دراسة التلوث الإشعاعي في ترب منتخبة في محافظة كركوك

فريد مجيد محمد* شاكر محمود الجبوري** سمين فاضل محمد*

*كلية العلوم ـ جامعة تكريت

**كلية مدينة العلم الجامعة بغداد ـ المدرسة الخالصية

تاريخ الاستلام: ٢٠١٥/٥/١٧ ، تاريخ القبول: ٢٠١٠/١/٢٥

الخلاصة

تم جمع (18) نموذج للتربة من مواقع منتخبة من محافظة كركوك وحضرت النماذج لغرض القياس باستخدام منظومة تحليل طيف أشعة كاما والمتمثلة بكاشف الجرمانيوم عالي النقاوة (HpGe) ذي قابلية فصل طاقي (2.2 KeV) عند الطاقة 1332 KeV العائد إلى نظير 00 ، ربطت المنظومة إلى حاسبة شخصية اذ تم تجميع الطيف وتحليله عن طريق برنامج PCA المتكامل المتحليلات الطيفية والكمية لأشعة كاما وحسب النشاط الإشعاعي النوعي النويدات المشعة الناتجة عن سلسلة اليورانيوم 238 واليورانيوم 236 واليورانيوم 236 واليورانيوم 236 والسيزيوم 236 المتكامل القياس وجود حالة التوازن الإشعاعي السلسلة اليورانيوم 236 النسبة (238 لليورانيوم 238 النسبة بين (238 238 النسبة بين (238 238 النسبة بين (238 236 النسبة بين (238 236 النسبة بين (2000 236 النسبة النور اليوم الملوثة ، إذ إن التربة الملوثة باليورانيوم المنضب بنسبة (100%) تكون قيمة R فيها تساوي الترب غير الملوثة ، إذ إن التربة الملوثة باليورانيوم المنضب بنسبة (100%) تكون قيمة R فيها تساوي (0.00351).

<u>المقدمة</u>

يعتبر موضوع التلوث الإشعاعي من المواضيع المهمة التي تتعلق بصحة وحياة الإنسان وقد قام العديد من الباحثين بإجراء المسوحات والدراسات حول هذا الموضوع وقد نتج عن ذلك تقدم كبير في أساليب القياس وفكرة الدراسات والبحوث معظمها يتلخص بأخذ عينات من التربة والمياه وأحيانا الهواء (ألغرابي، 2002; Mollah et al., 1986).

إن التلوث الإشعاعي البيئي Environmental Radiogical Pollution يعني إطلاق النويدات المشعة إلى البيئة من مصادر مختلفة مثل الحوادث النووية، والتجارب النووية واستخدام الجيش للأسلحة النووية (نشوان،2002) يتم تقسيم الإشعاعات إلى نوعين رئيسيين هما الإشعاعات المؤينة وهي الإشعاعات التي لها القدرة على إثارة ذرات الوسط التي تمر فيه

وإشعاعات غير مؤينة وهي الإشعاعات التي ليس لها القدرة على إحداث إثارة ذرات الوسط التي تمر فيه ، وعموماً تتوقف قدرة الإشعاع على التأين على طبيعة الإشعاع نفسه وعلى طاقة الإشعاع (الخطيب،1984). كما إن الإشعاعات المؤينة تتقسم بدورها إلى نوعين من الإشعاعات وهي إشعاعات كهرومغناطيسية Electromagnetic وهذه الإشعاعات تحدث تأيناً في ذرات الوسط الذي تمر فيه إذا زادت طاقة الشعاع فيها عن 100 eV كما إنها تتفاوت في طول موجتها تفاوتاً كبيراً إذ إنها تشمل على موجات راديوية وقصيرة وتحت الحمراء وموجات الضوء المرئي والأشعة فوق البنفسجية 100 eV والأشعة السينية 100 eV وأشعة كاما 100 eV وغيرها. أما النوع الآخر من الإشعاعات فهي إشعاعات ذات صفات جسيميه مثل الأشعة الكونية وغيرها. أما النوع الآخر من الإشعاعات أهي إشعاعات الناتجة من العناصر أو النظائر التي تصل إلينا عن طريق الفضاء الخارجي وأيضا الإشعاعات الناتجة مثل أشعة ألفا (100 eV) وبيتا (100 eV) ومتعادلة مثل النيوترونات 100 eV (الكناني 100 eV ; 100 eV ; 100 eV).

وان مصادر الإشعاعات تتقسم إلى مصدرين رئيسيين وهما مصادر طبيعية التي تتتج عنها الإشعاعات الطبيعية دون تدخل الإنسان في انبعاثها وتشمل الإشعاعات الواردة من الشمس أو الأشعة الكونية والإشعاعات التي تتتج من ذرات العناصر التي لها خاصية الإشعاع الذاتي (الكناني ، 1990 ; 1987, Eisenbud) ومصادر صناعية التي يقوم الإنسان بتوليدها من مصادر مختلفة اويكون نشاط الإنسان سبباً في انبعاثها ومن هذه الإشعاعات الأشعة السينية X ray والإشعاعات التي تنتج عن الانفجارات الذرية أو المفاعلات النووية أو الأشعة فوق البنفسجية أو أشعة الموجات القصيرة التي يقوم الإنسان بتوليدها بطرق وبمصادر مختلفة (United Nations , 1988). يعتبر اليورانيوم المنضب Depleted uranium من المصادر الصناعية الأساسية في التلوث البيئي ، حيث انه مادة سامة ومشعة وهي ناتج عرضي ينشأ عن عملية تخصيب اليورانيوم وهو نفايات نووية تسبب مشاكل بيئية خطيرة ، ونتيجة لعملية التخصيب التي جرت في دول العالم لاستخدام U-235 في السلاح النووي أو لإنتاج الطاقة في المفاعلات تكدست كميات كبيرة من اليورانيوم المنضب التي تشتمل على هذا اليورانيوم ذا عدد كتلى 238 ونواتج انحلاله إذ تبلغ نسبة الإشعاع في اليورانيوم المنضب % 60 من إشعاعات اليورانيوم الطبيعي والفرق بين اليورانيوم الطبيعي والمنضب يعود إلى نسبة تواجد U-238 التي تزداد نسبته 0.5 كحالة أولى ، 0.35 كحالة ثانية وتقليل نسبة U-235 بالمقدار نفسه (جاسم،1989). ويستخدم اليورانيوم المنضب في الأغراض العسكرية إذ انه يدخل في صناعة

الذخيرة وفي رؤوس الصواريخ لزيادة فعاليتها وفي البحرية كما انه يتميز بمواصفات تحبذ استخدامه في القذائف الخارقة للدروع منها الكثافة العالية مما يعطيها زخماً عالياً يساعد على اختراق الدروع وخاصية الالتهاب فتساعد على انفجار الوقود والعتاد داخل الدروع مما يؤدي إلى تدميرها(WHO, 1996). كما إن لليورانيوم صفة غير مرغوبة وهي انه يحترق عند اصطدامه بسرعة كبيرة بأي شيء صلب فيخلف جزيئات مجهريه بالغة الصغر تتكون من اكاسيد اليورانيوم التي يمكن استشاقها وابتلاعها بسهولة لهذا فهي خطرة على صحة الإنسان وكحد تقريبي يمكن إن تنقل جزيئات اليورانيوم مسافة (10 km)في الجو (1999).

وبسبب الصغر المتناهي لحجمها الذي يكون حوالي (2.5 µm) فان جسيمات اوكسيد اليورانيوم المنضب والتي تنتشر في الجو يمكنها أن تدخل جسم الإنسان عن طريق الأنف إلى المجرى الهوائي للجهاز التنفسي ومنه إلى الرئة أو عن طريق الجروح والابتلاع. كما إن جزيئات اليورانيوم المنضب يمكنها الالتصاق بالرمل أو جسيمات الغبار على الأرض ثم يعاد تعلقها في الجو بوساطة الرياح وتقوم بتلوث النباتات مباشرة عند سقوطها على الأرض وتدخل إلى التربة حيث يتم امتصاصها من قبل النباتات بعد ذلك تقوم الحيوانات بتناول هذه النباتات الحاوية على هذه الجزيئات وتنتقل إلى الإنسان ، كما إن الخضر اوات الملوثة يمكن إن تكون واسطة نقل مباشرة (Bertell ,1999). إن الآثار الصحية طويلة الأمد لليورانيوم المنضب غير معروفة حتى الآن بشكل كامل لكن اليورانيوم المنضب إذا دخل إلى الجسم فانه يعرضه لمتاعب صحية كثيرة. إذ إن جزيئاته المشعة إذا دخلت إلى الرئة عن طريق التنفس يؤدي إلى تهيج الخلايا والأنسجة فتحدث فيها السرطان(Uranium Radiation Properties 2000) مجموعة بحوث في الندوة العلمية, 1989). أما الدقائق القابلة للذوبان فإنها تنتقل مع الدم إلى الكليتين والعظام وقد تؤدي إلى فشل عمل الكلية أو توليد خلايا سرطانية. وكذلك فان اليورانيوم المنضب يؤثر على الغشاء المبطن للجنين للام الحامل ، ونتيجة لتأثيراته الصحية والإشعاعية يؤدى إلى تشوه الجنين ومن أهم تأثيرات اليورانيوم الصحية استحداث سرطان الدم اللوكيميا (IAEA , 1996) لقد تم تحديد تراكيز النويدات المشعة لسلسة اليورانيوم- 238 و يورانيوم-235 وكذلك إيجاد تراكيز السيزبوم - 137 في النماذج المنتخبة وتضمنت منطقة الدراسة نقاط منتخبة من محافظة كركوك. إذ تقع كركوك في الجزء الشمالي الشرقي من العراق.

الجانب النظرى

أ - قابلية الفصل للكاشف

لقياس قابلية الفصل لكاشف الجرمانيوم النقى (HpGe) نستخدم المعادلة ألآتية (على وآخرون ، 1990) :-

Resolution = $\frac{\Delta E}{\Delta ch} \times \text{F.W.H.M}$

...(١) حيث إن

(قناة) الفرق بين قيمتى الذروتين لخطى أشعة كاما بوحدة Δ

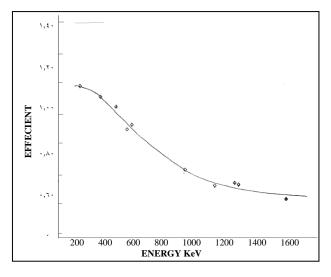
KeV فارق الطاقة بين الخطين بوحدات ΔE

F.W.H.M عرض الخط الكامي عند منتصف ارتفاع ذروته

ب - كفاءة الكاشف

تستخدم العلاقة الآتية لحساب كفاءة الكاشف (Knoll, 1979):-

$$\xi = \frac{\sum N/T_C}{A \cdot I \gamma} \qquad \qquad \dots (2)$$


حبث إن

ΣΝ: - مجموع القياس تحت القمة

-: Tc زمن القياس

Ιγ ... الشدة النسبية لكل طاقة من طاقات المصدر المشع

-: A المصدر المشع عند إجراء القياس -: A

شكل (1): منحنى الكفاءة لكاشف الجرمانيوم عالى النقاوة (HpGe

ج - قياس الخلفية الإشعاعية

قياس الخلفية الإشعاعية للمنظومة يتم من خلال العلاقة الآتية (IAEA, 1989):-

$$Background(Bq) = \frac{Area}{I\gamma\% EFF\% Tc} \qquad ...(3)$$

حيث إن: Area :- المساحة الصافية تحت الذروة بوحدة count

« Ιγ :- النسبة المئوية لشدة أشعة كاما

EFF - النسبة المئوية للكفاءة

-: Tc زمن العد بوحدات الثانية

د - قياس النشاط الإشعاعي النوعي للنماذج

يتم حساب النشاط الإشعاعي (IAEA , 1990):- من خلال المعادلة التالية:-

Specific Activity
$$(Bq) = \frac{Area/Tc - B.G}{I\gamma\% \ EFF \% \ M}$$
 ... (ξ)

حيث إن Net Area مساحة الصافية تحت الذروة (counts) ، % النسبة المئوية لشدة الطاقة المطلوبة % TC زمن العد بوحدة sec الطاقة المطلوبة % TC النسبة المئوية لكفاءة الطاقة المطلوبة % BQ .

235 U/ 238 U بين – إيجاد النسبة بين – إيجاد

إن النشاط الإشعاعي لكل 1mg من اليورانيوم - 238 يكون (UNEP, 2000) .

$$A_c = \lambda N$$
 ...(\circ)

حيث إن:

 $N_0=$ (عدد الذرات): N ، $\ln 2/t_{1/2}=$ (ثابت الانحلال) : λ ، Bq عدد الذرات): A_c

$$A_c = Ln2/t_{1/2} \times No \times W/A \qquad \dots (6)$$

حيث إن:

 $t_{1/2}$: نصف العمر لنظير المشع [U-238] ، No ، $t_{1/2}$ ، No ، $t_{1/2}$ ، gm عدد افوكـــادور: W

A: العدد الكتلى للنظير المشع .بتعويض قيم الثوابت بالمعادلة (6) نحصل على:-

$$A_c = (0.694/3.15 \times 10^7) \times (6.025 \times 10^{23} \times 10^{-3}/238)$$

$$= 4.175 \times 10^{20}/3.377 \times 10^{19}$$

$$= 12.35 \, Bq$$

لغرض تحويل النشاط الإشعاعي النوعي إلى كمية المادة من الكتلة الكلية (mg/kg) يــتم تقسيم النشاط الإشعاعي النوعي لنماذج التربة على (12.35) بكرل. ومــن قياســات الخلفيــة الإشعاعية لليورانيوم - 238 في تربة تلك المنطقة التي تساوي تركيز - 433 في أنموذج التربة نحصل على كمية من اليورانيوم المنضب [DU] الموجــودة في نماذج التربة وللحصول على النسبة المئوية لليورانيوم المنضب [X] تســتخدم المعادلــة الأتية (نشوان ، 2000).

$$X\% = DU(mg / kg) / Cs U - 238(mg / kg) \times 100$$
 ...(Y)

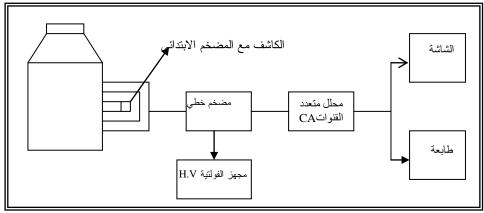
حيث إن: X%: النسبة المئوية لليور انيوم المنضب

DU : كمية اليورانيوم المنضب الموجودة في نماذج التربة mg/kg.

Cs U-238: تركيز اليورانيوم - 238 في أنموذج التربة Cs U-238

ولإيجاد النسبة بين $U^{238}U/U^{238}$ لتربة تحتوي على اليورانيوم الطبيعي التي تتكون من $U^{238}U/U^{238}$ $U^{238}U/U$ بنسبة $U^{238}U/U$ بنسبة $U^{238}U/U$ بنسبة $U^{238}U/U$ بنسبة $U^{238}U/U$ بنسبة $U^{238}U/U$ الكمية واليورانيوم المنضب المتكون بزيادة نسبة $U^{238}U/U$ بمقدار $U^{238}U/U$ وتقليل نسبة $U^{238}U/U$ الكمية اليورانيوم في كتلة $U^{238}U/U$ مقاسة بين والناتجة عن نسبة من اليورانيوم المنضب $U^{238}U/U/U$ لذلك فإن الكمية الناتجة عن اليورانيوم الطبيعي تكون $U^{238}U/U/U$ تقل بمقدار $U^{238}U/U/U$ بمناطقة الآتية (نشوان ، 2000).

$$Ru = \frac{0.72 - 0.37X}{99.2745 + 0.3755X} \dots (A)$$


حيث إن:

U-235 و U-238 النسبة بين Ru

X : نسبة من اليورانيوم المنضب في نماذج التربة

الجانب العملى

أ - منظومة قياس النشاط الإشعاعي كما في الشكل (2) والتي تتألف من

شكل (2): منظومة كاشف الجرمانيوم عالي النقاوة

۱ - كاشف الجرمانيوم عالى النقاوة HpGe

الكاشف المستخدم هو من إنتاج شركة Canberra من نوع (GC-2520) حجم بلورت الكاشف المستخدم هو من إنتاج شركة Energy Resolution مقدار عند الطاقعة 96cm³ وله قدرة تحليلية operation voltage مقدار الكاشف بفولتية تشغيل operation voltage موجبة مقدار العائدة لنظير الكوبلت60. يجهز الكاشف بفولتية تشغيل (TENNELEC) يحتاج كاشف الجرمانيوم عالي النقاوة إلى 4000V من مجهز فولتية نوع (TENNELEC) يحتاج كاشف الجرمانيوم عالي النقاوة إلى تبريد بدرجة حرارة لا من 77° بواسطة النيتروجين السائل أثناء التشغيل لتقليل نبضات الضوضاء الناتجة من تيار التسرب الذي يتولد في درجة حرارة الغرفة (Knoll , 1979).

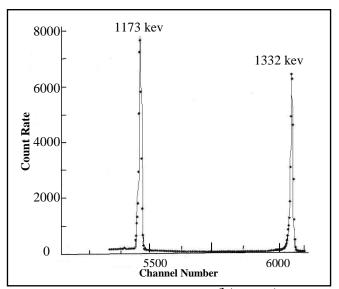
- (Preamplifier) المضخم الابتدائي 2
- (Main amplifier) المضخم الرئيسي 3
- 4 مجهز القدرة العالية (High Voltage Power Supply)
- Personal Computer Analyzer) محلل الحاسبة الشخصية 5

ب - جمع النماذج

جمعت النماذج بوساطة مجرفة صغيرة من مناطق منتخبة من محافظة كركوك تعدادها (18) أنموذجا من التربة، مساحة كل نموذج 90 cm x 90 cm وبعمق 5 وبعد الجمع تم تحضير النماذج كما يأتى:

تم تجفیف النماذج باستخدام فرن تجفیف حراري بدرجة $80C^{\circ}$ لمدة $2 \, \text{mm}$ لماذج خالي من الرطوبة باستخدام مشبك Men flex ذي ثقوب قطرها $2 \, \text{mm}$ ك تتخل التربة

لإزالة الحصى وجذور النباتات العالقة بها ، ولجعل النشاط الإشعاعي للعينة مشتملاً على اكبر عدد من ذراتها و تم اخذ (1) كغم من التربة المجففة ووضعت في وعاء مار نيلي بعد غسله جيداً بحامض الهيدروكلوريك المخفف بالماء وبعدها خزنت النماذج لغرض القياس.


ج - قابلية الفصل الطاقى للكشف

تم استخدام نظير كوبلت - 60 الذي يمثلك خطين (1173 keV, 1332 keV) كما موضحه بالشكل (3) واستخدم المعادلة (1) لحساب قدرة الفصل الطاقي لكاشف الجرمانيوم وبعد انتهاء فترة القياس وجد إن

$$\Delta E = E_2 - E_1 = 1332.5 - 1173.2 = 159.3 \text{ keV}$$

 $\Delta ch = ch_2 - ch_1 = 6195 - 5435 = 760 \text{ ch}$
 $\frac{\Delta E}{\Delta ch} = \frac{159.3 \text{keV}}{760 \text{ch}} = 0.399 \text{keV/ch}$

وبتطبیق معادلة (1) نحصل علی:- R=0.399~kev/ch~x~5.5~ch=2.2~keV

هذه القيمة تمثل القدرة التحليلية الطاقية لكاشف الجرمانيوم النقي

شكل (3): يوضح طيف الطاقي الكوبلت - 60 ومقدار عرض منتصف الذروة للطاقة 1332 keV

د - تحديد النويدات المشعة في نماذج التربة

 $1001~{
m keV}$ عن طريق الانبعاث الضوئي ${
m Pa-234_m}$ نويدة ${
m Ra-226}$ عن طريق الانبعاث الضوئي ${
m Ra-226}$ نويدة ${
m Pb-214}$ عن طريق الانبعاث الضوئي ${
m Pb-214}$ نويدة ${
m Bi-214}$ عن طريق الانبعاث الضوئي

2 – تم تحديد النويدات المشعة الناتجة من متسلسلة انحلال اليورانيوم – 235 خلال: – نويدة U-235 عن طريق قيم الانبعاث الضوئي U-235 الضوئي U-235

(k-40) من خلال قمة الانبعاث الضوئى (k-40) من خلال قمة الانبعاث الضوئى

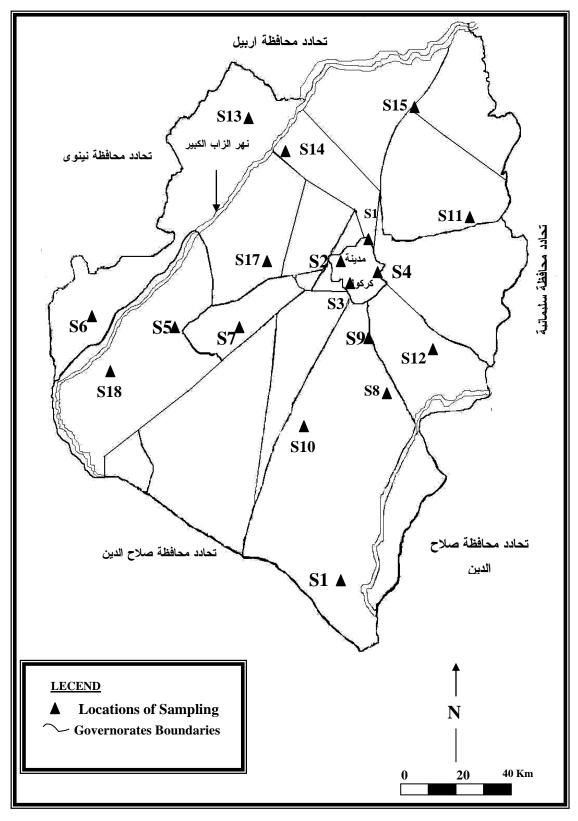
4 - تم تحديد نويدة (Cs-137) من خلال قمة الانبعاث الضوئي Cs-137).

هـ - قياس النشاط الإشعاعي النوعي للنماذج

تم استخدام كاشف الجرمانيوم عالي النقاوة لقياس الطيف الكامي ، وكان هذا الكاشف معزولاً عن كل ما يحيط به بحيث لا يتعامل إلا مع الشعاع الكامي المراد قياسه والخارج من العينة تحت الدراسة فبعد وضع العينة في وعاء مار نيلي (1) لتر وضع كل واحد منهم على الكاشف ولفترة زمنية مقدارها (7200 see). وبوساطة استخدام البرامج الرياضية في الحاسوب الكاشف ولفترة زمنية مقدارها (GDR. PCA) تم تعين النويدات المطلوبة من خلال طاقتها ومن ثم حساب المساحة الصافية (Net Area) تحت المنحني لكل نويدة المراد حساب النشاط الإشعاعي من خلال المعادلة (4).

Specific Activity
$$(Bq) = \frac{Area/Tc - B.G}{I\gamma\% \ EFF \% \ M}$$
 ... (ξ)

النتائج والمناقشة


حللت النماذج البيئية باستخدام منظومة تحليل أطياف كاما وجعل زمن التحليل ساعتين إذ تم حساب النشاط الإشعاعي النوعي للنماذج بالاعتماد على شدة وطاقات بعض النويدات المشعة لانحلال متسلسلة اليورانيوم – 235 والنويدة المشعة المتسلسلة اليورانيوم – 235 والنويدة المشعة لسيزيوم – 137 وكذلك البوتاسيوم – 40 استخدمت المعادلة (4) لايجاد النشاط الإشعاعي النوعي لجميع النويدات المشعة ما عدا نويدة الراديوم – 226 بسبب تداخل طاقاتها مع طاقة 7 keV العائدة لنويدة اليورانيوم – 235 ذو الشدة % 2.5. إذ إن فرق الطاقة بين الذروتين لان قدرته التحليلية الطاقية الطاقية Energy Resolution للكاشف اكبر من 0.5 kev الكاشف اكبر من 0.5 kev

ولغرض حساب النشاط الإشعاعي لنويدة الراديوم - 226 الصافي تم طرح النشاط الإشعاعي لنويدة اليورانيوم - 235 من خلال الذروة 205.3 kev من النشاط الإشعاعي الكلي للراديوم -Leung et al., 1990) 226). وتم اختيار عدد من المواقع الموضحة في الشكل والمدرجة تفاصيلها في الجداول من (1 - 1) إذ يتبين من هذه الجداول نتائج بعض الحسابات $(0.969 - 234 Th/^{226} Ra)$ النصاذج التي تمت در استها منها النسبة 226 Ra النصاذج التي تمت در استها منها النسبة و النسبة 234 Th 234m Pa تتر او ح بين (0.805 – 0.805) فهي قيم جيدة تمثــل حالــة التوازن الإشعاعي بين بداية نظائر متسلسلة اليورانيوم-238. أما بالنسبة لنظير البروتكتينيوم (Pa-234m) فيظهر في بعض النماذج و لا يظهر في أخرى لعمر نصفه القصير. ويمكن اعتبار النشاط الإشعاعي العام لنويدة البوتاسيوم K-40 ضمن الحدود الطبيعية كما نلاحظ من خلال الجداول التركيز العالى للسيزيوم- 137 إذ إن التراكيــز محصــورة بــين -Bq/kg (11.802 Bq/kg) 23.131 Bq/kg) بينما الخلفية الإشعاعية (15.180 Bq/kg) بينما الخلفية الإشعاعية لسيزيوم – 137 هي (Leung et al., 1990) (10 Bq/kg) ، إن هذه الزيادة في معدل تركيز السيزيوم - 137 أكثر من الخلفية الإشعاعية سببه هو احتمالية انتشار نظائر باتجاه منطقة ألدر اسة من المساحة الملوثة المحيطة بحادثة جير نوبل عام 1986 ، إذ أن توزيع تراكيز السيزيوم - 137 نتيجة حادثة جير نوبل اعتمدت على العوامل المناخية الرئيسة كاتجاه ألرياح وهطول الأمطار (نشوان ، ٢٠٠٠). ويوضح الجدول (11) النسبة المئوية لليورانيوم المنضب في كل أنموذج من نماذج التربة وكذلك النسبة بين $U/^{238}$ وهي التي تحدد إن كان اليورانيوم طبيعي أو يورانيوم منضب إذ أنّ نسبة اليورانيوم - 235 واليورانيوم - 238 تحددها الجدول (12) (UNEP, 2000) إذ نلحظ بأن النسبة الطبيعية تبلغ (0.0072)، وإذا كانت هذه النسبة تتراوح من 0.00351 إلى 0.00538 فإن تركيز اليورانيوم المنضب في الأنموذج تتراوح بين 50%-100% أما إذا كانت النسبة 0.00501-0.0072 فان ذلك يعني أن تراكيــز اليورانيوم المنضب تتراوح من %0-%40. إذ أظهرت النتائج أن هذه النسبة تتراوح بين والتي تتراوح ($S_{18}, S_{15}, S_{13}, S_{12}, S_{11}, S_{10}$) والتي والتي تتراوح (0.00720-0.00562) النسبة $U^{238}U^{238}$ فيها (0.0071-0.0064) فإنها غير ملوثة باليورانيوم المنضب واليورانيوم المقاس بمثل الخلفية الإشعاعية ، أما النماذج $(S_8,\,S_7,\,S_2,\,S_1)$ والتي تتراوح هذه النسبة فيها من (0.00602-0.00562) فإنها تحتوى على نسبة قليلة من اليورانيوم المنضب سببها احتمالية نقل الآليات المدمرة من مناطق ثبت تلوثها.

يبين مواقع اعتمدت في وعلى

١	مركز محافظة كركوك – عرفة	S1	1
٠,٩٨٩	مركز محافظة كركوك – مطارالحرية	S2	۲
١	مركز محافظة كركوك – القادسية	S 3	٣
١	مركز محافظة كركوك – الشورجة	S4	٤
١	مركز قضاء الحويجة	S5	٥
٠,٩٥١	قرية قرة سالم	S6	٦
١	ناحية الرياض – المطار	S7	٧
1	جنوب ناحية داقوق	S8	٨
١	مركز ناحية تازة	S 9	9
١	شمال ناحية الرشاد	S10	10
١	شرق ناحية الربيع	S11	11
١	جنوب ليلان	S12	12
١	قرية سركران	S13	13
1,981	شمال ناحية الدبس	S14	14
1	مركز ناحية شوان	S15	15
١	قرية كنعان	S16	16
١	قرية ملاعبدالله	S17	17
1	غرب ناحية العباسي	S18	18

الجدول أدناه النماذج التي الدراسة عمق(5) سم

شكل (4): خريطة المنطقة والمواقع التي جلب النماذج منه

جدول رقم (1): النشاط الإشعاعي للتربة S1

انسبة ^{234m} Pa / ²³⁴ Th	النسبة ²²⁶ Ra / ²³⁴ Th	النشاط الإشعاعي بوحدات Bq/kg لأنموذج S1	الطاقة KeV	النظير
0.805	0.903	101.369	92.6	234Th
		112.258	186.2	²²⁶ Ra
		39.69	205.3	²³⁵ U
		19.169	351.39	²¹⁴ Pb
		22.960	609.3	²¹⁴ Bi
		15.001	661.66	¹³⁷ Cs
		125.881	1001	^{234m} Pa
		396.243	1461.57	⁴⁰ K

جدول رقم (2): النشاط الإشعاعي للتربة S2

النسبة ²³⁴ mPa / ²³⁴ Th	النسبة ²²⁶ Ra / ²³⁴ Th	النشاط الإشعاعي بوحدات Bq/kg لأنموذج S2	الطاقة KeV	النظير
0.9547	0.9699	120.392	92.6	234Th
		124.122	186.2	²²⁶ Ra
		9.406	205.3	²³⁵ U
		29.102	351.9	²¹⁴ Pb
		31.982	609.3	²¹⁴ Bi
		13.601	661.66	¹³⁷ Cs
		126.102	1001	^{234m} Pa
		442.001	1461.57	⁴⁰ K

جدول رقم (3): النشاط الإشعاعي للتربة S7

انسبة ^{234m} Pa / ²³⁴ Th	النسبة ²²⁶ Ra / ²³⁴ Th	النشاط الإشعاعي بوحدات Bq/kg لأنموذج S7	الطاقة KeV	النظير
0.851	0.965	97.147	92.6	234Th
		100.636	186.2	²²⁶ Ra
		42.999	205.3	²³⁵ U

15.319	351.9	²¹⁴ Pb
14.353	609.3	²¹⁴ Bi
18.301	661.66	¹³⁷ Cs
114.136	1001	^{234m} Pa
381.172	1461.57	⁴⁰ K

جدول رقم (4): النشاط الإشعاعي للتربة S8

النسبة 234mPa / 234Th	النسبة 226Ra / 234Th	النشاط الإشعاعي بوحدات Bq/kg لأنموذج S8	الطاقة KeV	النظير
0.931	0.828	96.04	92.6	234Th
		115.852	186.2	226Ra
		57.283	205.3	235U
		15.003	351.9	214Pb
		/	609.3	214Bi
		11.802	661.66	137Cs
		103.118	1001	234mPa
		383.722	1461.57	40K

جدول رقم (5): النشاط الإشعاعي للتربة S10

النسبة ^{234m} Pa / ²³⁴ Th	النسبة ²²⁶ Ra / ²³⁴ Th	النشاط الإشعاعي بوحدات Bq/kg لأنموذج S10	الطاقة KeV	النظير
/	0.891	73.514	92.6	234Th
		82.505	186.2	²²⁶ Ra
		/	205.3	²³⁵ U
		10.308	351.9	²¹⁴ Pb
		/	609.3	²¹⁴ Bi
		17.502	661.66	¹³⁷ Cs
		/	1001	^{234m} Pa
		530.405	1461.57	⁴⁰ K

جدول رقم (6): النشاط الإشعاعي للتربة S11

النسبة ^{234m} Pa / ²³⁴ Th	النسبة ²²⁶ Ra / ²³⁴ Th	النشاط الإشعاعي بوحدات Bq/kg لأنموذج S11	الطاقة KeV	النظير
/	0.833	87.781	92.6	234Th
		105.333	186.2	²²⁶ Ra
		/	205.3	²³⁵ U
		11.832	351.9	²¹⁴ Pb

/	609.3	²¹⁴ Bi
19.912	661.66	¹³⁷ Cs
/	1001	^{234m} Pa
263.009	1461.57	⁴⁰ K

جدول رقم (7): النشاط الإشعاعي للتربة S12

انسبة ^{234m} Pa / ²³⁴ Th	النسبة ²²⁶ Ra / ²³⁴ Th	النشاط الإشعاعي بوحدات Bq/kg لأنموذج S12	الطاقة KeV	النظير
/	0.935	69.221	92.6	234Th
		74.001	186.2	²²⁶ Ra
		/	205.3	²³⁵ U
		29.64	351.9	²¹⁴ Pb
		23.031	609.3	²¹⁴ Bi
		/	661.66	¹³⁷ Cs
		/	1001	^{234m} Pa
		498.117	1461.57	⁴⁰ K

جدول رقم (8): النشاط الإشعاعي للتربة S13

انسبة ^{234m} Pa / ²³⁴ Th	النسبة ²²⁶ Ra / ²³⁴ Th	النشاط الإشعاعي بوحدات Bq/kg لأنموذج S13	الطاقة KeV	النظير
/	/	/	92.6	234Th
		/	186.2	²²⁶ Ra
		/	205.3	²³⁵ U
		18.021	351.9	²¹⁴ Pb
		11.513	609.3	²¹⁴ Bi
		20.410	661.66	¹³⁷ Cs
		/	1001	^{234m} Pa
		223.081	1461.57	⁴⁰ K

جدول رقم (9): النشاط الإشعاعي للتربة S15

النسبة ²³⁴ mPa / ²³⁴ Th	النسبة ²²⁶ Ra / ²³⁴ Th	النشاط الإشعاعي بوحدات Bq/kg لأنموذج S15	الطاقة KeV	النظير
/	0.890	69.555	92.6	234Th
		78.091	186.2	²²⁶ Ra
		/	205.3	²³⁵ U
		/	351.9	²¹⁴ Pb

/	609.3	²¹⁴ Bi
23.131	661.66	¹³⁷ Cs
/	1001	^{234m} Pa
511.836	1461.57	⁴⁰ K

جدول رقم (9): النشاط الإشعاعي للتربة S15

انسبة ^{234m} Pa / ²³⁴ Th	النسبة / ²³⁴ Th ²²⁶ Ra	النشاط الإشعاعي بوحدات Bq/kg لأنموذج S18	الطاقة KeV	النظير
/	0.873	77.734	92.6	234Th
		89.009	186.2	²²⁶ Ra
		/	205.3	²³⁵ U
		13.572	351.9	²¹⁴ Pb
		/	609.3	²¹⁴ Bi
		12.141	661.66	¹³⁷ Cs
		/	1001	^{234m} Pa
		296.03	1461.57	⁴⁰ K

جدول رقم (10): النشاط الإشعاعي للتربة S18

النسبة	النسبة	النشاط الإشعاعي بوحدات	TZaNZ Tältet	t+1
^{234m} Pa / ²³⁴ Th	²²⁶ Ra / ²³⁴ Th	Bq/kg لأنموذج S18	الطاقة KeV	النظير
/	0.873	77.734	92.6	234Th
		89.009	186.2	²²⁶ Ra
		/	205.3	²³⁵ U
		13.572	351.9	²¹⁴ Pb
		/	609.3	²¹⁴ Bi
		12.141	661.66	¹³⁷ Cs
		/	1001	^{234m} Pa
		296.03	1461.57	⁴⁰ K

جدول (11) : نتائج حسابات النسبة المئوية لليورانيوم والنسبة بين U^{235} معدل الخلفية الإشعاعية لليورانيوم U^{235} معدل الخلفية الإشعاعية لليورانيوم U^{235} في تربة كركوك U^{235} معدل الخلفية المؤلفة عاملة على المؤلفة المؤ

1/Ru	$Ru = {}^{235}U/{}^{238}U$	كمية اليورانيوم الطبيعي X-1	النسبة المؤية لليورانيوم المنضب X%	نسبة اليورانيو م المنضب (Du) mg/kg	تركيز اليورانيوم – 238 mg/kg	رمز الأتموذج
165.939	0.00602	0.6708	32.919	2.702	8.208	SS1
177.935	0.00562	0.5648	43.516	4.242	9.748	SS2
163.398	0.00612	0.6999	30.004	2.360	7.86	SS7
162.601	0.00615	0.7088	29.172	2.267	7.773	SS8
143.472	0.00679	0.9250	7.493	0.446	5.952	SS10
156.252	0.00640	0.7746	22.537	1.601	7.107	SS11
151.174	0.00659	0.8923	1.765	0.0989	5.604	SS12
/	/	/	/	/	/	SS13
139.664	0.00716	0.9480	2.219	0.125	5.631	SS15
147.492	0.00678	0.8748	12.519	0.788	6.294	SS18

جدول (12) : يبين العلاقة بين نسبة اليورانيوم المنضب واليورانيوم الطبيعي في ${\bf R}{=}^{235}{\bf U}\,/\,^{238}{\bf U}$ نماذج التربة

X	1-X	R=U-235/U-238 In the sample	1/R
0.0	1.0	0.00720	139
0.1	0.9	0.00688	145
0.2	0.8	0.00650	154
0.3	0.7	0.00613	163
0.4	0.6	0.00575	174
0.5	0.5	0.00538	186
0.6	0.4	0.00501	200
0.7	0.3	0.00463	216
0.8	0.2	0.00426	235
0.9	0.1	0.00389	257

1.0	0.0	0.00351	285
1.0	0.0	0.00221	_00

الاستنتاجات

- 1- وجد ان نسبة U / U^{238} في قياساتنا لنماذج التربة (S8, S7, S2, S1) بحدود U / U^{238} التي تدل على وجود نسبة متفاوتة من التلوث باليورانيوم المنضب اما النماذج من (S18, S15, S13, S12, S11, S10) فهي غير ملوثة باليورانيوم المنضب .
- 234 Th / 226 Ra و النسبة 234 Th / 226 Ra تكون بحدود 234 Th / 226 Ra بحدود (0.954-0.805) التي تدل على التوازن الإشعاعي ولكن لم يلحظ هذا التوازن ما بعد الراديوم بسبب نفوذ الرادون 232 Rn من الوعاء البلاستيكي (المارنيللي) .
- 3- أكدت النتائج زيادة في تراكيز السيزيوم 137 إذ وجد بأن معدل هذه التراكيز بحدود 10 Bq/Kg ، 10 Bq/Kg وهي أعلى من الخلفية الإشعاعية للمنطقة التي هي بحدود 15.180 Bq/Kg هذه الزيادة تبرهن أن منطقة الدراسة أصبحت ملوثة من حادثة جيرنوبل 1986 .
- 4- وجد أن البروتكتينيوم (Pa-234m) يظهر في بعض نماذج و لا يظهر في نماذج أخرى لعمر نصفه القصير .

References

• Eisenbud, M., (1987): Environmental Radioactivity, 3rd, Academic Press Inc, 110p.

- IAEA, (1996): International Atomic Energy Agency, Safety Series; vol.1, 135p.
- IAEA, (1990): The Environmental Behavior of Radium, vol.2, 147p.
- IAEA, (1989): International Atomic Energy, Measurement of Radionuclides in food and Environment, Vienna, vol.3, 180p.
- Knoll, G., (1979): Radiation Detection and Measurement, John Wiley, U.S.A, 92p.
- Leung, K.C., Lau, S.Y., Poon, C.B., (1990): Gamma Radiation Dose From Radionuclides in Hong Kong Soil, J. Environ Radioactivity, vol.11, PP. 279-285; Elsevier Science Publishers Ltd.
- Lin, Y., Lin, P., Chen C., Huang, C., (1990): Measuremnts of terrestrial & radiation in taiwan, republicof china, Health Physices, Vol.52, pp.805-811, Health Physics Society, (JUNE).
- Mollah, A.S., Rahman, M.M., Husain, S.R., June, (1986): Distribution of γ emitting Radio nuclides in Soil at the Atomic Energy Research Establishment, Saver, Bangladesh, Health Physics, Vol.50, pp.235-238. Health Physics Society.
- R.Bertell, (1999): Gulf war Veterans and Depleted Uranium, Hagne peace conference, May, 71p.
- UNEP, (2000): Scientfic Mission to Kosovo Depleted Uranium in Kosovo, vol.32, pp.139–142, Post Conflict Environment Assessment.
- United Nations Scientific Committee on the Effects of Atomic Radiation, (1996): Sources and Effects of Ionizing Radiation, vol.22, 90p., New York.
- United Nation Scientific Committee on the Effects of Atomic Radiation, (1988): Sources Risks and Effects of Ionizing Radiation, vol.15, 155p, United Nations.
- Uranium Radiation Properties, (2000): Last Updated, 1 Sep. [From Internet], vol.18, 160 p.
- WHO., (1996): (World Health Organization), Health Consequences of the Chernobyl Accident, Scientific Report, Geneva. 45p.

المصادر

- ألغرابي، سعاد جاسم (2002): التلوث الناتج عن استخدام دول ألعدوان لليورانيوم ألمنضب في جنوب العراق بعد عشر سنوات ، مقررات ألمؤتمر ألعلمي عن تأثير استعمال اليورانيوم المنضب في الانسان والبيئة في العراق ، ألجزء الأول ، أذار، ٦٩ ص .
- الكناني، عذاب طاهر (2001): التحري عن اليورانيوم المنضب في تربة مواقع مختلفة من محافظة البصرة) ، مجلة الرياضيات والفيزياء ، المجلد ١٦ .

- الكناني، عذاب طاهر (1990): ألكشف عن الإشعاعات المؤينة، وزارة التعليم العاليي والبحث العلمي ، هيئة المعاهد الفنية ١٥٠ ص .
- الخطيب، غسان هاشم، (1984): الطاقة الذرية واستخداماتها السلمية، الطبعة الثانية ، منظمة الطاقة الذرية، ٥٧ ص.
- جاسم، جاسم زبون، الحارثي، رشيد أبو غيدا (1989): اليورانيوم المنضب معدن العار، ٩٢ ص .
- علي، عطية عبد الله ، شذى الدركزي ، مازن عمانؤيل(1990): الفيزياء النووية التجريبية،
 وزارة التعليم العالى و البحث العلمى ، جامعة بغداد، ۸۷ ص.
- مجموعة بحوث في الندوة العلمية حول استخدام الاسلحة الحربية لليورانيوم المنضب في المنطقة الجنوبية من العراق عام (1998).
- نشوان، شوكت على (2000): التلوث الإشعاعي البيئي ومصادره في محافظة نينوى، رسالة ماجستير هندسة البيئة / جامعة بغداد، ١٢٠ ص.

Study The Radiatory Pollution in Selected Soils of Kirkuk Governorate

Farid M. Mohammed* Shaker M. AL-Jobori**
Sameen F. Mohammed*
*College of education – University of Tikrit

**College of the Madinat Al-Elim Al-Jameaa / Baghdad / Al-Khalisa
school

Received: 17/5/2009, Accepted: 25/1/2010

Abstract

18 samples of soil were collected from selected places in Al-Tamim governorate and these samples were measured by using Gamma ray spectrum system represented by Germanium high purity (HPGe) with energy resolution 2.2 KeV at the energy 1332 KeV of Co^{60} . The system was attached to the computer where the spectrum was collected and analyzed by the PCA program which is a comprehensive program for spectral and quantity analysis of Gamma ray. The radiatary activity of radiating nuclides resulting from the chain of $\mathrm{U}^{238},\mathrm{U}^{235},\mathrm{K}^{40}$ and Cs^{137} were calculated . The ratios $\mathrm{Th}^{234}/\mathrm{Ra}^{226}$, was found (0.828 – 0.969), $\mathrm{Th}^{234}/\mathrm{Pa}^{234\mathrm{m}}$, was found to be

The ratios Th^{234}/Ra^{226} , was found (0.828 – 0.969), Th^{234}/Pa^{234m} , was found to be (0.805 – 0.954). The value of R which represents U^{235}/U^{238} was counted and it ranged between (0.00562-0.00602) for the samples of polluted soils and (0.0064-0.0071) for

the unpolluted soil. The value of R in the soil 100% polluted with the depleted Uranium Equals 0.00351. The present study proves the existence of high concentrations of Cs^{-137} exceeding (11 Bq/Kg).