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Abstract: This paper will suggest a new type 

of continuous distribution called Odd Weibull 

Exponential Distribution (OWE) and the 

purpose of this distribution (OWE) is to apply 

to two sets of real data. The distribution 

(OWE) is as a sub-model of NOW-G family 

and many statistical properties have been 

derived. Quantile function, Expansion of 

functions, Moments, Incomplete moments, 

Probability Weighted Moments, Rényi 

entropy, as well as estimation of distribution 

parameters through Maximum Likelihood 

Estimation (MLE). A modelling study was 

carried out with data sets from the data 

includes 30 observation of March precipitation 

in Minneapolis Paul. Economic data consists 

of 31 observations on the response variable 

GDP growth of Egypt. Moreover, the proposed 

distribution (OWE) has been found to outstrip 

other existing distributions by basing us on 

statistical parameters and comparing them. 
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 بعض خصائص التوزيع ويبل الأسي الفردي مع التطبيق 
 

 منذر عبد الله خليل   احمد علي احمد 

 جامعة تكريت/والرياضيات علوم الحاسوب كلية 

 مستخلص ال

سوف نقترح في هذه الدراسة نوعا جديداً من التوزيعات المستمرة تسمى توزيع ويبل الأسي  

( )  والهدف(  OWEالفردي  التوزيع  هذا  البيانات OWEمن  من  مجموعتين  على  التطبيق  هو   )

الاشتقاق العديد    وتم  (NOW-G family)الحقيقية. وان التوزيع الذي تم اقتراحه هو حاله فرعية من  

احتمالية وزن   الناقصة،العزوم    العزوم،  الدالة،توسيع    الكمية،الدالة    ومنهامن الخصائص الإحصائية  

(.  MLEتقدير معلمات التوزيع من خلال تقدير الاحتمال الأقصى )  وكذلكريني انتروبي،    العزوم،

ملاحظة من سقوط الامطار في شهر    30تم دراسة النمذجة على مجموعة من البيانات تتضمن    وقد

ملاحظة حول متغير الاستجابة   31مارس في مينيابوليس بول. وكذلك دراسة البيانات الاقتصادية من  

التوزيع ) ان  تبين  ذلك  على  في مصر. وعلاوة  الإجمالي  المحلي  الناتج  تتفوق على OWEنمو   )

 .ومقارنتهاالتوزيعات الأخرى المعمول بها من خلال استنادنا على المعاير الإحصائية 

 الأعظم. العزوم، ريني انتروبي، تقدير الامكان  توزيع ويبل، دالة الكمية، ت المفتاحية:الكلما

1. Introduction 

  Statistical distributions can be used to describe and predict real-world 

events. Several extended distributions have been extensively used in data 

modeling throughout the last few decades. Recent improvements have 

focused on developing new families that broaden well-known distributions 

while simultaneously allowing enormous modeling freedom. To begin with, 

classical or normal distributions cannot be relied upon only since they are 

insufficient or inaccurate for obtaining genuine results or modeling real data. 

One simple method that has gotten a lot of attention in recent years is to add 

one or more parameters to an existing distribution. Many strategies have 

been researched in this direction. The MO-G family, as described by 

(Marshall et al., 1997: 2-3), is shown to be a superior substitute for several 

prevalent distributions, including the Weibull, gamma, and exponential 

distributions. Submitted by each of the by (Batsidis al., 2015: 5-7), show A 

new method for generating new classes of distributions based on the 

probability-generating function in particular, they focused their interest to 

the so-called Harris extended family of distributions. Both researchers 

worked on presenting (Korkmaz et al., 2017: 5), An ordinary-G distribution 

is a generalization of the ordinary distribution with a cumulative distribution 

function (CDF) equal to the value of the cdf of the ordinary distribution F 

with a range of the unit interval at G, denoted as F(G). And many ways and 
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strategies as (Hassan et al., 2016:2-3), (Oluyede et al., 2015: 2-4), (Tahir et 

al., 2016: 2-5), Submitted by all (Oluyede et al., 2018: 2-4) The Weibull 

distribution and its related families have been extensively researched in the 

field of lifetime applications. This work focuses on the Gamma-Weibull G 

family of distributions (GWG), which is derived from the Weibull-G family 

of distributions and the exponentiated Weibull distribution. 

  This proposed new distribution provides great flexibility in data 

analysis and data modeling  

  By working on this research paper, we aim to create a new distribution 

that has very high efficiency in modeling data and interpreting phenomena 

accurately and with less error than the rest of the distributions that were 

previously worked on, that is, the distribution that we will present for very 

high benefit in data analysis. 

The remaining components of the research paper will be organized as 

follows. In Section 2, we will demonstrate how to build the family. A New 

Odd Weibull-G Family, and then we'll explain how the new distribution the 

family may be used to generate a new Odd Weibull Exponential Distribution 

(OWE). The statistical features of the new distribution will be shown in 

Section 3. Section 4 covers parameter estimation of the distribution (OWE). 

In Section 5, we offer a simulation analysis using the Monte Carlo technique, 

and in Section 6, we describe an application of the newly established 

distribution, end the paper in Section 7. 

2. A New Odd Weibull – Exponential distributionStart now by explaining 

how the construction of A New Odd Weibull-G family will be and in clear 

and simple steps as shown now Work has been done to build this family, 

which I have proposed by relying on a new way of generating families with 

continuous distributions by each of them. (Alzaatreh et al., 2013:4-5), 

(Alzaatreh et al., 2016: 3) 

where x > 0 is random variable α, β > 0 & β shape parameters.(papoulis et 

al., 2002:87) 

W(F(x, η)) =
F(x, η)

1 − F(x, η)
× Log

1

1 − F(x, η)
 

  where f(t) is the pdf of a continuous random variable T that [c, d], and 

F(x) is the cdf of X & W(F(x)) is a function of the cdf F(x) that satisfy the 

conditions in (Alzaatreh et al., 2013). 

 f(x) = abxb−1e−axb
 (1) 
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we get  

By differentiating equation (3) we get the new family pdf from equation (4) 

  Take the exponential distribution as an example of baseline 

distribution. This baseline distribution is applied to both the pdf and the cdf 

in the following way: 

  Where x > 0 and λ > 0 rate, or inverse scale (Park et al., 2009:11) 

Now by substituting (6) in (3) we get the cdf of the Odd Weibull Exponential 

distribution (OWE) and by differentiating the resulting equation we get the 

pdf 

 
Gw(x, η) = ∫ f

W(F(x,η))

0

(t)dt 

 

(2) 

 Gw(x, η) = 1 − exp {−a [
F(x, η)

1 − F(x, η)
× Log

1

1 − F(x, η)
]

b

} (3) 

 

gw(x, η) = abf(x, η) [
F(x, η) − Log(1 − F(x, η))

(1 − F(x, η))
2 ] 

∗  [
F(x, η)

1 − F(x, η)
× Log

1

1 − F(x, η)
]

b−1

 

∗  exp {−a [
F(x, η)

1 − F(x, η)
× Log

1

1 − F(x, η)
]

b

} 

(4) 

 
f(x, η) = λexp{−λx} 

 
(5) 

 F(x, η) = 1 − exp{−λx} (6) 

 
Gw(x, η) = 1 − exp{−a[λx(exp{λx} − 1)]b} 

 
(7) 

 

gw(x, η) = ab[λ2xexp{λx} + λ(exp{λx} − 1)] 

∗ [λx(exp{λx} − 1)]b−1 

∗  exp{−a[λx(exp{λx} − 1)]b} 

 

 

(8) 
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Figure1. cdf and pdf for the OWE distribution. 

These Figure were prepared by the researcher and his efforts through 

working on the R program. 

3. Mathematical Properties: In this section of the research, we're going to find 

some statistical properties of the Odd Weibull Exponential distribution 

(OWE) that are very important in distribution studies, as well as the two 

equations (7) & (8) 

3-1 Quantile function: Quantile functions are used in both statistical 

applications and Monte Carlo methods. The quantile function may now be 

readily produced by inverting the equation (Oguntunde et al., 2019:4):  

  u is a uniform random variable continuous in this situation.By solving 

Equation (9) and Using the exponential distribution baseline, we get the 

following: 

x =
−1

λ
 Ln(1 − u) 

The quantile function (NOW-G family) is written as follows: 

 1 − exp{−λx} = u (9) 
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QGw(x,ζ)(u) = QF(x,ζ)

(

 
 √1

αLn(
1

1 − u)
β

√1
αLn(

1
1 − u)

β

+ W−1 (√1
αLn (

1
1 − u)

β

)
)

 
 

 

As QF(x,ζ) Exponential distribution By substituting the above equation for 

the value of u, we get the following: 

Note that 0 < u < 1,Wn is n (generalized Lambert W function) (Mez ő and 

 ́Arp ád Baricz., 2015:6-7) 

3-2. Expansion of functions: In this paragraph, we will simplify pdf and cdf 

and make it more simplified and be clear. 

To simplify the exponential function, utilize the Taylor series. (Gradshteyn 

and Ryzhik., 2014: 26-27) 

 

  Now by substituting the equation higher in (8) and with some 

simplification we get the following in (12) 

Now using the binomial theorem (Gradshteyn and Ryzhik., 2014:25-26) 

 

1

(1 − x)s
= ∑ (

s + m − 1

m
)

∞

m=0

xm 

We get to the (13) 

 Q(u) =
−1

λ
Ln

[
 
 
 
 

1 −

(

 
 √1

a Ln(
1

1 − u)
b

√1
a
Ln (

1
1 − u

)
b

+ W−1 (√1
a
Ln(

1
1 − u

)
b

)
)

 
 

]
 
 
 
 

 
(10

) 

 

exp{−a[λx(exp{λx} − 1)]b

= ∑
(−1)kak[λx(expλx − 1)]bk

k!

∞

k=0

 
(11) 

 
gw(x, η) = ∑

(−1)kak+1b

k!

∞

k=0

[λ2xexp{λx} + λ(exp{λx} − 1)]

 ∗ [λx(exp{λx} − 1)]b(k+1)−1

 (12) 
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  Using the Taylor series to simplify the equation above, we will need 

to get(14) 

We substitute (14) in (15) we get 

Where  

𝑊𝑛,𝑚,𝑘 =
(−1)𝑏(𝑘+1)−1+𝑘𝑎𝑘+1𝑏(𝑛 + 2)(𝜆)𝑏(𝑘+1)+𝑛+1

𝑘! (𝑛 + 1)!
(
𝑚 − 𝑏(𝑘 + 1)

𝑚
) 

 

3-3 Moments: Moments are extremely important in any statistical analysis. 

And the types of moments are expected value, Variance, Skewness, 

kurtosis ets. The 𝒓𝒕𝒉 moment of the Odd Weibull Exponential Distribution 

(OWE) are presented in this section. The 𝒓𝒕𝒉 moment of X is denoted by 

  Using equation (15) with (16) we get the following and Now in order 

to get the solution of the integration in the equation above we must make 

some simplifications in order to get the integration of gamma 

𝜇𝑟 = 𝐸[𝑋𝑟] = (
−1

𝑚𝜆
)
𝑏(𝑘+1)+𝑛+𝑟+1

∑  

∞

𝑛=0

∑  

∞

𝑚=0

∑  

∞

𝑘=0

𝑊𝑛,𝑚,𝑘

 ∗ ∫ 𝑢[𝑏(𝑘+1)+𝑛+𝑟+1]−1
∞

0

 𝑒𝑥𝑝{−𝑢}𝑑𝑢

 

  Now through the use of the gamma integral, the moment equation will 

be as follows in (16) 

 

gw(x, η) = ∑  

∞

k=0  

 ∑
(−1)b(k+1)−1+kak+1b(λx)b(k+1)−1

k!

∞

m=0

 

∗ (
m − b(k + 1)

m
) [λ2xexp{λx} + λ(exp{λx} − 1)]exp{mλx} 

 (13) 

 

 

[λ2xexp{λx} + 𝜆(𝑒𝑥𝑝{𝜆𝑥} − 1)] = ∑
(𝑛 + 2)

(𝑛 + 1)!

∞

𝑛=0

𝜆𝑛+2𝑥𝑛+1 

 

(14) 

 
𝑔𝑤(𝑥, 𝜂) = ∑  

∞

𝑛=0

∑  

∞

𝑚=0

∑ 𝑊𝑛,𝑚,𝑘𝑥
𝑏(𝑘+1)+𝑛

∞

𝑘=0

 𝑒𝑥𝑝{𝑚𝜆𝑥} 

 

(15) 

 𝜇𝑟 = [𝑋𝑟] = ∫ 𝑥𝑟
∞

−∞

𝑔𝑤(𝑥, 𝜂)𝑑𝑥 (16) 

http://www.doi.org/10.25130/tjaes.20.68.2.27


Tikrit Journal of Administrative and Economic Sciences, Vol. 20, No. 68, Part (2): 506-523 

Doi: www.doi.org/10.25130/tjaes.20.68.2.27 

 

513 

𝜇𝑟 = 𝐸[𝑋𝑟] = (
−1

𝑚𝜆
)
𝑏(𝑘+1)+𝑛+𝑟+1

∑  

∞

𝑛=0

∑  

∞

𝑚=0

∑  

∞

𝑘=0

𝑊𝑛,𝑚,𝑘 

∗ Γ(b(k + 1) + n + r + 1) 

Where 

𝑊𝑛,𝑚,𝑘 =
(−1)𝑏(𝑘+1)−1+𝑘𝑎𝑘+1𝑏(𝑛 + 2)(𝜆)𝑏(𝑘+1)+𝑛+1

𝑘! (𝑛 + 1)!
(
𝑚 − 𝑏(𝑘 + 1)

𝑚
) 

3-4 Incomplete moments: Incomplete income distribution moments are 

natural building blocks for assessing inequality; for example, the Lorenz and 

Bonferroni curves, as well as the Pietra and Gini measures of inequality, all 

rely on incomplete income distribution moments. (Henrion et al.,2022:2), 

The definition of rth incomplete moment is 

  Using equation (15) with (17) we get the following and Now, in order 

to solve the integral above, we do some algebraic operations and 

simplifications and we get the following 

𝑚𝑟(𝑧) = (
−1

𝑚𝜆
)
𝑏(𝑘+1)+𝑛+𝑟+1

∑  

∞

𝑛=0

∑  

∞

𝑚=0

∑  

∞

𝑘=0

𝑊𝑛,𝑚,𝑘

 ∗ ∫ 𝑦[𝑏(𝑘+1)+𝑛+𝑟+1]−1
−𝑚𝜆𝑧

0

 𝑒𝑥𝑝{−𝑦}𝑑𝑦

 

  We can now obtain the result of the integration through the Incomplete 

gamma function And we get (17) 

𝑚𝑟(𝑧) = (
−1

𝑚𝜆
)
𝑏(𝑘+1)+𝑛+𝑟+1

∑  

∞

𝑛=0

∑  

∞

𝑚=0

∑  

∞

𝑘=0

𝑊𝑛,𝑚,𝑘 

∗ 𝛾(𝑏(𝑘 + 1) + 𝑛 + 𝑟 + 1,−𝑚𝜆𝑧) 

where 

𝑊𝑛,𝑚,𝑘 =
(−1)𝑏(𝑘+1)−1+𝑘𝑎𝑘+1𝑏(𝑛 + 2)(𝜆)𝑏(𝑘+1)+𝑛+1

𝑘! (𝑛 + 1)!
(
𝑚 − 𝑏(𝑘 + 1)

𝑚
) 

 𝑚𝑟(𝑧) = ∫ 𝑥𝑟
𝑧

−∞

𝑔𝑤(𝑥, 𝜂)𝑑𝑥 (17) 
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3-5 Probability Weighted Moments: It is an unbiased way of estimating 

the characteristics of the distribution estimate in quantities and is sometimes 

termed the descriptive function, which is provided by the following relation: 

  Now in order to find the integration at the top we need to make some 

simplifications and get the following 

gw(x, η)Gw
y (x, η) = ∑ 

∞

i=0

∑  

∞

n=0

∑  

∞

m=0

∑ 

∞

j=0

Ξi,n,m,jx
b(n+1)+j exp{mλx} 

where 

𝛯𝑖,𝑛,𝑚,𝑗 =
(−1)𝑖+𝑛+𝑏(𝑛+1)−1𝑎𝑛+1𝑏(𝑖 + 1)𝑛(𝑗 + 2)𝜆𝑏(𝑛+1)+𝑗+1

𝑛! (𝑗 + 1)!

 ∗ (
𝑝

𝑖
) (

𝑚 − 𝑏(𝑛 + 1)

𝑚
)

 

Therefore, the probability-weighted moments are given by 

𝑤(𝑟, 𝑦) = ∑  

∞

𝑖=0

∑  

∞

𝑛=0

∑  

∞

𝑚=0

∑ 

∞

𝑗=0

𝜋𝑖,𝑛,𝑚,𝑗 𝛤(𝑏(𝑛 + 1) + 𝑗 + 𝑟 + 1) 

where 

𝜋𝑖,𝑛,𝑚,𝑗 =
(−1)𝑖+𝑛+𝑏(𝑛+1)−1𝑎𝑛+1𝑏(𝑖 + 1)𝑛(𝑗 + 2)𝜆𝑏(𝑛+1)+𝑗+1

𝑛! (𝑗 + 1)!

 ∗ (
−1

𝑚𝜆
)
𝑏(𝑛+1)+𝑗+𝑟+1

(
𝑝

𝑖
) (

𝑚 − 𝑏(𝑛 + 1)

𝑚
)

 

3-6 Rényi entropy: If 𝐠(𝐱, 𝛇) is the new distribution proposed in (19), then: 

Rényi entropy is defined by  

Raised pdf was simplified to powers and obtained the following 

gw
p (x, ζ) = ∑ 

∞

i=0

∑  

∞

n=0

∑  

∞

m=0

∑ ∑ 

∞

a=0

 

∞

k=0  

ϕi,n,m,k,ax
bk+p(b−1)+in+a exp{mλx} 

We will write Rényi entropy for the new family as follows: 

 
𝑤(𝑟, 𝑦) = 𝐸 (𝑋𝑟𝐺𝑤

𝑝(𝑥, 𝜁)) = ∫ 𝑥𝑟
∞

−∞

𝑔𝑤(𝑥, 𝜁)𝐺𝑤
𝑦(𝑥, 𝜁)𝑑𝑥 

 

(18) 

 IR(p) =
1

1 − p
log ∫ gw

p
∞

0

(x, ζ)dx  p ≠ 0 , p > 0 (19) 
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𝐼𝑅(𝑝) =
1

1 − 𝑝
𝑙𝑜𝑔 [ ∑  

∞

𝑖=0

∑  

∞

𝑛=0

∑  

∞

𝑚=0

∑ ∑  

∞

𝑎=0

 

∞

𝑘=0  

𝜙𝑖,𝑛,𝑚,𝑘,𝑎 𝑒𝑥𝑝[(1 − 𝑝)𝐼𝑅𝐸𝐹]]   

Where 

𝜙𝑚,𝑘,𝑖,𝑎,𝑛 =
(−1)𝑏𝑘+𝑝(𝑏−1)+𝑘+𝑝+𝑖𝑎𝑝+𝑘𝑏𝑝𝑝𝑘(𝜆)𝑏𝑘+𝑝(𝑏−1)+𝑖𝑛+𝑝

𝑘! 𝑛!

 ∗ (
𝑚 − [𝑏𝑘 + 𝑝(𝑏 − 1) + 1]

𝑚
)(

𝑝

𝑖
) (

𝑖

𝑎
)

 

𝐼𝑅𝐸𝐺 = ∫ [𝑥𝑏𝑘+𝑝(𝑏−1)+𝑖𝑛+𝑎 𝑒𝑥𝑝{𝑚𝜆𝑥}]
∞

0

𝑑𝑥 

4. Maximum Likelihood Estimator: Among numerous approaches, the most 

popular method in estimating the parameters of statistical distribution is the 

method (MLE), which has outstanding qualities and is useful in determining 

the fixed periods of the model’s parameters. Let 𝜈 = (𝑎, 𝑏, 𝜆)𝑇  is the 

parameters vector, The Likelihood function for the (OWE) distribution will 

be, By taking the log of equation (8) we get the following: 

Now we will work on finding the partial differentiation of each parameter of 

the distribution 

 

ℓ(𝜈) = 𝑛𝑙𝑜𝑔𝑎 + 𝑛𝑙𝑜𝑔𝑏 + ∑ 𝑙𝑜𝑔

𝑛

𝑖=1

[𝜆2𝑥𝑒𝑥𝑝{𝜆𝑥} + 𝜆(𝑒𝑥𝑝{𝜆𝑥} − 1)]

 +(𝑏 − 1)∑𝑙𝑜𝑔

𝑛

𝑖=1

[𝜆𝑥(𝑒𝑥𝑝{𝜆𝑥} − 1)] − 𝑎𝑏 ∑[

𝑛

𝑖=1

𝜆𝑥(𝑒𝑥𝑝{𝜆𝑥} − 1)]

 

 

(20) 

 
∂ℓ(ν)

∂a
=

n

a
− b∑[

n

i=1

λx(exp{λx} − 1)] (21) 

 

𝜕ℓ(𝜈)

𝜕𝑏
=

𝑛

𝑏
+ ∑ 𝑙𝑜𝑔

𝑛

𝑖=1

[𝜆𝑥(𝑒𝑥𝑝{𝜆𝑥} − 1)] − 𝑎 ∑[

n

𝑖=1

λx(exp{λx} − 1)] 

 

(22) 
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  Now after equalizing the three equations with zero, you can find an 

estimate of the distribution parameters, but through the use of the relevant 

application because it is difficult to find them manually by R programs or 

MATLAB  

5. Simulation: In this section, we use a Monte Carlo experiment to investigate 

the asymptotic behavior of MLEs for OWE distribution parameters. The 

study examines four sets of parameter values: (a =0.1, b =0.4, ℷ =1.4), (a 

=0.3, b =0.5, ℷ =0.9), (a =0.4, b =0.5, ℷ =0.9), and (a =0.4, b =0.5, ℷ =1.2). 

We consider four sample sizes (n = 40, 80, 120, and 180), and the experiment 

is performed 1,000 times. Table 1 displays the MLEs' mean estimates and 

root mean squared errors (RMSEs). As expected, the MLEs converge to the 

correct parameters, and the RMSEs drop as the sample size (n) grows. 

Table (1): Monte Carlo Simulation Results for the WE distribution. 

(a =0.1, b =0.4, ℷ =1.4) (a =0.3, b =0.5, ℷ =0.9) 

parameter 
Sample 

Size 
Mean RMSE bias Mean RMSE bias 

a 

40 0.4654 1.4673 0.3654 1.6669 1.9422 1.3669 

80 0.3114 1.3092 0.2114 0.6953 1.1415 0.3953 

120 0.1139 0.0549 0.0139 0.4349 0.8144 0.1349 

180 0.1084 0.0361 0.0084 0.3718 0.3119 0.0718 

b 

40 0.4271 0.1780 0.0271 0.5011 0.1466 0.0011 

80 0.4141 0.1254 0.0141 0.4970 0.1025 -0.0029 

120 0.4110 0.099 0.0110 0.4965 0.0830 -0.0034 

180 0.4057 0.0848 0.0057 0.4950 0.0712 -0.0049 

ℷ 

40 1.4801 0.8253 0.0801 0.9949 0.5936 0.0949 

80 1.4483 0.6056 0.0483 0.9381 0.4222 0.0381 

120 1.4313 0.5191 0.0313 0.9275 0.3503 0.0275 

180 1.4242 0.4090 0.0242 0.9171 0.2886 0.0171 

 

∂ℓ(ν)

∂λ
= ∑(

λ2xexp{λx} + 2λxexp{λx} + λexp{λx} + exp{λx} − 1

λ2xexp{λx} + λ(exp{λx} − 1)
)

n

i=1

 +(b − 1)∑(
λxexp{λx} + xexp{λx} − x

λx(exp{λx} − 1)
)

n

i=1

 −ab∑(λxexp{λx} + xexp{λx} − x)

n

i=1

 

 

(23) 
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(a =0.4, b =0.5, ℷ =0.9) (a =0.4, b =0.5, ℷ =1.2) 

parameter 
Sample 

Size 
Mean RMSE Abias Mean RMSE Abias 

a 

40 1.6113 2.4665 1.2113 1.7788 2.0315 1.3788 

80 1.2783 1.9093 0.8783 1.3214 1.1191 0.9214 

120 0.6475 1.8395 0.2475 0.6458 0.8826 0.2458 

180 0.4949 0.4009 0.0949 0.5079 0.5617 0.1079 

b 

40 0.5034 0.1391 0.0034 0.5088 0.1400 0.0088 

80 0.4981 0.0967 -0.0018 0.4967 0.09424 0.0032 

120 0.4967 0.0786 -0.0032 0.4971 0.0771 0.0028 

180 0.4942 0.0663 -0.0057 0.4936 0.0657 -0.0063 

ℷ 

40 1.0252 0.6387 0.1252 1.3993 0.9065 0.1993 

80 0.9388 0.4528 0.0388 1.2767 0.5960 0.0767 

120 0.9326 0.3740 0.3265 1.2419 0.4948 0.0419 

180 0.9227 0.3027 0.0227 1.2345 0.4023 0.0345 

These Table were prepared by the researcher and his efforts through working 

on the R program. 

6. Application: We will apply the (OWE) distribution in this part on a real-life 

data collection. The Akaike information criterion (AIC), the Corrected 

Akaike information criterion (CAIC), the Bayesian information criteria 

(BIC), the Hannan-Quinn information criterion (HQIC), the Cramer-von 

Mises statistic (W), and the Anderson-Darling statistic (A) define the 

standards for judging the efficiency of the models. 

  We compare the performance of the (OWE) with other distributions 

Like Lomax Exponential (LOE) Distribution (Khalaf et al., 2024: 52-53), 

Truncated Inverse Weibull Exponential (TIWE) Distribution (Khubbaz et 

al., 2023:2-3), Burr XII Exponential (BXIIE) Distribution (NEW), Beta 

Exponential (BeE) Distribution (NADARAJAH et al.,2006:4), Kum 

araswamy Exponential (KuE) Distribution (NEW), Gompertz Exponential 

(GoE) Distribution (NEW), Weibull (We) Distribution.  

The results Table 3 below sums the findings. Our model is regarded as the 

best fit in this case as the first row of this table reveals that the (OWE) 

distribution has the lowest values for all the metrics used in the research. 

Figure 2 also shows many facets of this research related to analysis. 

Data I: The data includes 30 observation of March precipitation in 

Minneapolis Paul. The following values were noted: (Bhat et al., 2023:14-

15) 
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0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 

2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 

0.96, 1.89, 0.90, 2.05 

Table (2): Descriptive statistics for Data I. 

Statistic Var. N Mean Sd Median Min Max skew kurtosis 

Data I x 30 1.68 1 1.47 0.32 4.75 1.03 0.93 

These Table were prepared by the researcher and his efforts through working 

on the R program. 

Table (3): Goodness of fit statistics and information for the OWE models 

 
These Table were prepared by the researcher and his efforts through working 

on the R program. 
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Figure 2: Estimated pdf, and cdf for Data I. 

These Figure were prepared by the researcher and his efforts through 

working on the R program. 

  

Figure (3): Empirical cdf, and PP-Plot for data I. 

These Figure were prepared by the researcher and his efforts through 

working on the R program. 
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Data II: economic data consists of 31 observations on the response variable 

GDP growth of Egypt. The data are:(El-Sherpieny et al., 2020:9) 

10.01, 3.76, 9.91, 7.40, 6.09, 6.60, 2.65, 2.52, 7.93, 4.97, 5.70, 1.08, 4.43, 

2.90, 3.97, 4.64, 4.99, 5.49, 4.03, 6.11, 5.37, 3.54, 2.37, 3.19, 4.09, 4.48, 

6.85, 7.09, 7.16, 4.67, 5.15 

Table (4): Descriptive statistics for Data II. 

Statistic Var. N Mean Sd Median Min Max skew kurtosis 

Data II x 35 5.13 2.08 4.97 1.08 10.01 0.48 -0.11 

These Table were prepared by the researcher and his efforts through working 

on the R program. 

Table (5): Goodness of fit statistics and information for the OWE models 

 
These Table were prepared by the researcher and his efforts through working 

on the R program. 
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Figure (4): Estimated pdf, and cdf for Data II. 

  These Figure were prepared by the researcher and his efforts through 

working on the R program. 

  

Figure (5): Empirical cdf, and PP-Plot for data II. 

  These Figure were prepared by the researcher and his efforts through 

working on the R program. 
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7. CONCLUDING REMARKS: This study introduces the new Odd 

Weibull Exponential Distribution (OWE). This study specifies the statistical 

properties of the proposed distribution (OWE), such as density function 

expansion, quantile function, moments, variance, first and second moments, 

incomplete moments, and maximum likelihood estimation for parameters in 

the new distributions. The performance of the parameters is further 

investigated using a Monte Carlo simulation analysis. The data includes 30 

observations of March precipitation in Minneapolis Paul. Economic data 

consists of 31 observations on the response variable GDP growth of Egypt. 

We find that the distribution (OWE) is the best and outperforms many other 

distributions. 

Acknowledgements: The author thanks the editor and referees for providing 

useful criticism on the paper's presentation. 
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