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Abstract: This paper will suggest a new type
of continuous distribution called Odd Weibull
Exponential Distribution (OWE) and the
purpose of this distribution (OWE) is to apply
to two sets of real data. The distribution
(OWE) is as a sub-model of NOW-G family
and many statistical properties have been
derived. Quantile function, Expansion of
functions, Moments, Incomplete moments,
Probability ~Weighted Moments, Rényi
entropy, as well as estimation of distribution
parameters through Maximum Likelihood
Estimation (MLE). A modelling study was
carried out with data sets from the data
includes 30 observation of March precipitation
in Minneapolis Paul. Economic data consists
of 31 observations on the response variable
GDP growth of Egypt. Moreover, the proposed
distribution (OWE) has been found to outstrip
other existing distributions by basing us on
statistical parameters and comparing them.



http://www.doi.org/10.25130/tjaes.20.68.2.27
mailto:mun880088@tu.edu.iq
http://creativecommons.org/licenses/by/4.0/
mailto:ahmed.a.ahmed00562@st.tu.edu.iq

Tikrit Journal of Administrative and Economic Sciences, Vol. 20, No. 68, Part (2): 506-523
Doi: www.doi.org/10.25130/tjaes.20.68.2.27

Gdail) aa 2 81 ) Jug i) pailad (any

Juld i 2 Hdia daaf o saal
S5 daala/cibudly ) 5 gilad) o gle 4408

oaldial)

o1 it @355 (omns 5 patonall Sy 5 531 (T L3 Al 5l 030 8 g i3 s
L) e e sena lo Gukill s (OWE) msdl 138 e Ciagll s (OWE) il
waal) FELEY) &3 5 (NOW-G family) (s dae 8 alls 5o aal 381 235 621 a5l o 5 Asisal)
s Al (Aadlill g all ca g jall GAUA g 53 ApeSll AVl Lgia s Ailan ) ailadll G
AMLE) (oY) Jlaia¥) 5088 NS (e a5l el 50088 Gl g ¢ g 550 )y ¢ el
s (A JUaeY) b g (4o Adaadle 30 (et SULL (e de gena o Aadail) Al o 8 N
i) e Jss A3a e 31 (e ApabaiV) bl Al 50 SIS 5 J sy Gl siliien 8 G sle
e 358 (OWE) aosil o) Gas el e 30le 5 pan (A Mlaal) ol Ul sa
et e g Ailan ) yilaall e Galii) A (e Lo J sanall (5 AY) il 5 5l
Ao Y1 SRV 8 ¢ g 5 ) s dadl AaeI A (Jus a5 sAalidal) cilalsl)

. Introduction

Statistical distributions can be used to describe and predict real-world
events. Several extended distributions have been extensively used in data
modeling throughout the last few decades. Recent improvements have
focused on developing new families that broaden well-known distributions
while simultaneously allowing enormous modeling freedom. To begin with,
classical or normal distributions cannot be relied upon only since they are
insufficient or inaccurate for obtaining genuine results or modeling real data.
One simple method that has gotten a lot of attention in recent years is to add
one or more parameters to an existing distribution. Many strategies have
been researched in this direction. The MO-G family, as described by
(Marshall et al., 1997: 2-3), is shown to be a superior substitute for several
prevalent distributions, including the Weibull, gamma, and exponential
distributions. Submitted by each of the by (Batsidis al., 2015: 5-7), show A
new method for generating new classes of distributions based on the
probability-generating function in particular, they focused their interest to
the so-called Harris extended family of distributions. Both researchers
worked on presenting (Korkmaz et al., 2017: 5), An ordinary-G distribution
Is a generalization of the ordinary distribution with a cumulative distribution
function (CDF) equal to the value of the cdf of the ordinary distribution F
with a range of the unit interval at G, denoted as F(G). And many ways and
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strategies as (Hassan et al., 2016:2-3), (Oluyede et al., 2015: 2-4), (Tahir et
al., 2016: 2-5), Submitted by all (Oluyede et al., 2018: 2-4) The Weibull
distribution and its related families have been extensively researched in the
field of lifetime applications. This work focuses on the Gamma-Weibull G
family of distributions (GWG), which is derived from the Weibull-G family
of distributions and the exponentiated Weibull distribution.

This proposed new distribution provides great flexibility in data
analysis and data modeling

By working on this research paper, we aim to create a new distribution
that has very high efficiency in modeling data and interpreting phenomena
accurately and with less error than the rest of the distributions that were
previously worked on, that is, the distribution that we will present for very
high benefit in data analysis.
The remaining components of the research paper will be organized as
follows. In Section 2, we will demonstrate how to build the family. A New
Odd Weibull-G Family, and then we'll explain how the new distribution the
family may be used to generate a new Odd Weibull Exponential Distribution
(OWE). The statistical features of the new distribution will be shown in
Section 3. Section 4 covers parameter estimation of the distribution (OWE).
In Section 5, we offer a simulation analysis using the Monte Carlo technique,
and in Section 6, we describe an application of the newly established
distribution, end the paper in Section 7.
. A New Odd Weibull — Exponential distributionStart now by explaining
how the construction of A New Odd Weibull-G family will be and in clear
and simple steps as shown now Work has been done to build this family,
which | have proposed by relying on a new way of generating families with
continuous distributions by each of them. (Alzaatreh et al., 2013:4-5),
(Alzaatreh et al., 2016: 3)

f(x) = abxP~le~2x" 1)
where x > 0 is random variable a, § > 0 & [3 shape parameters.(papoulis et
al., 2002:87)

F(x,n) 1
W(F(x,n)) =T e FGe)
where f(t) is the pdf of a continuous random variable T that [c, d], and
F(x) is the cdf of X & W(F(x)) is a function of the cdf F(x) that satisfy the
conditions in (Alzaatreh et al., 2013).
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W(F(x1))
Gw(Xr T]) = j f(t)dt (2)
0

we get

B F(x,m) 1 b
Gy(x,m) =1—exp {—a [T(X,T]) X Logm] } (3)

By differentiating equation (3) we get the new family pdf from equation (4)
F(x,n) — Log(1 — F(x,1))
2
(1-FG&xm)

gw(x, M) = abf(x, ) [

F(x,1) 1 b-1
" [1 “FGom) 08T F(X,n)] “

F(x,m) 1 1 b
* —_ _— _—
SIS Fm) T BT —FGon)
Take the exponential distribution as an example of baseline
distribution. This baseline distribution is applied to both the pdf and the cdf
in the following way:
f(x,n) = Aexp{—Ax
U p{—Ax} 5)
F(x,n) = 1 — exp{—Ax} (6)
Where x > 0 and A > O rate, or inverse scale (Park et al., 2009:11)
Now by substituting (6) in (3) we get the cdf of the Odd Weibull Exponential
distribution (OWE) and by differentiating the resulting equation we get the
pdf
Gw(x 1) = 1 — exp{—a[Ax(exp{Ax} — 1)]°}

(7)
gw(x,m) = ab[A?xexp{Ax} + A(exp{Ax} — 1)]
* [Ax(exp{Ax} — 1)]°7?
+ exp{—a[Ax(exp{Ax} — 1)]*} (8)
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Figurel. cdf and pdf for the OWE distribution.
These Figure were prepared by the researcher and his efforts through
working on the R program.
. Mathematical Properties: In this section of the research, we're going to find
some statistical properties of the Odd Weibull Exponential distribution
(OWE) that are very important in distribution studies, as well as the two
equations (7) & (8)
3-1 Quantile function: Quantile functions are used in both statistical
applications and Monte Carlo methods. The quantile function may now be
readily produced by inverting the equation (Oguntunde et al., 2019:4):
1 —exp{—2Ax} =u 9)

u is a uniform random variable continuous in this situation.By solving
Equation (9) and Using the exponential distribution baseline, we get the
following:

sz Ln(1 —u)

The quantile function (NOW-G family) is written as follows:
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BJlL ()
Qay (W = Qrx ( B\/%Ln (1 - < 1 I u >>

As Qp(xp Exponential distribution By substltutmg the above equation for

the value of u, we get the following:
b[1 1 _
\/_ Ln (1 — u) \ (10

(J (e D))

Note that 0 < u < 1, W, isn (generallzed Lambert W function) (Mez'0 and
'Arp ad Baricz., 2015:6-7)

3-2. Expansion of functions: In this paragraph, we will simplify pdf and cdf
and make it more simplified and be clear.

To simplify the exponential function, utilize the Taylor series. (Gradshteyn
and Ryzhik., 2014: 26-27)

Q(u) = —Ln

exp{—a[Ax(exp{Ax} — 1)]"

3 i (—1DKa¥[Ax(expAx — 1)]PK (11)
- k!

k=0
Now by substituting the equation higher in (8) and with some
simplification we get the following in (12)

_ 1k, k+1
Bulem = Y 2L ixexp(i + Mexp(i — D]
k=0 '

* [Ax(exp{Ax} — 1)]Pk+D-1
Now using the binomial theorem (Gradshteyn and Ryzhik., 2014:25-26)

(12)

(00]

(1—1x)5 - Z (S+2_1>Xm

We get to the (13)
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(00

gw(xln) — z - (_1)b(k+1)_1+kak'+lb(}\x)b(k+1)—1
o § (13)
m—b(k+1)
* < ) [A2xexp{Ax} + A(exp{Ax} — 1)]exp{mAx}

m
Using the Taylor series to simplify the equation above, we will need
to get(14)

, N m+2)
Wxexpha + Aexpl} — D] = ) oy P
n=0

We substitute (14) in (15) we ¢

gm =) an,m,kx“k““n explmax}
n=0 m=0 k=0 (15)

Where

Wn,m,k =

(_1)b(k+1)—1+kak+1b(n + 2)(A)b(k+1)+n+1 m— b(k + 1)
k!'(n+ 1)! m

3-3 Moments: Moments are extremely important in any statistical analysis.
And the types of moments are expected value, Variance, Skewness,
kurtosis ets. The rt* moment of the Odd Weibull Exponential Distribution
(OWE) are presented in this section. The r** moment of X is denoted by

W= [X7] = j X" g (x, ) dx (16)

Using equation (15) with (16) we get the following and Now in order
to get the solution of the integration in the equation above we must make
some simplifications in order to get the integration of gamma

1 b(k+1)+n+r+1
Uy =E[Xr]:( ) Z Z Z ank

mA
*f u[b(k+1)+n+r+1 -1 exp{ u}du
0

Now through the use of the gamma integral, the moment equation will
be as follows in (16)
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z z Wn,m,k

n=0 m=0 k=0
*'(b(k+1)+n+r+1)

b(k+1)+n+r+1 =2

e = E[X7] = (_—1)

mA

Where

Wn,m,k =

(_1)b(k+1)—1+kak+1b(n + 2)(A)b(k+1)+n+1 (m _ b(k + 1))
m

k!'(n+ 1)!
3-4 Incomplete moments: Incomplete income distribution moments are
natural building blocks for assessing inequality; for example, the Lorenz and
Bonferroni curves, as well as the Pietra and Gini measures of inequality, all
rely on incomplete income distribution moments. (Henrion et al.,2022:2),
The definition of r*® incomplete moment is

m.(7) = j X" g, 7)dx 17)

Using equation (15) with (17) we get the following and Now, in order
to solve the integral above, we do some algebraic operations and

simplifications and we get the following
b(k+1)+n+r+1 =2

e = () SN W

n=0 m=0 k=0

—-mAz
*f y[b(k+1)+n+r+1 -1 exp{ y}dy
0

We can now obtain the result of the integration through the Incomplete

gamma function And we get (17)
b(k+1)+n+r+1 2

mr(z)=(;—}1> Z Z Z nmk
sy(b(k+1)+n+r +
where

(_1)b(k+1)—1+kak+1b(n + 2)(A)b(k+1)+n+1 (m _ b(k + 1))

Womi = kl(n+ 1)!

m
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3-5 Probability Weighted Moments: It is an unbiased way of estimating
the characteristics of the distribution estimate in quantities and is sometimes
termed the descriptive function, which is provided by the following relation:

wry) =B (X650 0) = [ 2 gu(n 6L O

(18)

Now in order to find the integration at the top we need to make some
simplifications and get the following

B MG (1) =Z Z DD Einmp O expmax)

n=0 m=0 j=0
where

(_1)i+n+b(n+1)—1an+1b(l~ + 1)n(]- + 2)/1b(n+1)+j+1
Lnm,j n! (G + 1)!

. (;l)) (m — b,(nn + 1))

Therefore, the probability-weighted moments are given by

w(r,y) =z z z z Tinmj T(bn+1)+j+7r+1)
i=0 n=0 m=0 j=0

where

($3]

(_1)i+n+b(n+1)—1an+1b(i + 1)71(]- + Z)Ab(nﬂ)ﬂﬂ
Tinmj = n!(j + 1)!
-1 b(n+1)+j+r+1 Py (M — b(n + 1)
(7) ()

mAi i m

3-6 Rényi entropy: If g(x, Q) is the new distribution proposed in (19), then:
Rényi entropy is defined by

1 (e ]
IR(p)=1_p10gf gw®xdx  p#0 , p>0 (19
0

Raised pdf was simplified to powers and obtained the following

BED=D D D DD Bnmaax PO expiming
i=0 n=0 m=0 k=0a=0

We will write Rényi entropy for the new family as follows:
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o0

log i i i i Pinmk,a €xP[(1 — p)lggr]

Ix(p) =
i=0 n=0 m=0 k=0a=0
Where
(_1)bk+p(b—1)+k+p+iap+kbppk(A)bk+p(b—1)+in+p
¢m,k,i,a,n = kil

m — [bk +p(b —1) + 1]\ /p\ /i
*< m >(i)<a)

IREG — j [xbk+p(b—1)+in+a exp{m)tx}] dx
0

4. Maximum Likelihood Estimator: Among numerous approaches, the most
popular method in estimating the parameters of statistical distribution is the
method (MLE), which has outstanding qualities and is useful in determining
the fixed periods of the model’s parameters. Let v = (a, b, A)T is the
parameters vector, The Likelihood function for the (OWE) distribution will
be, By taking the log of equation (8) we get the following:

n

2(v) =mnloga + nlogh + Z log [A*xexp{Ax} + A(exp{Ax} — 1)]

i=1

n n (20)
+(b —-1) Z log [Ax(exp{Ax} —1)] — ab Z[Ax(exp{/lx} —1)]
i=1 i=1
Now we will work on finding the partial differentiation of each parameter of
the distribution
0(v) C
\Y n
= b;[mxp{m - 1)) 1)

n

i=1

6{’(1/) nox
=7 Z og [Ax(exp{Ax} — 1)] — aZ[Ax(eXp{KX} — D] (22)
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at(v) . A2 xexp{Ax} + 2Axexp{Ax} + Aexp{Ax} + exp{Ax} — 1
oA 2 ( A?xexp{Ax} + A(exp{Ax} — 1) )

- Axexp{Ax} + xexp{Ax} — x
-1 ; ( Ax(exp{Ax} — 1) )
—ab z(Mexp{Ax} + xexp{Ax} — x)

1=1

Now after equalizing the three equations with zero, you can find an
estimate of the distribution parameters, but through the use of the relevant
application because it is difficult to find them manually by R programs or
MATLAB
. Simulation: In this section, we use a Monte Carlo experiment to investigate
the asymptotic behavior of MLEs for OWE distribution parameters. The
study examines four sets of parameter values: (a =0.1, b =0.4, 1 =1.4), (a
=0.3, b =0.5, 1 =0.9), (a =0.4, b =0.5, 3 =0.9), and (a =0.4, b =0.5, 1 =1.2).
We consider four sample sizes (n = 40, 80, 120, and 180), and the experiment
Is performed 1,000 times. Table 1 displays the MLES' mean estimates and
root mean squared errors (RMSES). As expected, the MLESs converge to the
correct parameters, and the RMSEs drop as the sample size (n) grows.

Table (1): Monte Carlo Simulation Results for the WE distribution.
\ (a=0.1,b=04, 2=14) (a=0.3,b=0.5, 2=0.9)

parameter

(23)

SEN

Mean RMSE bias Mean RMSE bias

Size
40 0.4654 | 1.4673 | 0.3654 | 1.6669 | 1.9422 | 1.3669
80 0.3114 | 1.3092 | 0.2114 | 0.6953 | 1.1415 | 0.3953
a 120 0.1139 | 0.0549 | 0.0139 | 0.4349 | 0.8144 | 0.1349
180 0.1084 | 0.0361 | 0.0084 | 0.3718 | 0.3119 | 0.0718
40 0.4271 | 0.1780 | 0.0271 | 0.5011 | 0.1466 | 0.0011
b 80 0.4141 | 0.1254 | 0.0141 | 0.4970 | 0.1025 | -0.0029
120 0.4110 | 0.099 | 0.0110 | 0.4965 | 0.0830 | -0.0034
180 0.4057 | 0.0848 | 0.0057 | 0.4950 | 0.0712 | -0.0049
40 1.4801 | 0.8253 | 0.0801 | 0.9949 | 0.5936 | 0.0949
N 80 1.4483 | 0.6056 | 0.0483 | 0.9381 | 0.4222 | 0.0381
120 1.4313 | 0.5191 | 0.0313 | 0.9275 | 0.3503 | 0.0275
180 1.4242 | 0.4090 | 0.0242 | 09171 | 0.2886 | 0.0171
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| (a =0.4, b =0.5, % =0.9) (a=0.4, b =0.5, 3 =1.2)

arameter )
P Size

Sample

Mean RMSE Abias Mean RMSE Abias

40 1.6113 | 2.4665 | 1.2113 | 1.7788 | 2.0315 | 1.3788
. 80 1.2783 | 1.9093 | 0.8783 | 1.3214 | 1.1191 | 0.9214
120 0.6475 | 1.8395 | 0.2475 | 0.6458 | 0.8826 | 0.2458
180 0.4949 | 0.4009 | 0.0949 | 0.5079 | 0.5617 | 0.1079
40 0.5034 | 0.1391 | 0.0034 | 0.5088 | 0.1400 | 0.0088
b 80 0.4981 | 0.0967 | -0.0018 | 0.4967 | 0.09424 | 0.0032
120 0.4967 | 0.0786 | -0.0032 | 0.4971 | 0.077/1 | 0.0028
180 0.4942 | 0.0663 | -0.0057 | 0.4936 | 0.0657 | -0.0063
40 1.0252 | 0.6387 | 0.1252 | 1.3993 | 0.9065 | 0.1993
N 80 0.9388 | 0.4528 | 0.0388 | 1.2767 | 0.5960 | 0.0767
120 0.9326 | 0.3740 | 0.3265 | 1.2419 | 0.4948 | 0.0419
180 0.9227 | 0.3027 | 0.0227 | 1.2345 | 0.4023 | 0.0345

These Table were prepared by the researcher and his efforts through working
on the R program.

6. Application: We will apply the (OWE) distribution in this part on a real-life
data collection. The Akaike information criterion (AIC), the Corrected
Akaike information criterion (CAIC), the Bayesian information criteria
(BIC), the Hannan-Quinn information criterion (HQIC), the Cramer-von
Mises statistic (W), and the Anderson-Darling statistic (A) define the
standards for judging the efficiency of the models.

We compare the performance of the (OWE) with other distributions
Like Lomax Exponential (LOE) Distribution (Khalaf et al., 2024: 52-53),
Truncated Inverse Weibull Exponential (TIWE) Distribution (Khubbaz et
al., 2023:2-3), Burr XII Exponential (BXIIE) Distribution (NEW), Beta
Exponential (BeE) Distribution (NADARAJAH et al.,2006:4), Kum
araswamy Exponential (Kug) Distribution (NEW), Gompertz Exponential
(GoE) Distribution (NEW), Weibull (We) Distribution.
The results Table 3 below sums the findings. Our model is regarded as the
best fit in this case as the first row of this table reveals that the (OWE)
distribution has the lowest values for all the metrics used in the research.
Figure 2 also shows many facets of this research related to analysis.
Data I: The data includes 30 observation of March precipitation in
Minneapolis Paul. The following values were noted: (Bhat et al., 2023:14-
15)
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0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51,
2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48,
0.96, 1.89, 0.90, 2.05

Table (2): Descriptive statistics for Data I.

Statistic Var. N Mean Sd Median | Min | Max skew Kurtosis

Data | x |30| 1.68 147 [032]4.75]1.03| 093 |
These Table were prepared by the researcher and his efforts through working
on the R program.

Table (3): Goodness of fit statistics and information for the OWE models
Models MLEs -LL AIC BIC HQIC -S  p-value

4:0.1067
b:1.6105 | 38.05 | 82.108 | 83.031 | 86.311 | 83.453 | 0.0139 | 0.1055 | 0.0626 | 0.9997
§:2.2315
4:0.7130
b:5.6708 |38.39 [ 82.793 | 83.716 | 86.997 | 84.138 | 0.0167 | 0.1216 | 0.0655 | 0.9995
5:1.2305
4:0.7031
b:3.0503 | 38.20 | 82.417 | 83.340 | 86.620 | 83.762 | 0.0260 | 0.1677 | 0.0968 | 0.9412
3:0.9825
4:1.2675
b:1.0107 | 38.38 | 82.772 | 83.695 | 86.975 | 84.117 | 0.0196 | 0.1349 | 0.0749 | 0.9959
3:0.6648
4:3.6783
b:0.8082 |38.10 [ 82.218 | 83.141 | 86.422 | 83.563 | 0.0163 | 0.1138 | 0.0691 | 0.9987
5:1.3927
4:4.5976
b:0.5877 | 38.15 | 82.318 | 83.241 | 86.522 | 83.663 | 0.0200 | 0.1336 | 0.0778 | 0.9933
3:1.7930
4:0.7288
GoE | b:1.1798 | 41.07 | 88.152 [ 89.075 | 92.355 | 89.497 | 0.0581 | 0.4134 | 0.1149 | 0.8229
5:04164

OWE

LOE

TIWE

BXIIE

BeE

KuE

These Table were prepared by the researcher and his efforts through working
on the R program.
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Figure 2: Estimated pdf, and cdf for Data I.
These Figure were prepared by the researcher and his efforts through

working on the R program.
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Figure (3): Empirical cdf, and PP-Plot for data I.
These Figure were prepared by the researcher and his efforts through

working on the R program.
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Data I1: economic data consists of 31 observations on the response variable
GDP growth of Egypt. The data are:(EI-Sherpieny et al., 2020:9)
10.01, 3.76, 9.91, 7.40, 6.09, 6.60, 2.65, 2.52, 7.93, 4.97, 5.70, 1.08, 4.43,
2.90, 3.97, 4.64, 4.99, 5.49, 4.03, 6.11, 5.37, 3.54, 2.37, 3.19, 4.09, 4.48,
6.85, 7.09, 7.16, 4.67, 5.15

Table (4): Descriptive statistics for Data II.
 Statistic | Var. | N | Mean | Sd  Median | Min | Max skew | kurtosis

Data Il X |35] 513 |2.08| 497 |1.08]|10.01| 0.48 -0.11

These Table were prepared by the researcher and his efforts through working
on the R program.
Table (5): Goodness of fit statistics and information for the OWE models
Models MLEs -LL AIC CAIC BIC HQIC W A K-S p-value

4:1.4569
OWE | b:1.7453 | 65.53 | 137.06 | 137.95 | 141.36 | 138.46 | 0.0163 | 0.1488 | 0.0516 | 0.9999
3:0.2058
4:3.3372
LOE | b:6.8263 |65.89 | 137.79 | 138.68 | 142.10 | 139.20 | 0.0220 | 0.1827 | 0.0770 | 0.9860
3:0.2739
4:0.1643
TIWE | b:1.7574 | 66.82 | 139.64 | 140.52 | 143.94 | 141.04 | 0.0394 | 0.2996 | 0.0947 | 0.9190
3:0.4965
4:1.8870
BXIIE | b:1.0375 | 66.03 | 138.07 | 138.96 | 142.37 | 139.47 | 0.0203 | 0.1688 | 0.0557 | 0.9998
3:0.1963
4:4.8317
BeE | b:1.5070 | 66.86 | 139.76 | 140.65 | 144.06 | 141.17 | 0.0265 | 0.2153 | 0.0987 | 0.8941
5:0.3257
4:4.0006
KuE | b:2.0985 | 66.56 | 139.14 | 140.03 | 143.44 | 140.54 | 0.0208 | 0.1778 | 0.0962 | 0.9097
5:0.2707
4:0.1941
GoE | b:1.6996 | 68.20 | 142.40 | 143.29 | 146.71 | 143.81 | 0.0865 | 0.6296 | 0.1204 | 0.7145
5:0.2225
4:0.0430
b:1.8518

We 68.65 | 141.33 | 141.76 | 144.20 | 142.26 | 0.0167 | 0.1525 | 0.1677 | 0.3117

These Table were prepared by the researcher and his efforts through working
on the R program.
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Figure (4): Estimated pdf, and cdf for Data II.
These Figure were prepared by the researcher and his efforts through
working on the R program.
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Figure (5): Empirical cdf, and PP-Plot for data II.
These Figure were prepared by the researcher and his efforts through
working on the R program.
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7. CONCLUDING REMARKS: This study introduces the new Odd
Weibull Exponential Distribution (OWE). This study specifies the statistical
properties of the proposed distribution (OWE), such as density function
expansion, quantile function, moments, variance, first and second moments,
incomplete moments, and maximum likelihood estimation for parameters in
the new distributions. The performance of the parameters is further
investigated using a Monte Carlo simulation analysis. The data includes 30
observations of March precipitation in Minneapolis Paul. Economic data
consists of 31 observations on the response variable GDP growth of Egypt.
We find that the distribution (OWE) is the best and outperforms many other
distributions.

Acknowledgements: The author thanks the editor and referees for providing
useful criticism on the paper's presentation.
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