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Abstract 
 

       In this paper, a new VM-updating formula for solving unconstrained  non-linear 

optimization problems is proposed. The new method is derived by using Faddeev's 

modification in order to modify Leverrier's VM-update.The new algorithm is tested by 

(8) nonlinear test functions, with different dimensions and compared with the standard 

BFGS algorithm. 

 

Introduction 
   Quasi-Newton (QN) methods are subclasses of the more general variable 

metric methods, but we content ourselves here with the quasi-Newton 

approach ( Davidon,1959) . The basic form of these algorithms is given as: 

                              kg x f x                                                       …(1) 

Where f is twice continually differentiable function xR
n
   

         Here the notation gk is used, as before, for the gradient vector of the 

objective function at xk, and we also retain the notations: 

kkk1kk dλxxv                                                                             …(2) 

k1kk ggy                                                                                           …(3) 

     Methods vary according to how the metric matrix Hk is updated from 

iteration to iteration. Once such an updating formula has been defined, 

according to QN-Condition, the algorithm is completed. The matrices are 

called metric and they are assumed to be positive definite and defined on 

R
n
. The search direction is defined in the above algorithm as the steepest 

descent direction relative to this metric. The idea is to update Hk, in such a 

way that the search directions used for the first few iterations are close to 

the steepest descent direction until, the minimum value is approached. 

Thus, the matrix Hk can be viewed as an approximation to the inverse 

Hessian matrix of the objective function f at its minimum x
*
. It is usual to 

take Ho=I so that the initial search direction is the scaled steepest descent 

direction.The development of these algorithms started with Davidon 

(1959), whose Argoune National Laboratory report was improved upon by  
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Fletcher and Powell (1963) to produce the famous Davidon-Flethcher-

Powell ( DFP), method. We begin our study for the quasi-Newton update 

formulas with this DFP algorithm. For the development of this theory, we 

will again restrict our attention to the positive definite quadratic objective 

function. 

 
2

Gxx
xbcxf

T
T                                                                           …(4) 

In this paper we are going to develop a much wider applicability algorithm 

than the DFP method. 

We recall that for any step k1kk xxv    

We have kk vy G                                                                                ...(5) 

And so, if Hk+1 is to be viewed as an approximation to G
-1

, it is natural to 

require that; 

kk1k vyH  ,                                                                                       …(6) 

which is called the quasi-Newton condition. Since G is positive definite, it 

is natural to demand that the Hk’s should be also. This requirement can also 

be viewed as the requirement that the search directions are downhill, since 

the positive definiteness of Hk implies that: 

0gHggd kk

T

kk

T

k                                                                             …(7) 

     Provided that gk0, that is, provided the minimum has not already been 

found. 

The derivation of the particular updating formula is also based on the fact 

that generally conjugate search directions will guarantee the finite 

termination property; in ths case the final matrix generated would be Hk. 

Ideally, we would like this to be G
-1

. 

All the requirements are fulfilled by the DFP updating formula: 

 

k

T

k

T

kk

kk

T

k

T

kkkk
k1k

yv

vv

yHy

yHyH
HH                                                          ...(8) 

The general formula, in a slight modification of Fletcher’s (1970) 

parameterization, is given by 

 
T T

k k k k Tk k
k 1 k k kT T

k k k k k

H y H y v v
H H φw w

y H y v y
                                               …(9) 

Where   0 is the free parameter and 

k k k

T T

k k k k k

v H y
w

v y y H y
                                                                            …(10) 
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     Much effort, both analytically and computationally, has been devoted to 

identifying the best quasi-Newton formula or even the best from the much 

wider class of variable metric methods introduced by Huang (1970). The 

choice with the widest support is the BFGS algorithm which was derived 

independently in 1970 in four different ways by Broyden, Fletcher, 

Goldfarb, and Shanno. In the parameterization of (9), this BFGS update 

formula corresponds to choosing. 

kk

T

k yHy                                                                                        …(11) 

 

Faddeev’s Modification of Leverrier’s Method 
Consider that we have the system of equations: 

Gv= v                                                                                               …(12) 

where the scalar  is an eigenvalue (or a characteristic value) of matrix Gnxn 

and the vector v is the eigenvector (or a characteristic value) corresponding 

to .  

The problem often requires the solution of the homogeneous set of equation: 

(G-I) v= 0                                                                                       ...(13) 

         Where I is the identity matrix. 

     To determine the values of  and v which satisfy this set. However, 

before we proceed with developing method of solution. Let’s examine 

equation (13) from a geometric perspective. The multiplication of a vector 

by a matrix is a linear transformation of the original vector to a new vector 

of different direction and length. For example, matrix G transforms the 

vector v  to the vector z in the operation, i.e., 

zvG                                                                                             ...(14) 

     In contrast to this, if v is the eigenvector of G, then the multiplication of 

the eigenvector v by matrix G yields the same vector v multiplied by a 

scalar , that is, the same vector but of different length: 

Gv= v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (15) 

     It can be stated that for a nonsingular matrix G of order n there are n 

characteristic directions in which the multiplication by G does not change 

the direction of the vector, but only changes its length. More simple stated, 

matrix G has n eigenvectors and n eigenvalues. 

The homogenous problem (13) possesses nontrivial solutions if the 

determinate of the matrix (G-I), called the characteristic matrix of G, 

vanishes: 
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                                                 ...(16) 

     The determinate can be expanded by minors to yield a polynomial of n
th 

degree: 

0.......... n

2n

2

1n

1

n  
                                                     …(17) 

     This polynomial, which is called the characteristic equation of matrix G, 

has n roots which are the eigenvalues of G. A nonsingular real symmetric 

matrix of order n has n real distinct eigenvalues and n linearly independent 

eigenvectors. The eigenvectors of a real symmetric matrix are orthogonal to 

each other. The coefficients i of the characteristic polynomial are 

functions of the matrix elements aij, and must be determined before the 

polynomial can be used. 

     The well-known Cayley-Hamilton theorem states that a square matrix 

satisfies its own characteristic equation, i.e. 

0I.............GGG n

2n

2

1n

1

n  
                                                   …(18) 

     The problem of evaluating the eigenvalues and eigenvector of matrices 

is a complex multipstip procedur. Several methods have been developed for 

this purpose some of these apply to symmetric matrices,others to tridiagonal 

matrices, and a few can be used for general matrices. The method in this 

section work the original matric G and its characteristic polynomial (17) to 

evaluate the coefficients i of the polynomial(Alkis ,1987). One such 

method is the Faddeev-Leverrier procedure. Once the coefficients of the 

polynomial are known, the methods use root-finding techniques, such as 

the Newton-Raphson or Graeffe’s method. To determine the eigenvalues. 

Finally, the algorithms employ a reduction method, such a Gauss 

elimination, to calculate the eigenvectors (Fletcher,1970). 

    The Faddeev-Leverrier method  calculates the coefficients i to n of the 

characteristic polynomial (17) by generating a series of matrices Gk whose 

traces are equal to the coefficients of the polynomial. 

Let us start in matrix G and first coefficient are: 

G1=G, 1= tr G1,                                                                      ...(19) 

and the subsequence matrices are evaluated from the recursive equations: 

 
n.,.........3,2k

trG
k

1

IGGG

kk

1k1kk











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.                                                 ...(20) 
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In addition to this, the Faddeev-Leverrier method yields the inverse of the 

matrix G by:  IG
1

H 1n1n

n

 


                                                      ...(21) 

For more details, see Alkis (1987) 

 

New VM-Updating Formula for Leverrier Method 

In this section we present a new  updating formula to minimize the function 

f(x), x R
n
 where f(x) is assumed to be at least twice continuously 

differentiable and where the function and the first derivatives can be 

evaluated at any point x. 

Now from equation (22) and (23) : 

kkk1k Gdgg                                                                                 ...(22) 

then kkk Gdy   where                                                                       ...(23) 

k1kk ggy   , and let Gk satisfy the equation  

  kk1k yxxG   

let k1kk xxv    then we have 

k

k
k

v

y
G                                                                                            ...(24) 

Now multiplying and dividing equation (24) by 
T

ky , then eq.(24) becomes: 

k

T

k

T

kk
k

vy

yy
G                                                                                         ...(25) 

or from (23) 

kk

k
k

d

y
G


  

By using the follows equation (26)  

kk1k1k dλxx                                                                                 ...(26) 

 when   kkk dλv   then we have 

k

k
k

v

y
G                                                                                             ...(27) 

Also multiplying and dividing equation (26)by
T

ky ,we obtain the equation (25). 

Now we let 

kkk yGS  , and  kk y.IS   then the formula (20) becomes: 

k

T

k
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k
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α
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Sy
G                                                                         ...(28) 
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Now we compute 
1

1
 kk trG

k
  and finally we find the inverse of the 

matrix G by: 

 IGH kk

k

11

1
  


                                                                         ...(29) 

 

Outlines of New proposed Algorithm 

Step (1): set x1, , IHHH 111   

Step (2): for k=1 to n set d1= - H1 g1 

Step (3): set Htrk    

Step (4): compute  xk+1= xk+kdk, where k is obtained from line search 

procedure. 

Step (5): cheek if ||gk+1|| <  then stop  

 Otherwise go to step (6) 

Step (6): yk=gk+1- gk  

vk=xk+1- xk  

Step (7): set kk yHS   

kk yIS .  

Step (8): compute 
k

T

k

T

kk
k

k

T

k

T

kk
k

yv

SS
α

yv

Sy
H   

Step (9): compute kk Htr
k

1
  

Step(10):if k=1 then  
k

T

k

T

kk

yv

yy
H  

Step (11): set  IHHH k

k

kk 11

1
  


 

Step (12): set kk HH   and 

kk  1  

Step (13): set kk1k1k1k dgHd    where 

Where 
k

T

k

k1k1k
k

yd

yHg   

If k= n+1 or dk+1 gk+1  0 

go to step (1) else 

k= k+1 

go to step (4) 
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Numerical Results 
In order to investigate the performance of the new proposed algorithm eight 

test functions were tested with different dimensions (4  n  500) and all 

programs are written in FORTRAN 90 language; and for all cases the 

stopping criterion is taken to be ||gk+1|| < 110
-5

. The numerical results are 

given in the table (1) is specifically quoted the number of functions NOF 

and the number of iterations NOI. 

Table (1): Comparative performance of the two algorithms 

(Classical BFGS and new Update method) 
Test function BFGS Classical NOI (NOF) New Method NOI (NOF) 

Powell (4) 21 (86) 15 (43) 

Powell (20) 38 (123) 25 (75) 

Powell (100) 71 (197) 31 (108) 

Powell (500) 50 (148) 40 (142) 

Wood (4) 37 (110) 25 (57) 

Wood (20) 84 (244) 50 (108) 

Wood (100) 251 (775) 60 (128) 

Wood (500) 283 (791) 60 (128) 

Cubic (4) 19 (58) 15 (42) 

Cubic (20) 35 (99) 13 (37) 

Cubic (100) 70 (167) 13 (37) 

Cubic (500) 53 (124) 14 (41) 

Rosen (4) 34 (87) 17 (49) 

Rosen (20) 34 (87) 19 (58) 

Rosen (100) 34 (87) 19 (58) 

Rosen (500) 34 (87) 19 (58) 

Shallow (4) 8 (26) 8 (24) 

Shallow (20) 8 (26) 8 (24) 

Shallow (100) 8 (26) 8 (24) 

Shallow (500) 8 (26) 8 (24) 

Non-diagonal (4) 24 (72) 24 (61) 

Non-diagonal (20) 48 (115) 19 (52) 

Non-diagonal (100) 74 (177) 22 (60) 

Non-diagonal (500) 78 (188) 22 (59) 

Gedger (4) 6 (17) 5 (14) 

Gedger (20) 6 (17) 5 (14) 

Gedger (100) 6 (17) 6 (17) 

Gedger (500) 6 (17) 6 (17) 

Beal (4) 8 (20) 9 (21) 

Beal (20) 10 (25) 9 (21) 

Beal (100) 10 (25) 9 (21) 

Beal (500) 10 (25) 9 (21) 

Total 1466 (4089) 612 (1643) 
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Conclusion 
    It is clear that from the above table the new modified VM-updating 

formula has an improvement on the standard BFGS algorithm in about 60% 

in both NOI and NOF according to our selected set of numerical problems. 
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Appendix 
         All the test functions used in this paper are from general literature:  

/ 4
2 2 2 4 2

4 3 4 2 4 1 4 4 1 4 4 9 4 4 2 4 1 4

1

1. :

( ) ( 10 ) 5( ) ( 2 ) 10( ) ( 2 ) )

int : (3,1,0,1,.......................)
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Generalized powell function
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      
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          

 

/ 4
2 2 2 2 2 2 2
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1
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( ) 100( ) (1 ) 90( ) (1 ) 1.0

int : ( 3, 1, 3, 1,...............)
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T

Generalized Wood function

f x x x x x x x
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    



        

   

  

3. Generalized Rosen Brock Banana function:    




 
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122 )1()(100)(
n

i

iii xxxxf , 
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Tools BFGS New update 

NOI 100 41.7 

NOF 100 40 
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4. Generalized Non diagonal function: 


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5. Generalized Beale Function:  
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6. Diagonal 6 Function: 
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List of symbols 
Meaning                       Symbol 

    

n                  is the dimensions of the problems 

K                 is the K-th step of iterations 

F                  is the twice differentiable real value function 

g                  is the n ×1 gradient vector of f(x) 

d                  is the n ×1 search direction vector 

G                 is the n ×n Hessian matrix 

H                 is the n ×n  approximation to G
 -1

 matrix 

v                  is the n ×1 difference vector between two successive points 

λ                  is the positive scalar which minimizes f(x- λHg) 

ELS             is the exact line search 

ILS              is the inexact line search 

QN              is the Quasi-Newton 

VM              is the Variable metric 

CG               is the Conjugate Gradient 

NOF            is the number of function evaluations 

NOI             is the number of iterations 

c                is a scalar 

b                  is the constant vector having n component 

G                 is nxn symmetric and constant 
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 للمتري المتغير لحل مسائل الامثلية  Leverrierتطوير جديد لتحديث 
 غير المقيدة

 

 عباس يونس البياتي و صلاح غازي شريف
 كلية علوم الحاسبات والرياضيات ـ جامعة الموصل

 

  ةصلاالخ
 

في هذا البحث تم اقتراح تحديث جديد للمتري المتغير لحل مسائل غير خطية في الامثلية غير المقيدة . لقدد      
اختبدر  هدذ     . Leverrierمن اجل تطوير طريقدة    Faddeev اشتقاق الطريقة الجديدة باستخدام تحسينتم 

 القياسية.BFGS رن  مع خوارزمية الدمختلفة وقو وبأبعاددوال غير خطية  8الخوارزمية الجديدة باستخدام 
 

 

 

 


