there exists a monomorphism f: M→N such 

that M f(M)N. Now,    0 rf M f rM  . But f is an R-monomorphism, 

so rM=0. Thus  r ann M and consequently    ann N ann M . Since 

   ann M ann N , then
    ann M ann N . Whence M is finitely 

annihilated ◘.Recall that an R-submodule N of M is called prime if 

,rm N r R  and m M, then either  :m N or r N M  . 

Corollary 4.5:  
     If M is a multiplication R-module which contains a finitely generated 

prime R-submodule N, then M is finitely annihilated. 

Proof:  

     By (El-Baset&Smith, 1988),
M

N
is compressible. Hence

M

N
 is finitely 

annihilated (Prop.4.4). Since M is multiplication, then 
M

N
 is multiplication 

(El-Baset&Smith,1988 ). Thus 
M

N
 is finitely generated R-module 

(Prop.3.1) and consequently there exists 

1 2 1 2, , , ,n nx x x M suchthat M Rx Rx Rx N      . But N is finitely 

generated R-submodule of M, then M is finitely generated. Hence M is 

finitely annihilated by 1.2(2). 

Corollary 4.6:  

     If M is a multiplication R-module such that  ann M  is a prime ideal of 

R , then M is  finitely annihilated. 

Proof:   

     Since     0 :ann M M is a prime ideal of R, then  0  is a prime R-

submodule of M (El-Baset&Smith,1988). By Corollary 4.5, M is finitely 

annihilated. 

Recall that an R-submodule N of M is called Pure If  IM N IN   for 

every ideal I of R (Fieldhouse, 1969). 
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Proposition4.7:   
     If M is an R-module and contains a finitely generated essential pure R-

submodule of M, then M is finitely annihilated. 

Proof:  
     Let N be a finitely generated essential pure R-submodule of M. It is 

clear that    ann M ann N . Let  r ann N , then  0rN  . Since N is 

pure, then  0N rM rN   . Since N is essential, then  0rM  which 

implies that
  r ann M . Therefore    ann M ann N . Whence M is 

finitely annihilated. An R-module M is F-regular if every R-submodule of 

M is pure (Fieldhouse, 1969). As an application of Prop.4.7, we have the 

following result. 

Corollary4.8:  
     If M is a uniform F-regular R-module, then M is finitely annihilated. 

 An R-module M is divisible if rM M for every non-zero element r in R 

(Kasch, 1982). 

Corollary4.9:  
     Let M be a uniform module over PID  R such that every R-submodule 

of M is divisible. Then M is finitely annihilated. 

Proof:  

     Let N be a finitely generated R-submodule of M. Thus N is essential and 

divisible. Whence N is pure .Therefore M is finitely annihilated (Prop.4.7).  

We give in the following proposition a condition under which finitely 

annihilated property equivalent to finitely generated property. 

Proposition4.10:  
     Let M be R-module and satisfies the double annihilated property. Then 

M is finitely annihilated if and only if M is finitely generated. 

Proof:  
     It is direct.  

Now, we study the relation between the two concepts faithful and 

compactly faithful by using finitely annihilated property. An R-module M 

is said to be compactly faithful, provided that there is an embedded 

0 nR M  for some finite integer n>0 (Faith, 1970). Any compact 

faithful module is faithful. The following theorem gives a necessary and 

sufficient condition for a faithful module to be  finitely annihilated. 

Teorem 4.11:  
     Let M be an R-module. Then M is faithful finitely annihilated if and 

only if M is compactly faithful. 
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Proof:  
     Suppose that M is faithful finitely annihilated. By Prop.1.8, 

0 kR M   is exact for some integer k > 0. Thus M is compactly 

faithfulR-module. Conversely; Since M is compactly faithful , so 

0 nR M  is exact for some integer n > 0 ,and hence M is faithful. By 

Prop.1.8, M is finitely annihilated.  

Corollary4.12:  

     If M is a finitely annihilated semi-simple R-module, then 
 

R

ann M
is 

semi-simple ring. 

Proof:  

     By Corollary 1.4, M is a finitely annihilated 
 

R

ann M
-module. But M is 

faithful as an 
 

R

ann M

-module, so M is compactly faithful (Th.4.11).Thus 

 

R

ann M
can be imbedded in kM . Since M is semi-simple, so kM is semi-

simple. Whence 
 

R

ann M
is semi-simple. 
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 مقاسات مقيدة التالف

 



 

 الخلاصة
 

مقاس مقيد التالف  M. نقول إن  Rمقاسا أحاديا أيسرا على الحلقة  Mحلقة أبدالية بمحايد وليكن  Rلتكن      
.غرضنا الرئيس فيي   ann(M)=ann(N)بحيث إن  Mمن  Nإذا تحقق وجود مقاس جزئي منتهي التولد مثل 

ة عن المقاسات المقيدة التالف ونلقي نظرة كافية وضرورية عليى  هذا البحث هو دراسة بعض المبرهنات المهم
ندرس كذلك المقاسات التي تكون المقاسات الشبه اغمارية ونضع الشرط الكافي للحصول على مقاس مقيد التالف.

مقيد التالف على صنف من المقاسات الجدائية و أصناف أخرى من المقاسات,كما تحرينا على بعض الشيروط  
وهنا بعض النتائج التي الضرورية والكافية الواجب توافرها مع المقاسات الجدائية حتى يكون المقاس مقيد التالف.

 توصلنا إليها:
 منتهي التولد. Mمقاس مقيد التالف إذا وفقط إذا كان  Mفان  Rشبه أغماري على  مقاسا Mإذا كان -1
 منتهي التولد. Mمقاس مقيد التالف إذا وفقط إذا كان  Mفان  Rمقاسا جدائي على  Mإذا كان  -2
مقاسا مخلصيا بشيكل    Mمقاس مخلص و مقيد التالف إذا وفقط إذا كان  Mفان  Rمقاسا على  Mإذا كان  -3
 ص.رصوم


