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Abstract

Let R be a commutative ring with identity and M be a unitary R-module.
An R-module M is called finitely annihilated if there exists a finitely
generated R-submodule N of M such that ann(M)=ann(N).Our main
purpose in this work is to study this property in some known classes of
modules such as quasi-injective, multiplication and other modules. We
prove that:
1-1f M is a quasi-injective R-module, then M is finitely annihilated if and
only if M is finendo.
2-1f M is a multiplication R-module, then M is finitely annihilated if and
only if M is finitely generated.

3-M is a faithful finitely annihilated R-module if and only if M is a
compactly faithful R-module.

Introduction

Let R be a commutative ring with unity and let M be a unitary R-module
.C. Faith called an R-module M is bounded if there exist an element
Xxe M such that ann(M)=ann(x)(Faith,1970), and he studied some
properties of these modules. Also other properties of bounded modules
were studied in(Ameen,1992).John A. Beachy and William D.Blair gave a
generalization to the bounded module concept (Beachy&Blair,1978). They
called an R-module M is finitely annihilated if there exists a finite

set {Xl,Xz,---, Xn},Where X, eM,Vi=12,---,n : such that
ann(M):ann({xl,xz,---,xn}). It is clear that every bounded R-module is

finitely annihilated. In section one, we study some properties of finitely
annihilated R-modules. In section two, we present sufficient conditions for
quasi-injective modules to be finitely annihilated and we study some
properties of quasi-injective R-modules satisfy finitely annihilated property.
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We prove that if M is a finitely annihilated quasi-injective R-module, then
M is finitely generated over End(M)(Th.2.1). Also we prove that if M is a
quasi-injective R-module, then M is finitely annihilated if and only if M is
finendo(Corollary 2.2). Section three is devoted to study finitely
annihilated property in the class of multiplication R-modules. We look for
necessary or sufficient conditions for multiplication R-modules to be a
finitely annihilated R-module. We prove that if M is multiplication R-
module, then M is finitely annihilated if and only if M is finitely
generated(Prop.3.1).In section four , we study finitely annihilated property
in other classes of modules such as quasi-Dedekind, compressible, F-
regular and compactly faithful.

Some Basic Properties of Finitely Annihilated modules.

In (Beachy&Blair, 1978), an R-module M is called finitely annihilated
if there exists a finite set {x,,x,,---x,, } in M such that,

ann(M )=ann({x,,x,,---x, }). In this section, we present an equivalent

statement for this concept. Furthermore, we study some properties and give
a characterization for this concept. The proof of the following remark is
easy and hence is omitted.
Remark1.1:

Let M be an R-module. M is finitely annihilated if and only if
ann (M )=ann(N ) for some finitely generated R-submodule N of M.

Examples and Remarks 1.2:

1-Every torsion free R-module, where R is an integral domain, is finitely
annihilated.

2-Every finitely generated R-module is finitely annihilated. But the
converse is not true. For example Q (the set of all rational numbers) as a
Z-module is finitely annihilated but not finitely generated,

3-Z -85 2 Z-module is not finitely annihilated.

4-The homomorphic image of finitely annihilated R-module may not be
finitely annihilated. For example a Z-module Q is finitely annihilated but

%is not finitely annihilated Z-module.

5- The direct summand of finitely annihilated R-module may not be finitely
annihilated. For example, the Z-module M =27 ez . is finitely annihilated
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but z - is not finitely annihilated. The proof of the following proposition is

straightforward and hence is omitted.
Proposition 1.3:
Let M be an R-module and let | be an ideal of R such that | cann(M ).

Then M is finitely annihilated R-module if and only if M is finitely

- R : : : :
annihilated T -module. The following result is an immediate consequences

of Prop.1.3.
Corollary 1.4:
Let M be an R-module. Then M is a finitely annihilated R-module if and
only if M is a finitely annihilated R _module
ann(M

Proposition 1.5:-
Let M, and M, be two finitely annihilated R-modules. Then

M, ® M, is afinitely annihilated R-module.

Proof:
Since M ,is finitely annihilated, there exists a finitely generated

R-submodule N, of M, such that ann(M,)=ann(N,). Similarly, there
exists a finitely generated R-submodule N, of M ,such that
ann(M,)=ann(N,). It is clear that ann(M,®M,)cann(N,®N,).
Now, let r eann(N,@®N,), then r(x,y )=(0,0) for all x eN, and for
all yeN,, that is (rx,ry)=(0,0). Hence rx =0 for all x eN,, and
ry =0, for all y eN,. This implies that
reann(N,)nann(N,)=ann(M,)nann(M,).

Whence reann(M, ®M,).

This provethat ann(N,®N,)cann(M,®M,).

Therefore ann(M,®M,)=ann(N,®N,),

proving that M, @M, is finitely annihilated. The following result is an

immediate consequence of Prop.1.5.
Corollary 1.6:

A finite direct sum of finitely annihilated R-modules is finitely
annihilated. However, an infinite direct sum of finitely annihilated R-
modules may not be a finitely annihilated R-module, as it is shown in the
following example.
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Example 1.7: Z as a Z-module is finitely annihilated for all prime p by
1.2(2), but ®Z ; is not a finitely annihilated Z-module.

The following characterization is appeared in (Beachy&Blair, 1978)
Proposition 1.8:

M is finitely annihilated R-module if and only if R Is embedded

ann (M)

in M * , where k is a positive integer. The following remark is needed in
the proof of next proposition.
Remark 1.9:

Let M be an R-module. If N is E-submodule of M , where E= End(M),
then N is R-module of M.
Proof:

It is easy.
The following result is a consequence of Remark 1.9.
Proposition 1.10:

Let M be an R-module. If M is a finitely annihilated E-module, where
E= End(M), then M is a finitely annihilated R-module.

Proof:
Since M is finitely annihilated E-module, then there exists a finitely

generated E-submodule N of M such that ann. (M )=ann. (N ).Let
{X1,X,,---X, } be a set of generator of N, wherex; eN ,i =1,2,---,s .Thus

N =({X;X,,-X.}). Let K be an R- submodule of M generated by

{X1,X,,-+-X, }. We claim that ann, (M )=ann,(K). Let r eann(K ), and

define f :M —M such that f(m)=rm, for all m in M. Thus
f (x,)=rx; =0,vi =1,2,---s .By Remark 1.9, N is an R-submodule of M. Let

n e N,then n=h,(x,)+h,(x,)+-+h, (xS ) where h eE,Vi =12,---,s . Hence
f (n)=m=h,(r,)+h,(rx,)+---+h (rx, )=h,(0)+h,(0)+---+h (0)=0
and consequently f (N) =rN=0. Therefore f cann_(N).But
ann. (M )=ann. (N ) so that f eann_ (M ). This means that f(M)=rM=0.
Whence r eann(M ). It is clear that ann(M ) cann(K ). Recall that an

R-module M is said to be finendo if it is finitely generated over End(M)
(Faith,1970).

Corollary 1.11:
Let M be an R-module. If M is finendo, then M is finitely annihilated.
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Proof:

Since M is finendo, thus M is finitely generated over End(M).By
1.2(2),M is finitely annihilated E-module. Thus by Prop.1.10, M is finitely
annihilated R-module. In the following proposition, we investigate the
behavior of finitely annihilated property under localization.

Proposition 1.12:
If M is a finitely annihilated R- module, then M, is a finitely

annihilated R, -module, where S is a multiplicatively closed set of R.

Proof:
Suppose that M is a finitely annihilated R-module, then there exists a

finitely generated R- submodule N of M such that ann(M )=ann(N ).
Since N is finitely generated, then N is finitely generated and
(ann(N)), =ann._(N).Itis clear that ann r (M )cann, (N,). Let

geannRS (Ng)=(ann(N)).. Thus reann(N )=ann(M ) and t € S. Let

X e Mg, X :m,meM,s eS .Whence Lm=m:2.This implies
S t s ts ts

thattL eann, (My). Therefore ann, (Mg )=ann, (Ng) which proves that

M isa finitely annihilated R, -module.

Finitely Annihilated Modules and Quasi-Injective Modules.

An R-module M is said to be quasi-injective if for each R-submodule N
of M and every R-homomorphism from N to M can be extended to an R-
endomorphism of M (Faith, 1970). In this section, we look for conditions
for quasi-injective modules to be finitely annihilated. We begin with the
following theorem which gives a condition under which the converse of
Corollary 1.11 is true.
Theorem?2.1:

If M is a quasi- injective finitely annihilated R-module, then M is
finendo.
Proof:

By prop. 1.8, 0_s_ R o pmxIS exact. We claim that
ann(M)

HomR(M",M)L‘g”)HomR[

M | -0 Is exact.
ann(M)
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Let 4 < Hom Ml|- Since g is  monomorphism,  then
"lann(M)’
g(_R )=LcM*,where L is an R- submodule of M. Let
ann(M)
' 1. ° R ¢ i K
a=jogog L—— >M >M
ann(M)

where j is the injection homomorphism. Consider the following diagram
[
L—> M
«\ /,
M
where i is the inclusion mapping. Since M is quasi-injective, then M*is

quasi-injective (Faith, 1970).Thus there exists a homomorphism
n:M*—M"suchthat 7oi=c.Thatis 7|L=c. Let

y=mon:M*—25>M*—2>5M, where
projection. Thus

7:M¥ —> Mbe the canonical

Hom(g,l)yzloyogzlo7r0770g:|o7zoaog:|o7zojo¢og_1og
:Io7z‘ojo¢o|:¢

Therefore Hom(g,1)is onto, and consequently

HomR(M",M)M)HomRK—,MjaO
ann(M)
is exact. But Hom,(M*,M)=[Hom_ (M, M)]* (Kasch,1982)

,and Hom_ (M* M)=Hom . (M* M) (Kasch,1982).

ann(M )

And also Hom( R ,M)=M as —modules . Therefore
ann(M) ann(M)

k
{Hom . (M,M)} — M —0is exact. But Hom R (M, M)=

ann(M) ann(M)

Hom (M, M)=End(M) (Kasch,1982), so[End(M)]k —M —0is exact .
k

Put E=End(M), we have E*¥ —M — 0 is exact in E-module. ThusE-=m,

where D is an E-submodule of E*. Since E*is finitely generated,
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then E'is finitely generated. Therefore M is finitely generated as E-
D

module. That is, M is finitely generated over End(M) and consequently M
is finendo. o

The following result follows from Th.2.1 and Corollary.1.11.

Corollary 2.2:

Let M be a quasi-injective R-module. Then M is finitely annihilated if
and only if M is finendo. An R-module M is called semi-simple if every R-
submodule of M is a direct summand (Kasch, 1982). Since semi-simple R-
module is quasi-injective (Faith, 1970), we have the following corollary.
Corollary 2.3:

Let M be a semi-simple R-module. Then M is finitely annihilated if and
only if M is finendo. Recall that an R-module M is called Q-module if
every R-submodule of M is quasi-injective (Mohammad, 2005).
Proposition 2.4:

Let M be Q-module. Then the following statements are equivalence:
1-Every R-submodule of M is finitely annihilated.
2-Every R-submodule of M is finendo.
3-Every R-submodule of M is finitely generated over End(M).

Proof:

(1)=(2) suppose that every R-submodule of M is finitely annihilated. Let
N be an R-submodule of M. Thus N is a quasi-injective finitely annihilated
R-submodule. By Th.2.1, N is finendo.

(2)=(3) Since End(N) < End(M), then N is finitely generated over
End(M).

(3)=(1) Assume L is an R-submodule of M which is finitely generated
over End(M). Thus there exist X, X,, -+, X, € L such that foreachy e L,
y="f(x)+ f,(%)+--+f (x), feEnd(M),i=12,---,n. Let X be a
finitely generated R-submodule of M generated by X, X,,--, X,.It is clear
that X cL.We claim that ann(L)=ann(X). Let reann(X),
thenrx, =0,Vi=12,---,n.Letse L.Thens=g, (X% )+0,(%,)+--+0,(X,)
whereg, € End(M),Vvi=12,---,n. Thus
rs=g,(n)+9,(r%,)+--+9,(rx,)=0. So reann(L). Therefore
ann(X) < ann(L). Sinceann(L) cann(X), then ann(L)=ann(X).
Whence L is finitely annihilateda.
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Proposition 2.5:
Let M be an R-module and let __R__is a semi-simple ring. Then M is a

ann(M)

finitely annihilated R-module if and only if M is finendo.

Proof:

By Corollaryl.4, M is a finitely annihilated R -module. But __R__is

ann(M) ann(M)
semi- simple, then M is an injective R__ -module (Kasch, 1982),and
ann(M)
hence M is a quasi-injective R _module. Thus M is a quasi-injective
ann(M)

R-module .Whence M is finendo (Th.2.1).The converse follows from
Corollary.1.11. m. Recall that an R-module M is said to be fully stable if
ann,, (ann, (x)) = X, ¥x € M (Abass, 1990).

Proposition 2.6:

Let M be a fully stable quasi-injective R-module. Then M is finitely
annihilated if and only if M is finitely generated.
Proof:

If M is finitely annihilated, then there exists a finitely generated R-
submodule N of M such that ann(M) =ann(N).By (Abass,1990), M satisfies
the double annihilator condition on finitely generated R-submodules.

Hence ann,, (ann, (M ))=ann,, (ann, (N))and consequently M=N.

Whence M is finitely generated.
The converse is clear. a.
Corollary 2.7:
Let M be a fully stable semi-simple R-module. Then M is finitely
annihilated if and only if M is finitely generated.

Finitely Annihilated Property with Multiplication Modules.

An R- module M is said to be multiplication module if for every R-
submodule N of M, there exists an idea | in R such that N=IM
(Barnard,1981) .The following proposition shows that the converse of
1.2(2) is true in the class of multiplication modules.
Proposition 3.1:

Let M be a multiplication R-module. M is finitely annihilated if and
only if M is finitely generated.
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Proof:

Since M is a finitely annihilated R-module, then there exists a finitely
generated R-submodule N of M such that Ann (M)=ann(N). By
(Low&Smith, 1990), M is finitely generated. The converse follows from
1.2(2).The condition multiplication in Prop.3.1 can not be dropped. For
example Q as Z-module is finitely annihilated, but Q is not finitely
generated and not multiplication.

Corollary 3.2:
If M is a finitely annihilated multiplication R-module, then

End(M) = ananM) .

Proof:

It follows from Prop.3.1 and (Naoum, 1990).In the class of
multiplication modules the converse of Prop.1.10 is true as the following
proposition indicate that.

Proposition 3.3

Let M be a multiplication R-module and E=End(M). M is a finitely
annihilated R-module if and only if M finitely annihilated E-module.
Proof:

If M is a finitely annihilated R-module, then by Corollary 1.4, M is a

finitely annihilated -module. But M is multiplication, then

ann(M

R (Corollary 3.2). Thus M is a finitely annihilated E-
ann(M)

module .The converse follows from Prop.1.10. m Recall that an R-module
M is torsionless if and only if (") ker f =(0), where M™ = Hom(M, R)

feM”
(Low&Smith, 1990), and the trace of an R-module M s
T(M)= z f(M) (Low&Smith, 1990). Now, we have the following
feM”

proposition.
Proposition 3.4:

If M is a torsionless multiplication R-module and T(M) is finitely
generated , then M is finitely annihilated.
Proof:
Since T(M) is finitely generated , then there exist m, e M and

f.eM™,1<i<n,suchthat { f,(m,):1<i<n } generates T(M). Let N be the

End(M)=
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R- submodule of M generated by the set {m, :1<i<n}.We have to show
that ann(M)=ann(N). Let reann(N),meMandf M then

f(rm)=rf (m)= rZa (m) = za (rm)=(0); where
a, €R,i=12,---,n. Thus rme ﬂ ker f =(0),and hence rM=0.Therefore

feM”

reann(M)and consequentlyann(N) cann(M). It is clear that
ann(M) c ann(N). This completes the proof that M is finitely annihilated.
Recall that an R- submodule N of an R-module M is dense in M if
vf eM”, f(N)=0, then f=0 (Naoum, 1990).
Proposition 3.5:

If M is a torsionless multiplication R-module and contains a finitely
generated dense R-submodule N, then M is finitely annihilated.
Proof:

It is clear that ann(M)cann(N) . Let reann(N), then

rf (N)=f(rN)=f(0)=0,vf eM". But N is dense R-submodule, then
rf =0,vf e M”. Thatis rM”~ =0 . This means thatreann(M*). But M is

torsionless, o) ann(M)=ann(M") (Low&Smith,1990).Whence
re ann(M ) Therefore ann(N) < ann(M) .This shows that M is finitely
annihilated. @ An R-module M is called non-singular if

Z(M)={meM :ann(m)isessential inR} =0

where a nonzero R-submodule N of M is called essential if N NK =(0)
for each nonzero R-submodule K of M (Kasch,1982). Let L and D are R-
submodules of M, then (L:D)={reR:rDc L}.

Proposition 3.6:

If M is a non-singular multiplication R-Module such that M contains an
essential finitely generated R-submodule, then M is finitely annihilated.
Proof:

Let N be an essential finitely generated R-submodule of M. It is clear
that that ann(M)cann(N). Since N is essential in M. then for

allmeM ,we have (N:(m))is essential in R (Ahmad,1992).Let
reann(N), then rm(N :(m )):( ).Thus (N :(m)) < ann(rm).
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But (N :(m))is essential in R, so ann(rm)is essential in R. Since M is non-

singular, then rm=0 for all m in M. that is rM=0, and hence r eann(M).
Therefore ann(N) < ann(M) . Whence M is finitely annihilated. a.

Corollary 3.7 :

If M is a multiplication R-module and contains a finitely generated
essential R-submodule N with Z(N)=0, then M is finitely annihilated.
Proof:

It is enough to prove that M is non-singular, that is Z(M) =0. Suppose

that Z(M) =0, then there exists a nonzero element me M such that

ann(m) is essential in R. But N is essential in M, then there exist r € R such
that 0=rme N. Since ann(m) < ann(rm), so ann(rm) is essential in R.
Thus rmeZ(N)=0 . Therefore rm=0 which is a contradiction. Hence
Z(M)=0 , that is , M is non-singular. By Prop.3.6, M is finitely
annihilated. m.

Corollary3.8:
Let R be aring such that Z(R) =0. If M is multiplication torsionless R-

module which contains a finitely generated essential R-submodule, then M
is finitely annihilated.
Proof:
It follows from (Ahmad,1992)and Prop.3.6. o
The closure of an R-submodule N of M denoted by

CI(N):{me M :(N :(m))isan essential ideal in R}. It is clear that
N < Cl (N)andCI(O) :{m eM :(O:(m)) = ann(m)isessential in R} =Z(M)

(Goldie.1964).
Proposition3.9:
Let M be a non-singular R-module. If M contains a finitely generated

R-submodule N such thatCI(N)= M, then M is finitely annihilated.

Proof:
Let reann(N). Then rm(N:(m))=0. Thus (N :(m))c ann(rm). But

(N:(m))is essential in R, so ann(rm) is essential in R. Whence
rmeZ(M)=(0). That is rm=0 for all m in M. Thus reann(M )and
consequently ann(N)cann(M) . Since ann(M)cann(N)
soann(N) =ann(M ). This proves that M is finitely annihilated. o
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We end this section by the following proposition.
Proposition3.10:

If M is a faithful multiplication module over integral domain, then M is
finitely annihilated.
Poof:

By (Ahmad, 1992), M is torsion free and by 1.2(1), M is finitely
annihilated. o

Finitely Annihilated Property with Some Types of Modules.

In this section, we study the relationship between finitely annihilated
modules and other modules. An R-module M is said to be prime if
ann, (M) =ann, (N )for every non-zero submodule N of M (Beachy, 1976).

It is clear that every prim R-module is finitely annihilated, but the converse
is not true in general as the following example shows.M =Z ® Z as Z-

module is finitely annihilated module, but not a prim R-module,
sinceann, (M )=(0)andann(0® Z,)=nZ #(0). And an R-module M is

said to be quasi-Dedekind if every nonzero R-submodule N of M is quasi-
invertible, where an R-submodule N of M is called quasi-invertible if

Hom(%, M j =0 (Mijbass, 1997). It is known that every quasi-Dedekind

module is prime (Mijbass, 1997) , and as an immediate consequence of this
result the following proposition.
Proposition4.1:

If M is a quasi-Dedekind R-module, then M is finitely annihilated.
Recall that an R-module is said to be Dedekind module if every submodule
of it is invertible and an R-module is called prufer module if every finitely
generated submodule of it is invertible (Al-Alwan,1993). In particular,
every Dedekind module and every prufer module is quasi-Dedekind
(Mijbass,1997) . We get the following corollaries that are direct results
from the Prop.4.1
Corollary 4.2:

if M is Dedekind R-module, then M is finitely annihilated module.
Corollary 4.3:

If M is prufer R- module, then M is finitely annihilated module.

An R-module is called compressible if every non-zero submodule of M
contains an isomorphic copy of M (Desale & Nicholoson, 1981).
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Proposition4.4:

If M is a compressible R-module, then M is finitely annihilated module.
Proof:

If M=0, then there is nothing to prove. Assume M=0. Let N be a finitely

generated non-zero R-submodule of M and let r eann(N)wherer e R.
Since M is compressible, then there exists a monomorphism f: M—N such
that M=f(M)<=N. Now,0=rf (M )= f (rM). But f is an R-monomorphism,
so rM=0. Thus reann(M )and consequently ann(N)cann(M). Since
ann(M)cann(N), then ann(M)=ann(N). Whence M is finitely
annihilated m.Recall that an R-submodule N of M is called prime if
rmeN,reR and m eM, then either me N or re(N:M).

Corollary 4.5:
If M is a multiplication R-module which contains a finitely generated
prime R-submodule N, then M is finitely annihilated.
Proof:
M

By (El-Baset&Smith, 1988),%is compressible. HenceW is finitely

annihilated (Prop.4.4). Since M is multiplication, then % is multiplication

(El-Baset&Smith,1988 ). Thus % is finitely generated R-module

(Prop.3.1) and consequently there exists
X, X,y X € M, suchthatM = Rx, + Rx, +---+ Rx, + N. But N is finitely

generated R-submodule of M, then M is finitely generated. Hence M is
finitely annihilated by 1.2(2).
Corollary 4.6:

If M is a multiplication R-module such that ann(M ) is a prime ideal of
R, then M is finitely annihilated.

Proof:

Since ann(M ):((0): M )is a prime ideal of R, then (0) is a prime R-
submodule of M (El-Baset&Smith,1988). By Corollary 4.5, M is finitely
annihilated.

Recall that an R-submodule N of M is called Pure If IM NN =IN for
every ideal | of R (Fieldhouse, 1969).
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Proposition4.7:

If M is an R-module and contains a finitely generated essential pure R-
submodule of M, then M is finitely annihilated.
Proof:

Let N be a finitely generated essential pure R-submodule of M. It is

clear that ann(M)c ann(N). Let reann(N), then rN =(0). Since N is
pure, thenN N rM =rN =(0). Since N is essential, then rM =(0)which
implies that r eann(M). Therefore ann(M)=ann(N). Whence M is

finitely annihilated. An R-module M is F-regular if every R-submodule of
M is pure (Fieldhouse, 1969). As an application of Prop.4.7, we have the
following result.

Corollary4.8:

If M is a uniform F-regular R-module, then M is finitely annihilated.

An R-module M is divisible if rM =M for every non-zero element r in R
(Kasch, 1982).
Corollary4.9:

Let M be a uniform module over PID R such that every R-submodule
of M is divisible. Then M is finitely annihilated.
Proof:

Let N be a finitely generated R-submodule of M. Thus N is essential and
divisible. Whence N is pure .Therefore M is finitely annihilated (Prop.4.7).
We give in the following proposition a condition under which finitely
annihilated property equivalent to finitely generated property.
Proposition4.10:

Let M be R-module and satisfies the double annihilated property. Then
M is finitely annihilated if and only if M is finitely generated.

Proof:

It is direct.

Now, we study the relation between the two concepts faithful and
compactly faithful by using finitely annihilated property. An R-module M
is said to be compactly faithful, provided that there is an embedded
0 —> R — M"for some finite integer n>0 (Faith, 1970). Any compact
faithful module is faithful. The following theorem gives a necessary and
sufficient condition for a faithful module to be finitely annihilated.
Teorem4.11:

Let M be an R-module. Then M is faithful finitely annihilated if and
only if M is compactly faithful.
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Proof:

Suppose that M is faithful finitely annihilated. By Prop.l1.8,
0—>R—>M" is exact for some integer k > 0. Thus M is compactly
faithfulR-module. Conversely; Since M is compactly faithful , so
0 — R — M"is exact for some integer n > 0 ,and hence M is faithful. By
Prop.1.8, M is finitely annihilated.

Corollary4.12:

If M is a finitely annihilated semi-simple R-module, then R s
ann(M)
semi-simple ring.
Proof:
By Corollary 1.4, M is a finitely annihilated __ R -module. But M is
ann(M)
faithful as an __ R -module, so M is compactly faithful (Th.4.11).Thus

ann(M)

R can be imbedded inM*. Since M is semi-simple, so M*is semi-
ann(M)

simple. Whence

is semi-simple.

R
ann(M)
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