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Abstract

We perform group classification of one class of nonlinear wave equations with two
independent variables and one dependent variable. It is shown that there is one, six
nonlinear wave equations admitting (invariant) under one—and two—dimensional Lie
algebras, respectively.

Introduction

The problem of group classification (determining the arbitrary functions
are known as the group classification problem (Bluman & Cole,1974)of
differential equations is one of the central problems of modern symmetry
analysis of differential equations(Lahno & Magda,2003).Many papers on
this problem of such equations have been published:

u, =u,,, +FExuu,u,) (Gungor et.al,2004)
u, =u,, +F(xuu,) (Lahno & Magda,2003)
u, =F(,x,u,u)u, +G(tu,u,) (Basarab et.al,2001)
u, =F( xu,u)u, +G(,xu,u,) (Basarab et.al,2000)
u, =9 xu, + f(t,xu),g, #0,f, =0 (1bragimov, 2004)
u, = ft,xu),f, =0 (Ibragimov, 2004)

In this article, we consider a class of nonlinear wave equation

u, =—Au,, +F(u, u,),

where 4 is an arbitrary real constant, u=u(t, x) and F iS an arbitrary
nonlinear smooth function. The approach used in the present article is that
presented in (Zahdanov&Lahno,1999)( modified to be applicable for group
classification of the equation under study), being a synthesis of the
standard Lie algorithm for finding symmetries and the use of canonical
forms for partial differential generators obtained with the equivalence
group of the equation at hand.
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Invariance of partial differential equations

This section applies infinitesimal transformation (Lie group of
transformations) to study second order partial differential equation.
Similarly for the case of ordinary differential equations, it will show that
infinitesimal criterion for invariance (invariance condition) of partial
differential equation leads to an algorithm to determine infinitesimal
generators admitted by given partial differential equation.

Let us consider scalar second order partial differential equation:

I:(t’X’u’ut’ux’utt’utx’uxx):O ’ (1)

In two independent variables t, X and one dependent variable u. Second
extension space is defined to be (t, X,u,u,, U, Uy, U, U,),
representing variables and derivatives up to order two.

In terms of coordinates t, X, u, u,,u,,u,, U, U, equation (1) becomes
an algebraic equation which defines a hyper surface in
(t,x,u,u,, u,, u,, U, U,) —space. Note that Jacobian condition guarantees
that the differential equation can be (in principle) written in a solved form,
that is, u, u,, u., u,, u., U, can be isolated on the left hand side, also note
that a differential equation written in solved form automatically satisfies

the Jacobian condition, and hence equation must be written in solved from
whenever possible( Lisle, 1992).

Definition(Humi &Miller,1988):

A second order partial differential equation is said to be invariant with
respect to a one—parameter Lie group, if its second extension leaves the
equation unchanged.

Theorem 1:

(Infinitesimal criterion for invariance of a second order partial differential
equation)(Bluman& Cole,1974;Bluman&Kumei, 1989&Ibragimov,2004)

Let

Q=17 X, u)§+§(t, X, u)§(+77(t, X, U)Ea ..(2)
be the infinitesimal generator of the one—parameter Lie group.
t=T( x u;eg),
X=X, xu;eg), ..(3)
u=U(, x,u;e).
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Let

0 0 0 0 0
@ =7 (t, X, U)—+C(t, X, u)—+n(t, X, U)— +7(t, X, U, U, U )—+n. (t X U, U, U )—
Q 7( )6'[ ¢( )8X n( )6u 77(t)( 0 Uy) ou 77(x)( 0 Uy) Py

X

0 0
/) (t, X, U, U, U, Uy, Uy, Uy ) Ty (t, X, U, U, U, Uy, Uy, Uy )
ou ou
tt tx
0
+T7(xx)(t! X’u’ut'ux’utt’utx’uxx)au_ ! (4)

XX

be the corresponding second extended infinitesimal generator of (2), where

My =1 + 17U —7U, — S Uy =7, (U)* =& U,

Moy =1y + MUy =& U, — 7,0 =&, (U,)° —7,uu,

My = T + 20Uy = Tyl = $Uy +17,Uy — 27Uy — 28Uy, + 77, (U)7 = 27, (U,)? — 24, U,U,
-7,,u)*-¢,, (u)?u, —3c,uu, —<,uu, —2£,uu,,

My = Mo + MUy = Sy + Mg Uy = Ty Uy — & Uy + 77Uy, — Tl — Sy = 7,Uy — &y (U,)°
+1,,UU, —7 uu ¢ uu -7, ) -¢,u ) -7, u)’u, —2£,u,u,
-2r,uu,, —7,uU, —g,uu,,

tx
n(xx) =Myt anuux - é/xxux B /M zé/xuxx - 2Txutx /i (ux)2 - 2é/xu (ux)2
- 2Txuutux - guu (ux)3 — Ty (ux)2 _3§uuxuxx — T Uy, — 2Tuuxutx : (5)
Then the one—parameter Lie group (2)-(4) is admitted by the partial
differential equation (1) if and only

Q@F(t,x,u,u,u, U, U.,u,) |F:0:o .(6)

Symmetry groups

A one—parameter Lie group admitted by a partial differential equation is
also called a symmetry group of the differential equation. Also the
infinitesimal generator admitted by a differential equation is called an
infinitesimal symmetry (admitted generator) of the equation.

Symmetry groups of differential equations converts any solution into a
solution or equivalently, the symmetry transformations is just permute the
solutions among themselves. Sometimes these solutions are unchanged
under the symmetry groups; such solutions are called invariant solutions.

Finding symmetry groups are equivalent to the determination of its
infinitesimal transformations. The set of all infinitesimal generators
admitted by a differential equation forms a Lie algebra of infinitesimal
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generators, called the admitted Lie algebra, if it is finite—dimensional, then
the symmetry group of the differential equation is a Lie group of
transformations. Theorem 1 provides an algorithm for finding the symmetry
group of partial differential equations, one can let the coefficients 7 , ¢
and » of the infinitesimal generator Q of suppositive one—parameter
symmetry group of the differential equation be unknown functions of t, X
and U. The coefficients 7, 77, My» My @Nd 77, belonging to the
extended infinitesimal generator Q® will be clear expressions including
the partial derivatives of the coefficients r, ¢ and » with respect to both
independent variables t, X and dependent variable U .

The infinitesimal criterion for invariance (6) thus contains t, X, U and
the derivatives of U with respectto t and X, aswell as 7, ¢, » and their
partial derivatives with respectto t, X and u .

After substituting for the derivatives which occur on the left hand side
of the differential equation since the second extension Q® only hold on
solutions of the differential equation, we can then equate the coefficients of
the remaining free partial derivatives of U to zero. This yields an
overdetermined system of partial differential equations for the coefficients
functionsz, ¢ and » (called determining equations), since in general there
are more than n+1 such determining equations. Note that if a partial
differential equation is not a polynomial in its components one can still
split it up into a system of linear homogeneous partial differential equations
for (z,¢,n) using the independence of some values of the components .

Because the set of determining equations is an overdetermine system,
two cases will arise: first their only solution is the trivial solution
(z,<,n)=(0,0,0), Second if the general solution of the determining
equations is non trivial, we have two cases : the general solution contains a
finite number or an infinite number of arbitrary constants . The first
associated with a finite—parameter Lie group, while the later associated
with an infinite—parameter Lie group. Note that if the general solution of
the determining equations contains arbitrary functions of t, X and u, then
the associated Lie group also called an infinite.

Lie s algorithm for construction the symmetries of second order
partial differential equations )(Bluman& Cole, 1974; Bluman& Kumei
, 1989)
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Since a Lie group of differential equation (satisfying the Jacobian

condition) is a symmetry group of that differential equation if and only if
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the invariance condition is satisfied for every infinitesimal of the Lie group,
this leads to an algorithmic construction of the symmetry group of a
differential equation. The key observation is that the invariance condition
contains extension variables u,u,,u,,u,,,u, ,which appear through the

extension formulas 7. 7,: 74y My » Ty » @Nd N the differential equation

itself. In both cases their occurrence is explicitly known. Hence invariance
(symmetry, infinitesimal) condition can be split up by powers of these
extension variables, yielding a system of determining equations for the
infinitesimals z , ¢, 7.

The details of this algorithm are as follows:-
1- Write the differential equation in the solved form, that is, isolate
derivatives on the left hand side.
2- Let 7,¢ and n be arbitrary functions of (t, x, u) .write the general
infinitesimal generator

Q=r(t, X u)§+§(t, X, u)a—iwy(t, X, u)a%.

3- Extend the infinitesimal generator acting on (u,,u,,u,,U,,u,,). This

adds to Q in terms

0 0 0 0
R/ I EJF’M) E*"?(n) WWLU(M)WJFU(”) ou
t X tt tx XX

4- Apply the extended infinitesimal generator Q' to the function F which
defines the differential equation.
5- Substitute for the derivatives which occur on the left hand side of the

differential equation. Set the resulting expression to zero. This yields
invariance conditions for an infinitesimal symmetry.

At this stage, the invariance conditions are linear homogeneous partial
differential equations for the infinitesimals z, £, . The coefficients in these
invariance conditions are known functions of t, x,u and derivatives from
the differential equation in hand, that is, u,,u,, u,, u,, Uu,,. Provided that
these derivatives occur polynomially in the original differential equation,
they occur polynomially in the invariance conditions, in an explicitly
known manner. In this case, one is able to split up the invariance conditions
according to powers of these derivatives into a finite number of
determining equations for the infinitesimals z, £, 77 .Usually this system of
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determining equations is overdetermined, consisting of more equations than

unknowns.
Journal of Kirkuk University —Scientific Studies , vol.2, N0.3,2007

6-Split up invariance conditions by powers of the derivatives
u,u,,u,u, U, to give determining equations for the infinitesimal

symmetry group.

7- Solve the determining equations for the infinitesimals z, £, 7.

8- For each infinitesimal generator in the algebra of symmetry generators,
integrate the initial value problem to yield a set of one—parameter
subgroups of the symmetry group.

9- Compose these subgroups to give the symmetry group.

Steps of method

Zhdanov et.al approach for group classification of the class of partial
differential equations consists of the following steps:
1- Use the usual Lie algorithm to find the general form of the infinitesimal
generator which generates the symmetry group of the equation under study.
As a result we obtain the determining equations, which connect the
coefficients (infinitesimals) of the infinitesimal generators with the
arbitrary function of the equation. It is possible that some of the
determining equations do not contain the arbitrary elements; therefore they
can be integrated immediately. Others, that is, the determining equations
which explicitly depend on the arbitrary functions and their derivatives are
called classifying equations. The main difficulty of group classification is
the need to solve classifying equations with respect to the coefficients of
the infinitesimal generator and arbitrary elements simultaneously. The
corresponding invariant equations for each of the Lie algebras are obtained
by solving these classifying equations.
2- Construct the equivalence group, which sets an equivalence relation
(two _elements of the equivalence group are called equivalent if they are
transformed one into another with a transformation from the equivalence
group).
3- Find realization of one—, and two—dimensional Lie algebras up to the
equivalence relation above. To this end we use the classification of low
dimensional abstract Lie algebras up to two dimensions. Inserting the so
obtained infinitesimal generators into classifying equation, then we select
those realizations corresponding to the Jacobi identity to be satisfied and
that can be symmetry Lie algebras of the differential equation under study.
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Note that two realizations are called equivalent if they are transformed into

each other by the action of the equivalence group(Zahdanov&Lahno,1999).
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The following notation: A, =<Q', Q%, .., Q >, denotes a Lie algebra of

dimension k, Q'(j =1 2, ..., k) are its basis elements, and the index i

denotes the number of the class to which the given Lie algebra belongs
(Basarab et.al, 2000).

General analysis of symmetry properties of PDES
To classify the nonlinear wave equation
U, =—A Uyx + F(U,UX) (7)
that admits Lie algebras of dimension up to two, we start from an equation
admitting one—dimensional Lie algebras, then extending these Lie algebras
to describe the admitted two—dimensional Lie algebras.

1-The Most General Infinitesimal Generator:

The first step of group classification of partial differential equation (7) is
to find the general form of the infinitesimal generator of the Lie group
admitted (invariant) by (7), which is according to the Lie algorithm is of
the form:

Q:r(t,x,u)§+§(t,x,u)%ﬂy(t,x,u)a% (8

where t,x are independent variables and u=u(t,x) is the dependent
variable. Note that 7,¢, » are real-valued smooth functions. The criterion
condition for equation (7) to be invariant with respect to (8) reads as

Ny + Aoy —MwFu, =R =0, ...(9)
Substituting the formulas from (5), and then replacing
u, by —4u,, + F(u,u,)whenever it occurs (9), we have:

{ntt +/1nxx+nuF_nFu_nx Fux _ZTtF +ux[(§x_”u)Fux _é’tt+Zﬂ'nxu_igxx_guF]'l'(ux)z[gu Fux _2/14(“'/1 nuu]
(UX)3[—MW]}+ ut{ [TXFUX+277N—1XU—MXX—MUF]+ux[—2{[u+fu R, -24 rxu]+(ux)2[—/11uu]}+

W )q-¢ 0 -20 0, ) -0, 3o {-20 20 - 20 r u ruu {20 Yo {20 - 20 ¢ - 20 0 )
+u.u 247 } =0 +(0)
Replacing z,¢ and 7 by a,b and f , respectively, in (10) and splitting by
~ » we will be left with the following equations,

which are so called the classifying equations:
aF, +2f,=0

u,, U, uu,,u, and uu
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fo + 2 fo — FF, = f,F, +(f, —2a)F +[(b, - f,)F, +22f,Ju, =0  ..(11)

We then have the following result:
Journal of Kirkuk University —Scientific Studies , vol.2, No.3,2007

Theorem 2:
The infinitesimal generator of the symmetry group of the equation (7)
has the following form:

Q=aft, x)%+b(t, x)%Jrf(t,x,u)a%, ...(12)

where af(t, x), b(t, x) and f(t,x,u) are arbitrary smooth functions which
satisfy the classification equations (11).

2-The Equivalence Group:

An equivalence transformation of a second order partial differential
equation in two independent variables t, X and in one dependent variable u
is a change of variables

t=T( x,u) ,Xx=X( x,u) ,0=U(,x,u)
taking any equation of the class into an equation of the same class
(generally with different arbitrary function)(Lisle, 1992).

There are two different ways for constructing the equivalence group,
the direct method and the infinitesimal method (Ibragimov, 2004). But we
will use the first one because it gives us enough information about the
Jacobi conditions.

In order to construct the equivalence group of the class of partial
differential equations (7), one has to select from the set of invertable
changes of variables of the space Vv (Ibragimov, 2004):
t=T(t,x,u) , X=X (t,x,u) , 0=U (t,x,u),

Tl Tx Tu
where D@X.U) _ X, X, X, /=0 , .(3)
D(t, x,u)
U U U

X u

be those changes of variables which don’t alter the form of the class of
partial differential equations (7).

Theorem 3:

The equivalence group of the class of partial differential equations (7)
readsas t=T(t), X=X (t,x), U =U(t, x,u), ...(14)
Where T#0, X, #0,U, #0, X, =X, =0, Da.XV) o

D(t, x,u)
Proof:
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Let (13) be an invertable change of variables that transform equation (7)
into another equation of the same form of (7), namely,

O, =— A Uy, + F(T,T,) ...(15)
Journal of Kirkuk University —Scientific Studies , vol.2, N0.3,2007

Computing u,, u,, u,, and u, according to (13), as follows:

The total derivatives D, and D, are transformed by (13) to the
operatorsD ; and D ., and

Dy=D(T)D; +D(X)D,

DX:DX(T)Df+DX(X)DX ..(16)
Now

D, (U)=D, (T)U; + D, (X) Uy ,
or

U,+uU, = (T, +uT,)u + (X, +u,X,)u; ,
Yields

as the function F in (7) and F in (15) are arbitrary functions of the
corresponding arguments, we must have

ux = g(U1UX) !
for the same function g. This implies that T =T, =0 in (17) consequently,
T=7@), 7= 20 and u =29 = Y .(18)
dt U, - X, U,

Next, making the change of variables (13), where T=T(t), we have
D, (U)=D,(T)u; + D(X)u; ,
U, +uU, =(T +uT,)Ta, + (X, +uX,)u,,

yeilds U = TU; + Xtui_—Ut
U, — X, U
Computing u,,, with account of the T=T(t) &(10) will be reduced to
D, =D, (X)D, ..(19)

Applying (19) to (18), we get

115



XXuXX
uXX = (XX + UXXU ) [

Simplifying this we have that
uxx:UXX[(Xx)Z(Uu _XUUX)_1+2XXXU(XXUX -U x)(Uu _XuUX)_2 +(Xu)2(XxUX _Ux)z(Uu - qui)_a] ..-(20)
Journal of Kirkuk University —Scientific Studies , vol.2, N0.3,2007

Similarly
utt = (T )ZLTff(Uu B XUUX)_l + (Xt)2 UXX(UU - Xuﬁi)_l + th U’ (T Ut + XtUX _Ut)(Uu B qui)_2

U7XxX

$TX X BT U, =X )T ()T T (T + X, 0, -U)U, = X, 5)*+ (X)X, 0,

t oYt XX X XX

U, =X, B+ X (X )T T (T + X, T -U U, = X, E) - X XU, T U, - X ) -

iuﬂ t o xx
(Xu)ZUu UXX(T l‘]t + Xt UX _Ut)(Uu B Xu UX)_S'
Inserting U,, , U, from (20), (21) respectively into (7), we arrive to the

following differential equation
(X )*(X,)?* -2X, X, UU

.21

— (X ) (X)) +2X,(X,)°U, 0,

UW :U77 —ﬂ, X u X _ u
o et (M U, = X,b,)*
+ X, (X,)%0y —(xu)qu]Jr 2T (X,)?U,0; = (X,)?(U)* +2X, X, U U,
—TP (X)) (0)° - (X)*U,)° —2T'XtXuUuUf}+ F(u, uy)
(MU, - X,05)°
where

- F(u,u,)

") =y, X

Taking into consideration (9) yields the relation

(X)2(U,)* —2X, X U, U, — (X )2 (X)) (@)% +2X, (X,)?U, 0, + X, (X,)?0 = (X,)?U,
(T)?U, — X,0;)*?

2T (X,)2U,0; —(X,)?(U,)* +2X, X UU, —(T)*(X,)°(@)° - (X,)*(U,)> —2TX X U, U;

AMAU, - X,0,)° !
A(X)2U,)? =24 X XU U, =A(X,)2(X,) (@)% +24 X (X,)’U 0, + A X (X,)*T,
—A(X,)°U, = 2T(X,)?U,T0: +(X,)°U,)* =2X X, U U, +(T)*(X,)’(@)° +(X,)°U,)?
+2TX X U0 = A(T) (U,)? =24 (T)2 X U, T, + A(T)*(X,)*(T,)? (22)

As T,X and U don’t depend on u,, u, one can split the left hand side

of (22) by U;, U, and equating the coefficients of the various monomials,
we get the following equations
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A(X,)?PU) =22 X, X UM, —A(X,)’U, +(X,)?U,)?

u X u

—2X XU U, +(X)?U,)? - A(T)*(U,)? =0
A(X,)2 (X)) +A(T)*(X,)? =0,
24X (X,)?U, +AX (X, )2 +2A(T)* X, U, =0,
2T X, X U, —2T(X,)’U, =0
(T)*(X,)? =0

Journal of Kirkuk University —Scientific Studies , vol.2, N0.3,2007

From above equations, we have
t=T@{),X=X({,x), ua=U(,xu) ,
and the theorem is proved.

Group classification of equation (Humi&Miller,1988)

Here we classify equations of the form (7) that admit symmetry Lie
algebras of dimensions one and two.We start from describing equations
admitting one—dimensional Lie algebras, and then proceed to investigate
those equations which are invariant with respect to two— dimensional Lie
algebras. An intermediate problem which is being solved, while classifying
invariant equations of the form (7), is describing all possible realizations of
one and two-dimensional Lie algebras by infinitesimal generators (12)
within the equivalence relation.

1-One-Dimensional Lie Algebras:

All in equivalent partial differential equations (7) admitting one —
dimensional symmetry Lie algebras having the basis elements of the form
(11) are given by the following theorem:

Theorem 4:
There are equivalence transformations (14) that reduce infinitesimal
generator (11) to one of the following generators:

Al =<g>, A? —< 25 and A <2 ...(23)

ot OX ou
Proof:
By theorem 2 let Q =a(t, x)i+b(t, x)i+ f (t,x,u)i. Making use of (14),

ot OX ou
we have
Q—)@—aTi+(aX +bX )i+(aU +bU, + fU )ﬂ
- ot ‘ T ox ‘ " “ou’

Since Q is non-trivial symmetry, this implies that a, b, f can not be all zero
at the same time. So there are seven cases, in a sequel, we consider the
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following three cases, while the remaining four cases reduce to Case 1,
Case 2 or Case 3.
Case 1:
If a=0,and b=f=01in Q.Hence Q=at §+axt ai+aUt o
t X u

Then choosing in (14) the function T to be the solution of the equation
aT =1, and the functions x,u to be the solutions of the partial differential
Journal of Kirkuk University =Scientific Studies , vol.2, No.3,2007

equations ax,, au,=0 respectively. Which reduces ¢ to .. This means
of

that we can, take ng .

Case 2:
If b=0,and a=f=0inQ.Thatis g_px 2 ,py 2
* OX *ou
In a similar to case 1, we arrive to Q=% .
Case 3:
0

Now if f 20,and a=b=0in Q,thatis, ézfu”a_— , then choosing In
u

(14) the function U to be a solution of the equation fuU,6=1. So one can

take, o _2 . The Lie algebras (23) are in equivalent, since it is impossible
ou

to find such functions T, X ,u (equivalence transformations) that one of

the infinitesimal generators © 9 2  can be transformed to another
ot o0x ou

one. Thus, there are three in equivalent one — dimensional Lie algebras.

And the theorem is proved.

1.1- Nonlinear Wave Equations Invariant under One-Dimensional Lie Algebras

The corresponding invariant equations for each of the Lie algebras (23)
from the class (7) are obtained by inserting the coefficient of these Lie
algebras in the classifying equation (11), and then solve it for the arbitrary
element F, this yields that the corresponding invariant equations from
class (7) have the form.

0
A =< >y =—AUy+ F(uy).

2-Two-Dimensional Lie Algebras:
As we it is well known, there are abstract two—dimensional Lie algebras
(Basarab etal, 2000) namely, the commutative Lie algebras
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A2.1:<Q1!Q2>1[Q11Q2]:O ’
and the solvable one

A,,=<Q", Q°>, [Q', Q*]=Q°
So the problem of describing of partial differential equations (7) admitting
two—dimensional Lie symmetry algebras contains as a sub problem the one
of solving the commutation relations (above) within the class of (11) up

Journal of Kirkuk University —Scientific Studies , vol.2, N0.3,2007

to the equivalence relation (14). Next, we should solve (12) for each
realization obtained. Having done this we get the following theorem.

Theorem 5:

The list of in equivalent realizations of two—dimensional lie algebras
with the infinitesimal generator (11) and defined within the equivalence
transformation (14) is given by the following Lie algebras:

=<l g s> A=en D |
L L e ey
A=< g0t Do, A=<l g0
Lt 2 L A< g s
LT 1 TR TR Y P E
Mo=<t o 25 AL—<@0-o o>
A23_.2=<—t%+%,§> , A;_2=<—t%+a%,§> ,
A=<+ Do AL =< (g0 Sk,
A27_.2=<x% ,%> , A, =< %+x%,%> ,
A, =< x%+a%,%> , 0 =< §+x%+aiu,% ,
RN G e TR
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Proof:
Consider first the case commutative two—dimensional Lie algebra A,, .
By Theorem 4 we can choose one of its basis generators Q*, say to be equal

to one of those given in (23). Now, if o, let

1 __
Q ot

Journal of Kirkuk University —Scientific Studies , vol.2, N0.3,2007

Q%=a(t, x) %+b(t, x)% +f (t,x,u)% , then according to [Q", Q* 1=0 ,

we have that at%+btai+ ftai=o , therefore ab and f are independent
X u

t 2 _ax)2 1b(x)-2 9
of U.So we take Q a(x)at+b(x)ax+f(x’u)au'

The next step is to find the canonical form (the simplified form) for Q?

under the equivalence transformations (14). However, we must now use
only those equivalence transformations (14) which preserve the form of

o'=-2 . Thus we require that Q' —>Q* with -T2 .x 2 .y 2 _2,
ot ot tox ' Bu t

Which yields T=1, X, =0 and U, =0 . Hence we take:

t=t+c' , Xx=X(x) , u=U(xu). ...(24)

Under this type of transformations we find :
2 _,0%=a(x) 2 o o
Q*>Q*=a(0) = +b()X, ——+(bBU, + fU,) —
In a sequel, we use have the following five cases:
Case 1:

If az0and b=f=01in Q?.Hence cjz :a(x)%

. 0 ..
This reduces Q? to Q°= g(x)a.Thus we have the realizations A}, .

Case 2:

If b=0and a=f=0in Q% . Thatis dz:bxxai_+mb ai_. Now in (24),
X u

we choose X to be a solution of the equation bX, =1 and U to be a solution

of the equation bu, =0. Thatis qz__2 ,which yields the realization Az,
O X

Case 3:
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If f20,and a=b=o0, inq?.Then 5._ fuuai,
u

choosing from (24) U to be a solution of equation fuU,=1. Thus we get
the realization A, .
Case 4:

If b=0,and a=0,f=0in Q*,then q?-a +fu, 2.
ot ou

Thus yielding the realization A;, .
Journal of Kirkuk University —Scientific Studies , vol.2, No.3,2007

Case 5:
0 0 0

If f=0,and a=0,b=0in Q?,then Q?=a—> +bX, -~ +buU, -~ .
ot O0X ou

Which give us the realization A,. Lets us now turn to the cases when

le%, Q1=aiu.Treating in a similar way as in the case when Ql=% ,

and excluding the trivial and repeated realization, we will be left with the
realizations A}, , i=6,7,..,10; are in equivalent is established by direct

verification. Consider now the case of solvable two—dimensional Lie
algebra A,,. Taking in to account the results of theorem 4 we analyze the

three possible forms of the infinitesimal generator Q* given in (23). Lets us

first turn to the case A =A11=Q2=§ ,

0 0 0
let Q'=a(t, xX)— +b(t, x)— + f (t,x,u)— ,
Q ( )8t+( )6x+ ( )au

using the commutation relation [ Q*, Q*]1=Q?, and making the change of
variables t =t+c', x=X(x) , a=U(x,u) , which preserves the form of Q?

. We get Q_lz(a—t')i+bxx i_+(bux +fU, )i_ . Then consider the six
ot OX ou

cases when
a=b=f=0;a%0,b=f=0;bz0,a=f=0;f%0,a=b=0;b=0,a%0,f 20 and

f=0a=0b=0.
Thus we get the following realizations: A},, i=12,...,6, .For the case

2 _ 2_i
Al:Al_Q_ax’

the following realizations are A},, i=78,...10.At last, for the case when
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0
Alef:QZZE,

gives rise to the realizations A},,i=11,1213. It is clear that these
realizations are inequivalent, and the theorem is proved.

2.1 Nonlinear Wave Equations Invariant under Two- Dimensional Lie
Algebras:

Now we drive all nonlinear wave equation (7), that admit two—
dimensional Lie algebras as symmetry Lie algebra. Doing this we have to

insert the coefficients of the obtained realizations in (11), then solving the
Journal of Kirkuk University —Scientific Studies , vol.2, N0.3,2007

later for the arbitrary functionsF . To this end we have the following
nonlinear wave equations corresponding to their realizations:
A;l: Uy =—A U, + F(U),

Ag.l: U, = -4 Uy
A12(.)1: U, = -1 U,y +(gtt +ﬂ’gxx)(gx)71ux +C,

4 . _ 2u
A5,: U, =—A4uU, +ce" |,
9 . u
A2.2' utt =—A l"Ixx—i_ F(uxe ) )
11 . 1
Ay, U, =—Au,+CU, .

Conclusion

We have derived the preliminary group classification for the nonlinear
wave equation of the form (7). One of the evident conclusions is that the
complete group classification (description of all possible forms of the
functions F, G that (11) admits a non-trivial symmetry group) of equation
(7) still remain open. We hope to return to it in a forthcoming paper.

However, the full solution of this problem needs more powerful
algebraic techniques like Live-Maltsev theorem , properties of simple,
semi—simple and solvable Lie algebras.
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