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 تأثيري ديك وفاوو في وقاط كمية ثلاثية متوازية الربط موضوعة بيه قطبيه

 
 طالب عبذالىبي سلمان                        حمذ هاشمعباس ا

 هيفاء عبذالىبي جاسم  

 

 وو، جايعح انثصزج، انثصزج، انعزاقلسى انفيشياء، كهيح انعه

 الــــخُـــلاصـــة  الكلمات المفتاحية:

 نُماط انكًيح

تأحيز ذيك   

طالح الالتزاٌتأحيز فاَو،   

 ذانح كزيٍ

 

 

 

____________________ 

يح يعرَ الطابتانتواسي يع  حَظاو انُماط انكًوييح انخلاحيح انًتصه فيانُمم الإنكتزوَي  انحتثحج هذِ انًم 

ذانتح كتزيٍ وتمزيتة يعاذنتح انحزكتحلايجاج رتيغح رياضتيح َحٍ َستتدرو  .نًجال يغُاطيسي خارجي حيعزضو

في أًَاط انتوريهيح نُظتاو انُمتاط  Dickeو Fano تكشف ذراستُا عٍ تأحيزاختعثز عٍ انتوريهيح في انُظاو. 

 ، والالتزاٌ(  ) لتزاٌ تيٍ انُماططزيك ضثط طالح الا انتحكى تانتأحيزٌ عٍيًكٍ  (TQD) .انكًوييح انخلاحيح

(Γ) وكذنك عٍ طزيك يعانجح انًجال انًغُاطيسي اندارجيانمطثيُالأيًٍ والايسزتيٍ انُماط انخلاث و ،. 

_______________________________________________________________ 
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1. INTRODUCTION 

 Interference phenomena in 

electron transport through multi-

quantum dot systems remain asa 

continual focus of investigation. Such 

systems, composed of two or more 

quantum dots coupled to metallic 

leads, provide an ideal platform for the 

observable manifestation of 

interference effects. Among the 

various quantum interference 

phenomena observed in quantum dot 

(QD) systems, the Fano and Dicke 

effects are particularly intriguing. For 

instance, in a study by J. Gores 

andtransport through a quantum dot 

strongly coupled to electrodes within a 

two-conduction channel model. Their 

work demonstrated that the 

interference of transmitted waves 

through both channels led to Fano 

resonance. Furthermore, Piotr Trocha 

and Józef Barnaś[3] theoretically 

analyzed spin-dependent transport 

through two coupled single-level 

quantum dots affixed to ferromagnetic 

leads, employing the Green function 

technique. Their numerical analysis 

focused on Fano anti-resonance 

interference and Coulomb interaction 

effects, revealing a dependence on the 

sign of the non-diagonal coupling 

elements. Meanwhile, Chandra Sekhar 

and others[4] utilized the Dicke effect 

to enhance the stability and efficiency 

of CNOT gates and single-qubit gates 

in quantum computers through concise 

realizations, In this study, we 

investigate electronic transport through 

a triple-quantum dot molecule 

connected to two leads colleagues [1], 

the Fano effect was harnessed in a 

single-electron transistor, leading to 

the observation of asymmetric Fano 

resonances in its conductance. These 

resonances resulted from interference 

between a resonant and a non-resonant 

pathway within the system. While the 

resonant component exhibited typical 

single-electron transistor behavior, the 

nature of the non-resonant path 

remained unclear. Similarly, Bogdan 

and collaborators[2] delved into 

electronic. 

2. Model 

In the context of our study, we 

have three single-level quantum 

dots connected to both left and right 

leads, as depicted in Figure 1. To 

describe the electronic behavior of 

these three quantum dots operating 

in parallel, we extend the single 

Hamiltonian. This electronic 

Hamiltonian can be effectively 

characterized using the Anderson 

model [5]. Within this model, all 

coupling interactions between the 

two dots and between the dots and 

the two leads were considered. The 

system's Hamiltonian is thus 

expressed as follows. 

 

  (1)  Figure 1: Triple quantum-dot connected in parallel 

to leads 
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Where   
  represent thermal 

kinetic energies of non-interacting 

free electrons contained in left 

(right) lead exhibiting band,    
     

and    
     are the creation 

(annihilation) operators for the 

electrons in left (right) leads,    is 

the energy of electron in the discrete 

energy level on     dot,    
 (   )are 

electron creation (annihilation) 

operators on dots, the factor    is 

the on-dot Coulomb interaction for 

electrons on     dot (having value 

relative to other parameter such that 

dots are in Coulomb blockade 

regime),        
     represents the 

occupation number for dots 

electron. Further,   ( ) 
 ( )

 is the 

coupling potential of left (right) 

tunneling  barriers with     dot 

which are essentially the tunneling 

matrix. Furthermore,    a parameter 

that represents the  inter-dot 

tunneling coupling between any two 

adjacent dots. 

Neglecting the influence of 

Coulomb interaction in the dots (i.e 

    ), then Coulomb term 
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Our current study does not take 

the influence of spin into 

consideration. However, we may 

explore this property in the future 

work, at such point Equation (3) 

would be modified as follows: 
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2.1. The Solution of System 

Kinetic Equation 

In order to obtain explicitly the 

transmission probability  ( ) and the 

conductance ( ) wewere used the equation 

of motion approach for the Green’s 

function, then the retarded Green’s 

function is defined by[5]; 

    
 ( )     ( )〈{  ( )   

 (  )}〉 (5)  

 ( ) represent the step function,    is 

the initial time which always equal to zero. 

Now, we need to obtain the 

expression for these (    ) for parallel 

configuration of TQDs with the help of the 

corresponding Hamiltonian given in 

equation (4) 

    
 ( )     ( )〈{  ( )   

 ( )}〉 (6)  

Where 

   ( )   
      ( ) 

     (7)  

By differential equation (4-15), the 

kinetic equation will be; 
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(8) we obtain: 
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Where     [     
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Deriving equation (5) for retarded 

Green’s function we obtain: 
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Where 

 ( )    
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 ( )}〉, putting 

equation (9) into equation (11), we had the 

following equation; 
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We used Fourier transform for the 

retarded Green function    
 ( ) where 

 
 

  
   
 ( )  (    )   

 ( ), then we 

obtain the following relation; 
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(13)  

The term (   
 ) in equation (13) 

defined the tunneling matrix elements 

coupling the i-th dot with right (Lift) 

leads, for simplicity we replaced it by the 

magnitude of the matrix element (|   
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 ), the 3

rd
 term will be; 
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The Green functions    
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     ) that correspond to the coupling of 

the leads in the above equations are 

arranged as follows: 
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We suppose here that the coupling 

matrix elements of all the three dots with 

the leads are equal i.e.   
    

    (  

     ). 

Substitute equations (23-28) into 

equations (14-22) and for simplify, we will 
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Where the function      
    

 , 

and        

We started to use the shortened 

function   (     ) in order to 

summarize the equation above; 
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Finally, the matrix for the retarded 

Green's function takes the following form: 
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2.2. Transmission Coefficient 

Calculation 
 

The transmission rate within a 

configuration of triple quantum dots 

delineates the likelihood of an electron 

traversing through the system, 

journeying from the left to the right 

electrode. This crucial parameter 

substantiates the efficiency of electron 

conveyance within the parallel 

arrangement of the triple quantum dots. 
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In the realm of quantum transmission, 

the quantification of this transmission 

rate entails the utilization of the 

Landauer-Boetecker formalism, as 

expounded in reference[6]. This 

method encompasses the computation 

of the transmission coefficient, an 

imperative metric denoting the fraction 

of electrons successfully traversing the 

quantum dots and attaining the 

opposite terminus. 

The determination of the transmission 

rate is contingent upon an interplay of 

intricate factors encompassing electron 

energy, discrete energy levels, the 

strength of coupling between quantum 

dots and between quantum dots and the 

leads and the magnitude of the applied 

magnetic field. These multifarious 

factors intercede to mold the 

probabilities of tunneling while also 

orchestrating resonant tunneling 

phenomena that substantively 

contribute to the transmission rate. 

Thus, the transmission rate engenders 

profound insights into the underlying 

transport characteristics of the triple 

quantum dot framework. And we can 

get the transmission coefficient using 

the following relation[2, 7-10]: 

 
 ( )
   *  ( )    ( )  + (54)  

in which        represent the various 

lead-dot tunnel coupling matrix 

elements and can be represented in the 

shape of matrices for the parallel TQD 

systems, as follows: 

    [
             

            

           

] 
(55)  

    [
           

            

             

] 
(56)  

where          represents the 

Aharonov-Bohm phase with        

is the flux quantum, and   is the 

magnetic flux.  

The values of       depend on how 

quantum dots are shaped and arranged. 

These elements reflect the strength of 

interaction between quantum dots and 

nearby leads. In triple quantum dot 

systems, the arrangement of dots 

influences these values. Theoretical 

methods like density functional 

theory[11] help predict these elements, 

and experimental techniques like 

scanning tunneling microscopy[10, 12] 

provide insights into their behavior. In 

essence,    and    values are shaped 

by quantum dot geometry, impacting 

their coupling strengths and potential 

applications. 

 

3. Results and discussion 
In this section, we perform detailed 

numerical calculations using Matlab 

simulation to analyze conductance and 

density of states at zero temperature in 

symmetrically connected parallel triple 

quantum dots. We apply the same 

principles as in chapter three for double 

quantum dots to understand the factors 

influencing their behavior. These insights 

are crucial for developing scalable 

nanotechnology devices. 

In this parallel triple quantum dot 

setup, three dots are arranged linearly and 

connected in parallel to two external leads. 

Electron transport occurs through each dot 

simultaneously, primarily interacting with 

the dot they occupy. Transport involves 

either direct tunneling through a single dot 

or sequential tunneling through adjacent 

dots, depending on the interdot coupling 

strength. Direct tunneling is a single-step 

process, while sequential tunneling 

involves hopping between adjacent dots 

before exiting. Conductance behavior is 

influenced by interdot coupling (  ), dot 

energy levels (  ), tunneling coupling 
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strength with the leads (  ), and external 

parameters like magnetic fields and 

temperature. Studying this system helps us 

understand electron transport mechanisms, 

quantum interference effects, and how 

individual dots interact  

with external leads. This knowledge is 

essential for optimizing quantum dot 

devices used in quantum computing, 

energy harvesting, and quantum 

information processing. Additionally, 

analyzing interdot coupling can help 

identify conditions for Dicke and Fano 

effects to emerge. 

Additionally, the external parameters, 

such as the applied magnetic field and 

temperature, also impact the 

conductance behavior by affecting the 

electron tunneling probabilities and 

energy distribution within the dots. By 

studying and analyzing the 

conductance properties of parallel 

triple quantum dots, researchers can 

gain insights into the electron 

transport mechanisms, quantum 

interference effects, and the interplay 

between the individual dots and the 

external leads. Understanding the 

behavior of this system is essential for  

designing and optimizing devices that 

utilize quantum dots for various 

applications, such as quantum 

computing, energy fields and 

temperature. Studying this system 

helps us understand electron transport 

mechanisms, quantum interference 

effects, and how individual dots 

interact with external leads. This 

knowledge is essential for optimizing 

quantum dot devices used in quantum 

computing, energy harvesting, and 

quantum information processing. 

Additionally, analyzing interdot 

coupling can help identify 

conditionsfor Dicke and Fano effects 

to emerge. Additionally, the external 

parameters, such as the applied 

magnetic field and temperature, also 

impact the conductance behavior by 

affecting the electron tunneling 

probabilities and energy distribution 

within the dots. By studying and 

analyzing the conductance properties 

of parallel triple quantum dots, 

researchers can gain insights into the 

electron transport mechanisms, 

quantum interference effects, and the 

interplay between the individual dots 

and the external leads. Understanding 

the behavior of this system is essential 

for designing and optimizing devices 

that utilize quantum dots for various 

applications, such as quantum 

computing, energy harvesting, and 

quantum information processing. 

Also, by carefully examining the 

interdot coupling between the dots we 

can gain valuable insights into the 

conductance behavior at identify the 

conditions necessary for the 

emergence of Dicke and Fano effects. 

 

 

Figure 2: Conductance  ( ) as a function of  

energy for            ,     ,     
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3.1  Conductance 

Conductance in a triple quantum dots 

system signifies the flow of electric 

current through this unique 

arrangement of quantum dots. It 

quantifies how easily electrons move 

from one electrode to another. The 

conductance value provides crucial 

insights into the system's overall 

electrical behavior, revealing its 

ability to transport and transmit 

charge. By studying conductance in 

triple quantum dots, researchers gain a 

deeper understanding of electron 

movement and interactions, which is 

essential for advancing nanoscale 

electronics and quantum computing 

applications[4, 13.] 

Our investigation delved into 

numerically calculating the 

conductance at zero temperature for 

triple quantum dots. To ascertain 

conductance in relation to energy (ω), 

we utilized the equation below[14-17] 

 ( )  (    )    ( ) With T(ω)  

are taken from equation (53). 

To illustrate conductivity behavior, 

we draw Equation (56) against energy 

in Figure 2, we observe distinct 

conductivity patterns. When there's no 

interdot coupling energy t_c and ϕ is 

zero, a single Fano peak appears at ω 

= 0, it is known that the Fano effect 

always disappears in parallel double 

quantum dots (DODs) system in the 

absence of magnetic field and when 

the interdot tunneling t_c is removed. 

But in our present work and from fig 

(2) we report a Fano effect in TQDs in 

parallel configuration even in the 

absence of magnetic flux. 

In fig (3) our conductance calculations 

are accomplished for t_c=0.4      

      08 and for different values of 

external magnetic field ϕ. 

From these figs. We clearly notice 

two set of peaks for each value of ϕ, 

one is Lorenzian type while another 

peak is a Fano line shape. Where the 

appearance of Fano peaks shows the 

Fano effect occurring due to the 

quantum interference between discrete 

levels of the dots and the continuum 

levels of the leads. 

The emergence of a broadening peak 

and a narrow peak in the conductivity 

graph within the context of the Fano 

effect in triple quantum dots can be 

attributed to the interplay between 

electron interference and resonance 

phenomena. Broadening Peak: The 

broadening peak arises due to the 

interference between two different 

electron transport pathways within the 

triple quantum dot system. In the 

presence of the Fano effect, one of 

these pathways becomes more 

favored, while the other is suppressed. 

This leads to an enhanced probability 

of electron transmission through the 

favored pathway, resulting in a 

broader, more prominent peak in the 

conductivity graph. The constructive 

and destructive interference between 

these pathways, influenced by the 

Fano parameter, contributes to the 

widening of the peak. Narrow Peak: 

The narrow peak is associated with 

the resonant tunneling behavior 

inherent in the Fano effect. Resonant 

tunneling occurs when the energy 

levels of the quantum dots align with 

the energy of the incident electron, 
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allowing for efficient transmission. In 

the case of a narrow peak, there is a 

specific energy alignment that 

enhances the conductance. This 

resonance phenomenon accentuates 

the conductance at that precise 

energy, leading to the observed 

narrow peak. However, when 

discussing pathways and interference 

in the context of the Fano effect, we 

are referring to distinct transport 

routes that electrons can take as they 

move through the system. In the 

presence of the Fano effect, the 

interference between these pathways 

becomes significant due to the 

interaction between two main 

channels :Direct Pathway: This is the 

most straightforward route for 

electrons to move through the system. 

Electrons can directly tunnel from the 

source lead to one of the quantum dots 

and subsequently to the drain lead. 

This path is typically associated with 

a smooth and broad conductance 

peak. Resonant Pathway: This 

pathway involves the resonance of 

electron energy levels in the quantum 

dots with the energy of the incident 

electron. When the energy levels 

align, electrons can tunnel more 

efficiently through the system, leading 

to a sharp and narrow conductance 

peak. This is the pathway where the 

Fano effect is most pronounced. At ϕ 

= 2π, interference vanishes, and the 

conductance takes a Gaussian 

distribution. To elucidate ϕ's effect on 

conductivity, we fix the values of the 

Γ and coupling energy    at certain 

values while varying ϕ from 0.2π to 

0.9π. As ϕ approaches π (Figure 6), 

the Fano peak emerges. Notably, Fano 

effects appear at odd number of π and 

despair in even number of π, 

resembling Bloch's functions that 

repeat at specific intervals as shown in 

figure (4). In Figure 5, we see how 

coupling energy (  ) impacts the 

conductivity graph in a parallel triple 

quantum dots system, especially in 

relation to the Fano effect. Higher    

values lead to a more pronounced and 

asymmetric conductance peak, which 

is a key feature of the Fano effect. 

This asymmetry is shaped by the 

interplay between direct and resonant 

tunneling, processes influenced by   . 

Additionally,    affects the peak's 

position, causing shifts to different 

energy levels, particularly when the 

Fano effect is active. It also influences 

the width of the conductance peak, 

making it narrower and highlighting 

resonant tunneling behavior. 

Furthermore,    influences 

interference patterns between electron 

transport pathways, resulting in a 

more intricate conductance pattern 

and contributing to the overall shape 

of the peak. Increasing    amplifies 

the Fano effect, making it more 

prominent by affecting the interaction 

between direct and resonant tunneling 

pathways. Moving on to Figure 6, we 

explore the role of the transition rate 

(Γ) in shaping the conductivity graph. 

Higher values of Γ lead to a more 

pronounced and narrower 

conductance peak because they 

enhance electron transmission through 

the resonant pathway. Γ also affects 

the degree of asymmetry in the peak, 

making the contrast between 

symmetric and asymmetric portions 

more noticeable. Additionally, 

varying Γ can shift the position of the 
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conductance peak, altering the graph's resonant behavior.  

 

 

 

 

 

 

 

 

Figure 3: Conductance  ( ) as a function of  energy and for a different values of              ,       , (a) 
       , (b)        , (c)        , (d)        , (e)        , (f)        , (g)        , (h)         

    

    

    

    



JOURNAL OF KUFA–PHYSICS  |  Vol. 16, No. 1 (2024)  Abbas. A. Hashim, T. A. Salman, and H. A. Jassem 

  12 

Figure 4: Conductance  ( ) as a function of  energy and for a different values of  .            ,       , (a)    
  , (b)      , (c)      , (d)      , (e)      , (f)      , (g)      , (h)       
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Figure 5: Conductance  ( ) as a function of  energy and for a different values of   .   
         ,    , (a)     

   , (b)        , (c)        , (d)        , (e)        , (f)        , (g)        , (h)        . 
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Figure 6: Conductance  ( ) as a function of  energy for a different values of   .       ,    , (a)            , (b) 

           , (c)            , (d)            , (e)            , (f)            , (g)        
    , (h)              
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4. Conclusion 
Understanding how Fano and Dicke's 

effects are created is crucial for 

manipulating and harnessing their 

properties effectively. By exploring 

their formation mechanisms, 

researchers can devise strategies to 

control and optimize these effects for 

various applications. Furthermore, the 

significance of the Fano and Dicke 

effects in modern applications will be 

underscored. These effects have proven 

to be instrumental in various fields such 

as quantum computing, quantum 

communication, and nanoelectronics. 

By comprehending their implications, 

researchers and engineers can leverage 

these effects to develop advanced 

technologies and enhance existing 

systems. 
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