
IJCCCE Vol.13, No.3, 2013

_____________________________________________________________________________________

51

Study the Robustness of Automatic Voltage Regulator
for Synchronous Generator Based on Neural Network

Dr. Abdulrahim Thiab Humod

Department of Electrical Engineering, University of Technology, Bagdad, Iraq

e-mail: abdulalrahimhumod@yahoo.com

Received: 27/8 /2012

Accepted: 22/7 /2013

Abstract – Artificial  Neural  Networks  (ANN) can  be  used  as  intelligent  controllers  to
control non-linear dynamic systems through learning, which can easily accommodate
the non linearity’s, time dependencies, model uncertainty and external disturbances.
Modern power systems are complex and non-linear and their  operating conditions can
vary over a wide range. The Nonlinear Auto-Regressive Moving Average (NARMA-
L2) model system is proposed as an effective neural networks controller model to
achieve the desired robust Automatic Voltage Regulator (AVR) for Synchronous
Generator (SG) to maintain constant terminal voltage. The concerned neural networks
controller for AVR is examined on different models of SG and loads. The results shows
that the neuro-controllers have excellent responses for all SG models and loads in view
point of transient response and system stability compared with conventional PID
controllers.  Also  shows  that  the  margins  of  robustness  for  neuro-controller  are  greater
than PID controller.
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1. Introduction
     The robust control problem is to find a
control law which maintains system
response and error signals within
prescribed tolerances despite the effects
of uncertainty on the system [1].
     In general, however, robust control
system design uses an idealized or
nominal model of the plant. Uncertainty
in the nominal model is taken into
account by considering a family of
models that include all possible
variations. The control system is said to
have robust stability if a controller can be
found that will stabilize all plants within
the family. However, on its own, robust
stability is not enough, since there may be
certain plants within the family that are
on the verge of instability. A controller is
said to have robust performance if all the
plants within the family meet a given
performance specifications [2,3].
The  main  function  of  the  electric  power
system is to supply electric energy to the

end  customer  in  an  efficient  way.  This
power system is dynamic and non linear
in nature and works in a changing
environment. The main control function
of the excitation system is to regulate the
generator terminal voltage which is
accomplished by adjusting the field
voltage  with  respect  to  the  variation  of
the terminal voltage [4,5].
Synchronous generators are used almost
exclusively in power systems as a source
of electrical energy [6]. SGs are
nonlinear, fast acting; multi-input multi-
output (MIMO) systems which are
continuously subjected to load variations
and the AVR design must cope with both
normal load and fault condition of
operation. Evidently, these conditions of
operation result to considerable changes
in  the  system  dynamics  [7].  The
excitation voltage is supplied from the
exciter and is controlled by the AVR [8].
Fig.1. shows a block diagram of AVR
system [9].

Fig. 1. Block diagram of a synchronous generator and AVR.
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Artificial neural networks
(ANN’s) can be used as intelligent
controllers to control non-linear, dynamic
systems through learning, which can
easily accommodate the non-linearity’s
and time dependencies called neuro-
controllers [10,11]. The intelligent
controllers were being developed using
(ANN’s) are used for same model for
each controller and system continuously
subjected to load variations [12,13]. This
paper is focused on the design of many
AVRs for different types of non-linear
SGs models and loads then each
controller subjected for different types of
synchronous generators models.

2. Mathematical Model of the
Synchronous Generator

The  dynamic  response  of  SG  in  a
practical power system is including much
non linearity such as the magnetic
saturation. The simulated model of the
synchronous generator is represented in
MATLAB/ SIMULINK. The central
concept underlying the development of
the mathematical models of ac machines
is the representation of the variables for
voltages, currents and fluxes by means of
space vectors that are expressed in
different reference frames. These
reference frames or coordinate systems:
the triplet [Va Vb Vc] denotes a three-
phase system attached to the stator while
the pair [Vq Vd] corresponds to an
equivalent two-phase system quadrature
and direct phase The basic approach to
modeling involves the transformation of
the  stator  and  rotor  equations  to  a
common reference frame [5].
MATLAB/SIMULINK toolbox
synchronous generator model used in this
work takes into account the dynamics of
the stator, field, and damper windings.
The equivalent circuit of the model is
represented in the rotor reference frame

(qd frame). All rotor parameters and
electrical quantities are viewed from the
stator. They are identified by primed
variables. The subscripts used are defined
as follows:

d,q: d and q axis quantity
R,s: Rotor and stator quantity
l,m: Leakage and magnetizing
inductance
f,k: Field and damper winding
quantity

The electrical model of the machine
is:

qRddsd dt
diRV     (1)

Where )( ''
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3.  Exciter Model

       The basic function of an excitation
system is to provide direct current to the
synchronous machine field winding. In
addition, the excitation system performs
control and protective functions essential
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to the satisfactory performance of the
power system by controlling the field
voltage and thereby the field current.
The transfer function of the exciter is:

G(s) =
)
                                         (7)

Where TR is the time constant of the static
exciter & KR is the gain of static exciter.
Since the time constant (TR) of static
exciter is very small, then equivalent
transfer function is became as gain circuit
connected between controller and SG,
used to gain low control signal [5].

   G(s) = K                                                   (8)

4. Sensor Model

The terminal voltage of the SG is
being fed back by using a potential
transformer that is connected to the
bridge rectifiers. A sensor may be
represented by a simple first-order
transfer function, given by:

)
)

=                                                   (9)

Where KT is the gain of the sensor, TT is
the time constant of the sensor. Normal
TT is very small, ranging from of 0.001 to
0.06 s [14].

5. NARMA-L2 Controller

The Nonlinear Auto-Regressive
Moving Average (NARMA-L2) model
was proposed by Narendra and
Mukhopadhayay (1997) [15]. The neuro-
controller described in this section is
referred to by two different names:
feedback linearization control and
NARMAL-2  control.  It  is  referred  to  as
feedback linearization when the plant
model has a particular form (companion
form). It is referred to as NARMA-L2
control when the plant model can be
approximated by the same form. The
central idea of this type of control is to
transform nonlinear system dynamics into
linear dynamics by canceling the
nonlinearities [16].

The advantage of the NARMA-L2
form is that you can solve for the control
input that causes the system output to
follow a reference signal as shown in Fig.
2. [15].

Fig. 2. Block diagram of NARMA-L2 controller
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6.   PID Controller
Proportional-integral-

derivative or PID control has been the
major control in industry for many years,
the controller works by examining the
instantaneous error between the process
value and the set point. The proportional
term produces a control action
proportional to the size of the error input,
and decrease the rise time of transient
response, the integral term is used to
decrease steady state error and the
derivative term supplement the control
action if the error is changing rapidly
with time by damped the response or
decrease the over shoot [9]. The values of
the P-I-D terms depend on characteristics
of the process and must be tuned
accordingly yield satisfactory result.
Properly tuned and maintained PID
controllers provide adequate control for a
large portion of industrial applications.
This equation represents mathematical
expression for PID controller [8].

) + ( ) )           (10)

Where; is error signal, is
proportional gain,  is integral gain and

 is derivative gain.

7.   Simulation and Results
       The  first  step  in  analysis  and
designing the controllers for the SG is to
use the mathematical model of the SG
which  is  more  reality  to  the  actual  plant
rather than linear transfer function model
in the control design and studies.  The
simulation of SG is performed using
MATLAB/SIMULINK implementation
program version 7.10.0.499 (R2010a). In
this work, salient pole synchronous
generators of parameters listed in
Appendix A are used.

The AVR was implemented by using tow
type of controller. First the classical PID

controller, adjusted to the nominal
condition of the synchronous generator
model as shown in Fig. 3.

Second the neuro-controller (NARMA-
L2) shown in Fig.  4 was trained by using
the data of PID controllers to the nominal
condition of the synchronous generator
model.

The tuned parameters of PID controller
for each SG model by trial and error with
saturation of 3 (pu) and full load are listed
in table 1.

The designed AVRs with PID controllers
which applied to the synchronous
generator  of  8.1KVA  and  full  load  are
shown in Fig. 5.

SG model Gains of PID controller

kp ki kd

SG of 8.1KVA 20 60 0.25

SG of 31.3KVA 20 35 0.25

SG of 250KVA 20 14 0.4

SG of 2MVA 30 4 0.5

Fig. 3. Power unit with AVR using PID controller

Fig. 4. Power unit with AVR using neuro-controller

Table 1 Tuned gains of PID controllers
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The time responses for the synchronous
generator of 8.1KVA for various
controllers are depicted in Fig. 6. Also the
time responses for the synchronous
generators of 31.3KVA, 250KVA,
910KVA, 2MVA, and 187MVA for
various PID controllers are depicted in
Fig. 7, 8, 9, 10 and 11 respectively.

Fig. 5. Different PID controllers connected to SG of
8.1KVA

Fig. 6. Time responses for SG of 8.1KVA
                 with different PID controllers

Fig. 7. Time responses for SG of 31.3KVA
                  with different PID controllers

Fig. 8.  Time responses for SG of 250KVA
                  with different PID controllers

Fig. 9.  Time responses for SG of 910KVA
with different PID controllers
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Figures 6, 7, 8, 9, 10, and 11, show that
the  over  shoot  increases  when  the  power
of  SG  is  greater  than  the  desired  SG
controller. The time responses of Fig. 6,
7,  8,  and  10  shows  the  best  response  for
each figure is the response of the
controller designed for the same SG.
The neuro-controllers were trained using
the data of PID controllers with saturation
of 3 pu and full load.  The neuro-
controllers which applied to the
synchronous generator of 8.1KVA and
full load are shown in Fig. 12.

Time responses for the synchronous
generators of 8.1KVA, 31.3KVA,
250KVA, 910KVA, 2MVA, and
187MVA for various NARMA-L2
controllers are depicted in Fig. 13, 15, 17,
19, 21 and 23 respectively. The responses
shows that approximately same transient
responses as depicted in Fig. 14, 16, 18,
20, 22 and 24  and tables 2,3,4 and 6,
where  the  settling  time  (ts ) for
approximately 3% of the error and rise
time (tr ) from initial to 97% of the input
signal.

Fig. 10.  Time responses for SG of 2MVA
                  with different PID controllers

Fig. 11.  Time responses for SG of 187MVA
                  with different PID controllers

Fig. 12. Different NARMA-L2 controllers connected to
SG of 8.1KVA

Fig. 13.  Time responses for SG of 8.1KVA
                for different NARMA-L2 controllers
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Fig. 14.  Zoomed time responses  of  Fig. 13

Fig. 15.  Time responses for SG of 31.3KVA
with different NARMA-L2 controllers

Fig. 16.  Zoomed time responses of Fig. 15.

Fig. 17.  Time responses for SG of 250KVA
            with   different NARMA-L2 controllers

Fig. 18.  Zoomed time responses of Fig. 17.

Fig. 19.  Time responses for SG of 910KVA
              with different NARMA-L2 controllers
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Fig. 20.  Zoomed time responses of Fig. 19.

Fig. 21.  Time responses for SG of 2MVA
              with different NARMA-L2 controllers

Fig. 22.  Zoomed time responses of  Fig. 21.

Fig. 23. Time responses for SG of 187MVA
            with different NARMA-L2 controllers

Fig. 24. Zoomed time responses of Fig. 23.
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SG model PID controller for SG 31.3KVA NARMA-L2 controller for SG
31.3KVA

Rise
time
(sec)

Over
shoot

Settling
time (sec)

Rise
time
(sec)

Over
shoot

Settling
time (sec)

SG of 8.1KVA .05 <0.05 .087 .0531 .068 .063

SG of
31.3KVA

.08 <0.05 .082 .08 <0.05 .096

SG of
250KVA

.35 0.13 1.6 0.35 <0.05 .35

SG of
910KVA

.73 0.11 3.6 0.73 <0.05 .73

SG of 2MVA .85 0.25 3.6 0.85 <0.05 .85

SG of
187MVA

2.23 0.39 6.7 2.17 <0.05 2.17

SG model PID controller for SG 2MVA NARMA-L2 controller for SG 2MVA

Rise
time
(sec)

Over
shoot

Settling
time (sec)

Rise
time
(sec)

Over
shoot

Settling
time (sec)

SG of 8.1KVA .05 <0.05 3.5 .0531 .069 .065

SG of
31.3KVA

.08 <0.05 2.3 .08 <0.05 .096

SG of
250KVA

.35 <0.05 5 0.35 <0.05 .35

SG of
910KVA

.73 <0.05 2 0.73 <0.05 .73

SG of 2MVA .85 <0.05 .85 0.85 <0.05 .85

SG of
187MVA

2.23 .09 12 2.17 <0.05 2.17

SG model PID controller for SG 8.1KVA NARMA-L2 controller for SG 8.1KVA
Rise
time
(sec)

Over
shoot

Settling time
(sec)

Rise time
(sec)

Over
shoot

Settling time
(sec)

SG of 8.1KVA .05 <0.05 .05 .0531 .066 .065
SG of

31.3KVA
.08 0.6 .35 .08 <0.05 .096

SG of 250KVA .35 0.135 1.7 0.35 <0.05 .35
SG of 910KVA .73 0.11 3.6 0.73 <0.05 .73
SG of 2MVA .85 0.25 3.5 0.85 <0.05 .85

SG of
187MVA

2.23 0.39 6.8 2.17 <0.05 2.4

Table 3. Transient responses parameters for different SG model with controller for SG 31.3KVA

Table 4. Transient responses parameters for different SG model with controller for SG 250KVA

Table 2.  Transient responses parameters for different SG  model with controller for SG 8.1KVA
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Figures 25 and 26 show the time response
for SG 187MVA for different loads with
AVR using PID and NARMA-L2
controller of SG 8.1KVA respectively.
The numerical values of transient
response for Figures 25and 26 are
depicted in Table 6. This table illustrates
that big over shoot and large settling time
for PID controller compared with
NARMA-L2 controller.

SG model PID controller for SG 250KVA NARMA-L2 controller for SG 250KVA

Rise time
(sec)

Over shoot Settling time
(sec)

Rise time
(sec)

Over shoot Settling time
(sec)

SG of 8.1KVA .05 <0.05 .9 .0531 .065 .065

SG of 31.3KVA .08 <0.05 .35 .08 <0.05 .096

SG of 250KVA .35 <0.05 .35 0.35 <0.05 .35

SG of 910KVA .73 .09 2.9 0.73 <0.05 .73

SG of 2MVA .85 .175 4.3 0.85 <0.05 .85

SG of 187MVA 2.23 .36 8.8 2.17 <0.05 2.17

Controller
type

Rise
time
(sec)

Over
shoot

Settling
time (sec)

load

PID for
SG

8.1KVA

1.92 .85 16 1MVA
2.04 .66 10.3 100MVA
2.24 .39 8.1 180MVA

NARMA-
L2 for SG
8.1KVA

1.92 .011 1.92 1MVA
2.04 .009 2.04 100MVA
2.24 .005 2.24 180MVA

Table 5. Transient responses parameters for different  SG model with controller for  SG 2MVA

Fig. 25.  Time responses for SG of 187MVA
               with PID controller for SG 8.1KVA

Fig. 26.  Time responses for SG of 187MVA
        with NARMA-L2 controller for SG 8.1KVA

Table 6. Transient responses parameters for SG 187MVA
             with different controllers and loads
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8.   Conclusions
The main concluding remarks of

SG terminal voltage response obtained by
testing the proposed AVR using neuro-
controller  and  the  AVR  using
conventional  PID  controller   can  be
summarized as follows:

The settling times for different
neuro-controllers are less than PID
controllers except for the controller
designed for same SG model this
fact can be seen obviously by
numerical values in tables 2,3,4 and
5  or  by  comparing  Fig.  6  with  Fig.
13, Fig.  7 with Fig.  15,  Fig.  8 with
Fig.  17, Fig. 9 with Fig. 19, Fig. 10
with  Fig.  21,  and  Fig.  11  with  Fig.
23.

Approximately same over shoot for
same SG model and different
neuro-controllers as shown in tables
2,3,4 and 5  and Fig. 13 to 24, while
for PID controllers the over shoot
increase in case, when the
controller designed for SG model of
low power applied to SG model of
higher power  as shown in Fig. 7 to
11 and tables 2,3,4 and 5, where the
over shoot for PID controller of SG
8.1KVA  applied  to  different  SG
model  are  in  the  range  from  less
than 5%   to 39% see table 2.

Neuro-controllers and PID
controller have approximately same

rise time from initial to 97% of the
input signal.

The  response  of  SG  model  with
different load for neuro-controller is
better  than  PID  controller  as
illustrated in Fig. 25 and 26 and
table  6  where  over  shoot  and
settling time for PID controller
reach the values 85% and 16 second
respectively compared with 1.1%
and  1.91  second  for  NARMA-L2
controller.

From above remarks the margins of
robustness for neuro-controller are
greater than PID controller.

APPENDIX (A)

      The table A below shows the parameters for
different  SG  model    taken  from
MATLAB/SIMULINK toolbox version
7.10.0.499 (R2010a) which used in our simulation
models.
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Synchronous generator model
SG of

8.1KVA

SG of

31.1KVA

SG of

250KVA

SG of

910KVA

SG of

2MVA

SG of

187MVA

Rated Power

( KVA)

8.1 31.3 250 910 2000 178000

Rated voltage

       V(L-L)

400 400 400 400 400 13800

Rated frequency

    (HZ)

50 50 50 50 50 60

stator resistance

      (pu)

.08201 .04186 .02594 .01706 0.0095 0.00285

stator leakage

  inductance    (pu)

.0721 .0631 .09 .08 0.05 .114

mutual  inductance

   (pu)

1.728 1.497 2.75 2.62 2.06 1.19

quadrature mutual

  inductance   (pu)

.823 .707 2.35 1.52 1.51 .36

field resistance

    (pu)

.06117 .02306 .00778 .004686 .001971 .000579

field leakage

  inductance   (pu)

.1801 .1381 0.3197 .4517 0.3418 .114

damper resistance

   (pu)

.1591 .1118 .2922 .2377 0.2013 .0117

damper leakage

  inductance  (pu)

.1166 .1858 1.982 2.192 2.139 .182

damper resistance

  (pu)

.2416 .09745 .06563 .02186 0.02682 .0197

damper leakage

 inductance   (pu)

.1615 .1258 .305 .09566 0.2044 0.384

Inertia coefficient

  (sec)

0.1406 .08671 .1753 .2717 0.3072 3.7

Friction factor (pu) .02742 .02365 .o1579 .01356 .00987 0

Pole pair 2 2 2 2 2 20

Table A. Parameters for different SG model   taken from MATLAB/SIMULINK toolbox with
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