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Abstract 

 
     We perform group classification of one class of nonlinear wave equations with two 

independent variables and one dependent variable. It is shown that there is one, six 

nonlinear wave equations admitting (invariant) under one–and two–dimensional Lie 

algebras, respectively. 

 

Introduction 
    The problem of group classification (determining the arbitrary functions 

of )1974,Cole& Bluman (group classification problem known as the  are

differential equations is one of the central problems of modern symmetry 

analysis of differential equations(Lahno & Magda,2003).Many papers on 

this problem of such equations have been published: 
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     In this article, we consider a class of nonlinear wave equation 

                                      ),( xxxtt uuFuu   ,                            

where λ is an arbitrary real constant, Fandxtuu ),( is an arbitrary 

nonlinear smooth function. The approach used in the present article is that 

presented in (Zahdanov&Lahno,1999)( modified to be applicable for group 

classification of the equation under study),  being a synthesis of the 

standard Lie algorithm for finding symmetries and the use of canonical 

forms for partial differential generators obtained with the equivalence 

group of the equation at hand. 
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Invariance of partial differential equations      
     This section applies infinitesimal transformation (Lie group of 

transformations) to study second order partial differential equation. 

Similarly for the case of ordinary differential equations, it will show that 

infinitesimal criterion for invariance (invariance condition) of partial 

differential equation leads to an algorithm to determine infinitesimal 

generators admitted by given partial differential equation.  

Let us consider scalar second order partial differential equation: 

                   

)1(...,0),,,,,,,( xxxtttxt uuuuuuxtF

        

    In two independent variables xt,  and one dependent variable u . Second 

extension space is defined to be ,),,,,,,,( xxxtttxt uuuuuuxt  

representing variables and derivatives up to order two. 

     In terms of coordinates xxxtttxt uuuuuuxt ,,,,,,, equation (1) becomes 

an algebraic equation which defines a hyper surface in 

),,,,,,,( xxxtttxt uuuuuuxt  –space. Note that Jacobian condition guarantees 

that the differential equation can be (in principle) written in a solved form, 

that is, xxxtttxt uuuuuu ,,,,, can be isolated on the left hand side, also note 

that a differential equation written in solved form automatically satisfies 

the Jacobian condition, and hence equation must be written in solved from 

whenever possible( Lisle, 1992).  

Definition(Humi &Miller,1988): 

    A second order partial differential equation is said to be invariant with 

respect to a one–parameter Lie group, if its second extension leaves the 

equation unchanged. 

Theorem 1: 

   (Infinitesimal criterion for invariance of a second order partial differential 

equation)(Bluman& Cole,1974;Bluman&Kumei, 1989&Ibragimov,2004) 
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 Then the one–parameter Lie group (2)-(4) is admitted by the partial 

differential equation (1) if and only                                                           

)6(...0),,,,,,,( 0
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Symmetry groups  

    A one–parameter Lie group admitted by a partial differential equation is 

also called a symmetry group of the differential equation. Also the 

infinitesimal generator admitted by a differential equation is called an 

infinitesimal symmetry (admitted generator) of the equation. 

    Symmetry groups of differential equations converts any solution into a 

solution or equivalently, the symmetry transformations is just permute the 

solutions among themselves. Sometimes these solutions are unchanged 

under the symmetry groups; such solutions are called invariant solutions. 

    Finding symmetry groups are equivalent to the determination of its 

infinitesimal transformations. The set of all infinitesimal generators 

admitted by a differential equation forms a Lie algebra of infinitesimal  
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generators, called the admitted Lie algebra, if it is finite–dimensional, then 

the symmetry group of the differential equation is a Lie group of 

transformations.Theorem 1 provides an algorithm for finding the symmetry 

group of partial differential equations, one can let the coefficients      ,   

and      of the infinitesimal generator Q  of suppositive one–parameter 

symmetry group of the differential equation be unknown functions of  xt,  

and u . The coefficients  )()()()()( ,,, xxxtttxt and   belonging to the 

extended infinitesimal generator  )2(Q  will be clear expressions including 

the partial derivatives of the coefficients   ,   and   with respect to both 

independent variables xt, and dependent variable  u  .   

     The infinitesimal criterion for invariance (6) thus contains  xt, , u  and 

the derivatives of  u   with respect to t  and x , as well as   ,  ,   and their 

partial derivatives with respect to   xt,  and u  .  

     After substituting for the derivatives which occur on the left hand side 

of the differential equation since the second extension )2(Q  only hold on 

solutions of the differential equation, we can then equate the coefficients of 

the remaining free partial derivatives of u  to zero. This yields an 

overdetermined system of partial differential equations for the coefficients 

functions ,   and    (called determining equations), since in general there 

are more than 1+n  such determining equations. Note that if a partial 

differential equation is not a polynomial in its components one can still 

split it up into a system of linear homogeneous partial differential equations 

for ),,(   using the independence of some values of the components . 

     Because the set of determining equations is an overdetermine system, 

two cases will arise: first their only solution is the trivial solution 

)0,0,0(),,(  , Second if the general solution of the determining 

equations is non trivial, we have two cases : the general solution contains a 

finite number or an infinite  number of arbitrary constants . The first 

associated with a finite–parameter Lie group, while the later associated 

with an infinite–parameter Lie group. Note that if the general solution of 

the determining equations contains arbitrary functions of xt,  and u , then 

the associated Lie group also called an infinite.   

Lie  ُ  s algorithm for construction the symmetries of second order 

partial differential equations )(Bluman& Cole, 1974; Bluman& Kumei 

, 1989) 
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the invariance condition is satisfied for every infinitesimal of the Lie group, 

this leads to an algorithmic construction of the symmetry group of a 

differential equation. The key observation is that the invariance condition 

contains extension variables ,,,,, xxxtttxt uuuuu which appear through the 

extension formulas )()()()()( ,,,, xxxtttxt  , and in the differential equation 

itself. In both cases their occurrence is explicitly known. Hence invariance 

(symmetry, infinitesimal) condition can be split up by powers of these 

extension variables, yielding a system of determining equations for the 

infinitesimals    ,   ,  . 

      The details of this algorithm are as follows:- 

1- Write the differential equation in the solved form, that is, isolate 

derivatives on the left hand side. 

2- Let  and,  be arbitrary functions of ),,( uxt .write the general 

infinitesimal generator  
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adds to Q  in terms  
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4- Apply the extended infinitesimal generator )2(Q  to the function F which  

    defines the differential equation. 

5- Substitute for the derivatives which occur on the left hand side of the       

differential equation. Set the resulting expression to zero. This yields 

invariance conditions for an infinitesimal symmetry. 

    At this stage, the invariance conditions are linear homogeneous partial 

differential equations for the infinitesimals  ,, . The coefficients in these 

invariance conditions are known functions of uxt ,,  and derivatives from 

the differential equation in hand, that is, xxxtttxt uuuuu ,,,, . Provided that 

these derivatives occur polynomially in the original differential equation, 

they occur polynomially in the invariance conditions, in an explicitly 

known manner. In this case, one is able to split up the invariance conditions 

according to powers of these derivatives into a finite number of 

determining equations for the infinitesimals  ,, .Usually this system of 
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6-Split up invariance conditions by powers of the derivatives  

xxxtttxt uuuuu ,,,,  to give determining equations for the infinitesimal 

symmetry group.  

7- Solve the determining equations for the infinitesimals  ,, . 

8- For each infinitesimal generator in the algebra of symmetry generators, 

integrate the initial value problem to yield a set of one–parameter 

subgroups of the symmetry group.  

9- Compose these subgroups to give the symmetry group. 
 

Steps of method 
     Zhdanov et.al approach for group classification of the class of partial 

differential equations consists of the following steps: 

1-  Use the usual Lie algorithm to find the general form of the infinitesimal 

generator which generates the symmetry group of the equation under study. 

As a result we obtain the determining equations, which connect the 

coefficients (infinitesimals) of the infinitesimal generators with the 

arbitrary function of the equation. It is possible that some of the 

determining equations do not contain the arbitrary elements; therefore they 

can be integrated immediately. Others, that is, the determining equations 

which explicitly depend on the arbitrary functions and their derivatives are 

called classifying equations. The main difficulty of group classification is 

the need to solve classifying equations with respect to the coefficients of 

the infinitesimal generator and arbitrary elements simultaneously. The 

corresponding invariant equations for each of the Lie algebras are obtained 

by solving these classifying equations.    

2-  Construct the equivalence group, which sets an equivalence relation 

(two elements of the equivalence group are called equivalent if they are 

transformed one into another with a transformation from the equivalence 

group). 

3- Find realization of one–, and two–dimensional Lie algebras up to the 

equivalence relation above. To this end we use the classification of low 

dimensional abstract Lie algebras up to two dimensions. Inserting the so 

obtained infinitesimal generators into classifying equation, then we select 

those realizations corresponding to the Jacobi identity to be satisfied and 

that can be symmetry Lie algebras of the differential equation under study. 
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     The following notation: >...,,,<= 21 k

i.k QQQA , denotes a Lie algebra of 

dimension ),...,2,1(, kjQk j   are its basis elements, and the index i  

denotes the number of the class to which the given Lie algebra belongs 

(Basarab et.al, 2000). 

 

General analysis of symmetry properties of PDES 
     To classify the nonlinear wave equation  

                                          ),( xxxtt uuFuu                                …(7) 

that admits Lie algebras of dimension up to two, we start from an equation 

admitting one–dimensional Lie algebras, then extending these Lie algebras 

to describe the admitted two–dimensional Lie algebras.  

1-The Most General Infinitesimal Generator: 

     The first step of group classification of partial differential equation (7) is 

to find the general form of the infinitesimal generator of the Lie group 

admitted (invariant) by (7), which is according to the Lie algorithm is of 

the form: 
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where xt ,  are independent variables and ),( xtuu   is the dependent 

variable. Note that  ,,  are real-valued smooth functions. The criterion 

condition for equation (7) to be invariant with respect to (8) reads as  

                              0)()()(  uu FF
xxxxtt  ,                                 …(9) 

Substituting the formulas from (5), and then replacing 

),( xxxtt uuFubyu   whenever it occurs (9), we have: 
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Replacing  ,  and  by ba,  and f , respectively, in (10) and splitting by 

xxtxxxttxtt uuanduuuuu ,,, , we will be left with the following equations, 

which are so called the classifying equations: 
02  utux fFa
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We then have the following result: 
7,2003, No.2Scientific Studies , vol.–Journal of Kirkuk University  

 

 

Theorem 2: 

    The infinitesimal generator of the symmetry group of the equation (7) 

has the following form:  

                 ,),,(),(),(
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where ),( xta , ),( xtb  and ),,( uxtf  are arbitrary smooth functions which 

satisfy the classification equations (11). 

2-The Equivalence Group:                 

An equivalence transformation of a second order partial differential 

equation in two independent variables xt, and in one dependent variable u  

is a change of variables 
                              ),,(,),,(,),,( uxtUuuxtXxuxtTt   

taking any equation of the class into an equation of the  same class 

(generally with different arbitrary function)(Lisle, 1992). 

There are two different ways for constructing the equivalence group, 

the direct method and the infinitesimal method (Ibragimov, 2004). But we 

will use the first one because it gives us enough information about the 

Jacobi conditions.  

In order to construct the equivalence group of the class of partial 

differential equations (7), one has to select from the set of invertable 

changes of variables of the space V (Ibragimov, 2004):  
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be those changes of variables which don’t alter the form of the class of 

partial differential equations (7). 

Theorem 3: 

    The equivalence group of the class of partial differential equations (7) 

reads as    ),,,(,),(,)( uxtUuxtXxtTt                               …(14) 

Where 0T , 0xX , ,0,0  utu XXU  .0
),,(

),,(


uxtD

UXTD
 

Proof: 
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     Computing ttxxtx uanduuu ,,  according to (13), as follows: 

The total derivatives xt DandD  are transformed by (13) to the 

operators xt
DandD , and  
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as the function F  in (7) and F  in (15) are arbitrary functions of the 

corresponding arguments, we must have  
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Computing xxu , with account of the )(tTT  &(10) will be reduced to 
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     Applying (19) to (18), we get 
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Simplifying this we have that 
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Similarly 
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Inserting  ttxx uu ,  from (20), (21) respectively into (7), we arrive to the 

following differential equation  
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Taking into consideration (9) yields the relation  
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uttuututtuttuxu

xuxxxuxxuxuxuxux

uXTuUXTUTuUXXT

UXuXTUUXXUXuUXTUX

uXXuUXXuXXUUXXUX

















      As XT ,  and U  don’t depend on xt uu ,  one can split the left hand side 

of (22) by xt
uu ,  and equating the coefficients of the various monomials, 

we get the following equations 

…(21) 
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.0)()(

,0)(22

,0)(2)()(2

,0)()()()(

0)()()()(2

)()()(2)()(

22

2

222

2222

2222

22222













u

tuuut

uuuxxux

uux

uututut

tuxuuxuxux

XT

UXTUXXT

UXTXXUXX

XTXX

UTUXUUXX

UXUXUUXXUX


















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From above equations, we have                                                                                                                                                                      

                                        ,),,(,),(,)( uxtUuxtXxtTt   

and the theorem is proved. 

 

Group classification of equation (Humi&Miller,1988) 
     Here we classify equations of the form (7) that admit symmetry Lie 

algebras of dimensions one and two.We start from describing equations 

admitting one–dimensional Lie algebras, and then proceed to investigate 

those equations which  are invariant with respect to two– dimensional Lie 

algebras. An intermediate problem which is being solved, while classifying 

invariant equations of the form (7), is describing all possible realizations of 

one and two–dimensional Lie algebras by infinitesimal generators (12) 

within the equivalence relation. 

 

1-One-Dimensional Lie Algebras: 

     All in equivalent partial differential equations (7) admitting one –

dimensional symmetry Lie algebras having the basis elements of the form 

(11) are given by the following theorem: 

Theorem 4: 

     There are equivalence transformations (14) that reduce infinitesimal 

generator (11) to one of the following generators: 

                  ., 3

1

2

1

1

1 















u
Aand

x
A

t
A                 …(23)  

Proof: 

By theorem 2 let .),,(),(),(
u

uxtf
x

xtb
t

xtaQ













  Making use of (14), 

we have 

.)()(
u

UfbUaU
x

bXXa
t

TaQQ uxtxt













   

Since Q  is non-trivial symmetry, this implies that fba ,,  can not be all zero 

at the same time. So there are seven cases, in a sequel, we consider the 
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following three cases, while the remaining four cases reduce to Case 1, 

Case 2 or Case 3. 

Case 1: 

    If a  0 , and 0 fb  in Q . Hence   .
u

Ua
x

Xa
t

TaQ tt
















  

Then choosing in (14) the function T  to be the solution of the equation 

1Ta  , and the functions UX ,  to be the solutions of the partial differential 
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equations 0, tt UaXa  respectively. Which reduces 


Q  to
t

Q







. This means 

that we can, take 
t

Q



  . 

Case 2: 

     If  0b , and 0 fa  in Q .That is .
u

bU
x

XbQ xx










  

In a similar to case 1, we arrive to 
x

Q



  . 

Case 3: 

    Now if 0f , and  0 ba  in  Q , that is,  
u

UfQ u







 , then choosing In 

(14) the function U  to be a solution of the equation 1uUf . So one can 

take, 
u

Q



 . The Lie algebras (23) are in equivalent, since it is impossible 

to find such functions UXT ,,  (equivalence transformations) that one of 

the infinitesimal generators ,,,
uxt 









  can be transformed to another 

one. Thus, there are three in equivalent one – dimensional Lie algebras. 

And the theorem is proved. 

1.1- Nonlinear Wave Equations Invariant under One-Dimensional Lie Algebras 

     The corresponding invariant equations for each of the Lie algebras (23) 

from the class (7) are obtained by inserting the coefficient of these Lie 

algebras in the classifying equation (11), and then solve it for the arbitrary 

element F , this yields that the corresponding invariant equations from 

class (7) have the form. 

)(:3

1 xxxtt uFuu
u

A 



  . 

2-Two-Dimensional Lie Algebras: 

     As we it is well known, there are abstract two–dimensional Lie algebras 

(Basarab etal, 2000) namely, the commutative Lie algebras  
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                                         0],[,, 2121

1.2  QQQQA       , 

and the solvable one  

                                         22121

2..2 ],[,, QQQQQA    . 

So the problem of describing of partial differential equations (7) admitting 

two–dimensional Lie symmetry algebras contains as a sub problem the one  

of solving the commutation relations (above) within the class of (11) up 
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to the equivalence relation (14). Next, we should solve (12) for each 

realization obtained. Having done this we get the following theorem. 

Theorem 5: 

     The list of in equivalent realizations of two–dimensional lie algebras 

with the infinitesimal generator (11) and defined within the equivalence 

transformation (14) is given by the following Lie algebras:  

                 









t
xg

t
A )(,1

1.2        ,        









xt
A ,2

1.2              , 

                 









ut
A ,3

1.2             ,        














ut
xg

t
A )(,4

1.2  ,  

                 














xt
xg

t
A )(,5

1.2  ,      









x
tg

x
A )(,6

1.2         , 

                 









ux
A ,7

1.2             ,        














ux
tg

x
A )(,8

1.2  ,  

        














utx
A ,9

1.2       ,        









u
xtg

u
A ),(,10

1.2        , 

                 









tt
tA ,1

2..2          ,        









tt
txgA ,))((2

2..2     ,                                                                 

                 














txt
tA ,3

2..2   ,        














tut
tA ,4

2..2        , 

                 














tut
txgA ,))((5

2..2  ,  














txt
txgA ,))((6

2..2 ,  

                 









xx
xA ,7

2..2              ,      














xx
x

t
A ,8

2..2       ,                       

                 














xux
xA ,9

2..2        ,     



















xux
x

t
A ,10

2..2 , 

                 














uu
u

t
A ,11

2..2        ,     














uu
u

x
A ,12

2..2 , 
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               









uu
uA ,13

2..2  . 

Proof: 

     Consider first the case commutative two–dimensional Lie algebra 1.2A  . 

By Theorem 4 we can choose one of its basis generators 1Q , say to be equal 

to one of those given in (23). Now, if 
t

Q



1 , let  
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u
uxtf

x
xtb

t
xtaQ














 ),,(),(),(2  , then according to 0],[ 21 QQ  , 

we have that    0














u
f

x
b

t
a ttt  , therefore  fandba are independent 

of t .So we take    
u

uxf
x

xb
t

xaQ













 ,)(2  . 

     The next step is to find the canonical form (the simplified form) for 2Q  

under the equivalence transformations (14). However, we must now use 

only those equivalence transformations (14) which preserve the form of 

t
Q




1  . Thus we require that 



 11 QQ  with  
tu

U
x

X
t

TQ tt






















1 , 

 Which  yields 00,1  tt UandXT . Hence we take: 

   uxUuxXxctt ,,,1   .                           …(24)                          

Under this type of transformations we find :  

u
UfbU

x
Xxb

t
xaQQ uxx


















)()()(22  . 

In a sequel, we use have the following five cases: 

Case 1: 

     If 0a and  0 fb  in  2Q  . Hence 
t

xaQ







)(2  . 

This reduces 2Q  to   
t

xgQ



 )(2

.Thus we have the realizations 1

1.2A . 

Case 2: 

     If   0b  and  0 fa  in 2Q  . That is  
u

Ub
x

bXQ xx











2 . Now in (24), 

we choose X  to be a solution of the equation 1xbX  and U  to be a solution 

of the equation 0xbU . That is  
x

Q



2  ,which yields the realization 

2

1.2A . 

Case 3: 
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     If 0f  , and  ,0 ba  in 2Q  . Then 
u

UfQ u






2  , 

choosing from (24) U  to be a solution of equation  1uUf . Thus we get 

the realization 
3

1.2A  . 

Case 4: 

     If  0b  , and  0,0  fa  in  2Q  , then   
u

Uf
t

aQ u











2 . 

Thus yielding the realization 4

1.2A  .  
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Case 5: 

     If  0f  , and  0,0  ba  in  2Q  , then 
u

Ub
x

Xb
t

aQ xx
















2   . 

Which give us the realization 
5

1.2A . Lets us now turn to the cases when 

x
Q




1 ,  

u
Q




1 .Treating in a similar way as in the case when  

t
Q




1  , 

and excluding the trivial and repeated realization, we will be left with the 

realizations iA 1.2  , ;10...,,7,6i  are in equivalent is established by direct 

verification. Consider now the case of solvable two–dimensional Lie 

algebra 2.2A . Taking in to account the results of theorem 4 we analyze the 

three possible forms of the infinitesimal generator 2Q  given in (23). Lets us 

first turn to the case 
t

QAA



 21

11  , 

let 
u

uxtf
x

xtb
t

xtaQ













 ),,(),(),(1  , 

using the commutation relation 221 ],[ QQQ  , and making the change of 

variables ),(,)(,1 uxUuxXxctt   , which preserves the form of  2Q  

. We get 
u

UfUb
x

bX
t

taQ uxx

















)()(1     . Then consider the six 

cases when 

 .0,0,0

0,0,0;0,0;0,0;0,0;0





baf

andfabbaffabfbafba
 

Thus we get the following realizations: 6,,2,1,2.2 iA i , .For the case  

x
QAA




 22

11  , 

the following realizations are 10,,8,7,2.2 iA i .At last, for the case when 
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u
QAA




 23

11 , 

gives rise to the realizations .31,12,11,1.2 iA i  It is clear that these 

realizations are inequivalent, and the theorem is proved. 

2.1 Nonlinear Wave Equations Invariant under Two- Dimensional Lie 

Algebras: 

Now we drive all nonlinear wave equation (7), that admit two–

dimensional Lie algebras as symmetry Lie algebra. Doing this we have to 

insert the coefficients of the obtained realizations in (11), then solving the  
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later for the arbitrary functions F . To this end we have the following 

nonlinear wave equations corresponding to their realizations: 

                                      ),(:1

1.2 uFuuA xxtt     

                                        ,:4

1.2 xxtt uuA   

                                        ,))((: 110

1.2 cuggguuA xxxxttxxtt    

                                        ,: 24

2.2

u

xxtt ecuuA    

                                        ,)(:9

2.2

u

xxxtt euFuuA    

                                        .: 111

2.2 xxxtt ucuuA    

 

Conclusion 
    We have derived the preliminary group classification for the nonlinear 

wave equation of the form (7). One of the evident conclusions is that the 

complete group classification (description of all possible forms of the 

functions GF,  that (11) admits a non-trivial symmetry group) of equation 

(7) still remain open. We hope to return to it in a forthcoming paper.    

     However, the full solution of this problem needs more  powerful 

algebraic techniques like Live-Maltsev theorem , properties of simple, 

semi–simple and solvable Lie algebras.                                                                                           
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 التصنيف الرمزي لأحد أصناف المعادلات الموجية اللاخطية
 

 

  فائق عصام رفيق
 المعهد التقني ـ كركوك

 

 ةصلخلاا
 

المعادلات الموجية اللاخطية بمتغير معتمدد واحدد ومتغيدري      أصناف لأحدتم أنجاز التصنيف الزمري       
مستقلي . تبي  وجود واحد ، ستة معادلات موجية لاخطية لا متغايرة تحت تأثير جبور لي ذات الأبعاد واحدد،  

 اثنا  على الترتيب .


