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Abstract 

 
     In this work we study some type of Smarandache semigroups and Smarandache 

subgroups of a semigroup such as Smarandache cyclic semigroups, Smarandache p- 

Sylow subgroups and Smarandache normal subgroups. In addition we introduce the 

concept of Smarandache ideal of a semigroup and study its relation with Smarandache 

normal subgroup. 

 

Introduction 
     A semigroup S called a Smarandache semigroup if there is a proper 

subset of S which is a subgroup of S (Raual, 1998), (by a subgroup A of S 

we mean a subset A of S which is a group under the same operation of S). 

It is known that if e is an idempotent of a semigroup S then Ge= {aS| 

a=ae and e=a1 a=a a1 for some a1S} equal to S or it is the maximal 

subgroup of S having e as its identity (Mario, 1973). 
    Many Smarandache concepts introduced by Kandasamy,V. W. and many 

open research problems are given(Kandasamy, 2002). A Smarandache 

semigroup S called Smarandache cyclic semigroup if every subgroup of S 

is cyclic (Kandasamy, 2002). If S be a finite Smarandache semigroup, P a 

prime which divides the order of S, then a subgroup of S of order p or p
t
 (t 

>1) called Smarandache p-Sylow subgroup. In this work we give complete 

answer of the following problems given in (Kandasamy, 2002). 

1- Find condition on n, n a non prime so that Zn, the semigroup under 

multiplication modulo n is a Smarandache cyclic semigroup. 

2- Let (Z2
n
,.) be the semigroup of order 2

n
 . For n>3 arbitrarily large find 

the number of Smarandache 2-Sylow subgroup of Z2
n
. 

In addition we introduce the concepts of Smarandache ideal, Smarandache 

prime ideal and study some of their properties and we give the relation 

between Smarandache ideals and Smarandache normal subgroups. 
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S1: Smarandache cyclic semigroups  
     In this Section we discuss Smarandache cyclic semigroups, and find the 

number of cyclic subgroups of (Zp
n
,.) for  n>2. 

 

Lemma1.1.  

    ( p
n
,.) p prime, has no nontrivial idempotent. 

Proof: The proof is easy. 

Theorem 1.2.  

      ( p
n
,.) p an odd prime, n>2, is a Smarandache cyclic semigroup.  

Proof: Since 1)(  nnn ppp  the number of elements in   which 

have inverses form a group under multiplication, and then  have a 

subset which is a group of order 1 nn pp . This subgroup is the largest 

subgroup with 1 as its identity. Since there exists an element  which is 

a primitive root of  (Kenneth, 2004), )(mod1
1 npp pa

nn


  and a 

generates , thus  is cyclic. Hence all subgroups of p
n
 are cyclic, and p

n
 

is a Smarandache cyclic semigroup.   

Lemma 1.3.  
     Let (G,.) be a semigroup with identity 1and S={xG: x

2
=1}. Then (S,.)  

is a cyclic group if and only if S contains at most two elements. 

Proof: The proof is easy. 

Proposition 1.4.   

     1- The semigroup ,.)(
2kZ , k 2 is a Smarandache semigroup which is not 

a Smarandache cyclic semigroup. 

     2- The semigroup ,.)(
2 pkZ , k≥2, p an odd prime, is a Smarandache 

semigroup which is not a Smarandache cyclic semigroup. 

Proof: 1- Since 12)12)(12(,1)12()12( 112121   kkkkk , and    

1)12( 2 k , then )}12(),12(),12(,1{ 11   kkkS  is a subgroup of 

,.)(
2kZ  and by Lemma 1.3, S is not cyclic. Hence ,.)(

2kZ  is not a 

Smarandache cyclic semigroup. 

2- Similar to part 1. 

Theorem1.5.  

      ,.)(
2 np

Z , p odd prime is a Smarandache cyclic semigroup. 

Proof: First we show that np
Z

2
 has two maximal subgroups of 

order )2( np . It is known that there exists a number  belonging 
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to )2)(mod2( nn pp , so )2(mod1)2( nn pp  , and a generates a group 

(G1) of order )2( np  with 1 as its identity. Since )21)2( nn kpp   for 

some 1k , then nnnn kpppp 2)1()2(  . Therefore 

 )2)(mod1()2( nnnn pppp  . We claim that npa   generates a 

group of order )2( np  and np1  is its identity element.  

)2)(mod()( 2 nnn ppp   and )2)(mod1()1( 2 nnn ppp  , hence 

)2)(mod()( 22 nnn ppapa  and )2)(mod()( 33 nnn ppapa  . If a 

is even, then nn pap  , consequently )2)(mod()( 33 nnn ppapa  . If a  

is odd, then )2(mod nnn ppap   which implies that 

)2)(mod()( 33 nnn ppapa  . Continuing in this manner we get 

)2(mod1)( )( nnpn pppa
n

  ,  and )2(mod)( 1)( nnpn ppapa
n

  .  

This means that ( npa  )generates a subgroup of order )2( np , and since 

nlnnl pa)p1()pa( +=++ , for each )(1 npl    then )1( np  is the 

identity element of the group generated by a+p
n
 which is cyclic (the group 

G1+p
n
) . Note that  is a subgroup of np

Z
2

. Since the maximal subgroups 

are cyclic, np
Z

2
 is a Smarandache cyclic semigroup. 

Proposition 1.6.  

      ,.)( mnqp
Z , where p,q are odd primes, is a non cyclic Smarandache 

semigroup. 

Proof: Since the congruence )(mod12 mnqpx   has exactly 4 

solutions(Kenneth,2004,p.152),  the set }1;{ 2  xxS  contains four 

elements and by Lemma 1.3, S is a non cyclic subgroup of mnqp
Z .Then 

mnqp
Z  is not a Smarandache cyclic semigroups.  

 

     The direct product of two Smarandache cyclic semigroups need not be a 

Smarandache cyclic semigroup in general.  

Example 1.7.  

      ( 5,.) and ( 7,.) are Smarandache cyclic semigroups but 75 ZZ   is not a 

Smarandache cyclic semigroup since }Zy0andZx0:)y,x{(G 75 ∈≠∈≠=  is 

a non cyclic group. 
 

      Now, we give a condition under which the direct product of a finite 

number of Smarandache cyclic semigroups is Smarandache cyclic. 
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Theorem 1.8. 

         Let , i=1…n be finite Smarandache cyclic semigroups , such 

that for any maximal subgroups nGGG ,...,, 21  of S1,S2,…,Sn respectively, 

order(Gi) and order(Gj) are relatively prime for each i≠ j. Then 

nSSS  ...21  is a Smarandache cyclic semigroup. 

Proof: Let Gi be a maximal subgroup of Si for . Since Gi is a 

 cyclic group, niZG
ipi ,...2,1,  , and since (pi,pj)=1 for each i,j , then 

 which is a cyclic group and  

 which is a subgroup of 

nSSS  ...21 ,then nSSS  ...21  is a Smarandache cyclic semigroup.  

Proposition 1.9. 
 

     


 ijijnn
aaS ,){(  , k  under matrix multiplication is not a 

Smarandache cyclic semigroup. 

Proof: Since 

 

 

is a non cyclic subgroup of nnS  , then nnS   is not a Smarandache cyclic 

semigroup.  

Theorem 1.10.    

       Consider the multiplicative semigroup ( nG,.) of the group ring nG, 

n 3, and G is a cyclic group of order m . Then 

1- If n=2
k 
 for some , then the Smarandache semigroup ( nG,.) is not 

cyclic 

2- If m is an even number then the Smarandache semigroup ( nG,.) is not 

cyclic. 

Proof: 1- By Proposition 1.4, ( 2
k
,.) has a non cyclic subgroup which is a 

subgroup of ( 2
k
G,.).   

2- Suppose G is generated by g. Since m is even,  nG and(n-1)  

nG. Moreover   , ((n-1) =1, so {1, , (n-1) , n-1} is a  

non cyclic subgroup of ( nG,.).   
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S2: Smarandache p-Sylow subgroups 

    In this Section we study Smarandache p- Sylow subgroups of a 

semigroup, and we find the number of p- Sylow subgroups in 2
n
,.).     

Theorem 2.1.   

     The semigroup 2
n
,.) n>2, has three Smarandache 2-Sylow subgroups 

of order two. 

Proof: The congruence )2(mod12 nx   has exactly 4 solutions 

(Kenneth,(2004),p.152), namely 12,12,12,1 11   nnn . Then 

 }12,1{},12,1{ 1
21  nn AA and }12,1{ 1

3  nA are Smarandache 2-

Sylow subgroups of order two. Hence 2
n
 has three Smarandache 2-Sylow 

subgroups of order 2.  

Theorem 2.2.  

       The semigroup 2
n
,.), n>3 has three Smarandache 2-Sylow subgroups 

of order four. 

Proof: Since 2
n
 has four elements each one is its own inverse (Kenneth, 

2004) namely, 12,12,12,1 11   nnn .Then 

 }12,12,12,1{ 11
1   nnnA  is a Smarandache 2-Sylow subgroup of 

order 4. Since only one of the four solutions which is 12 1 n  is a solution of 

the congruence )8(mod1y , then the congruence )2(mod12 12 nnx    

has four solutions (Edmund, 1966) they are 

 12,122,12 2
3

2
2

2
1   nnnn xxx  

122 2
4  nnxand .  

Now ).2mod(12)12( 1222
1

nnnx  

 ,)2mod()12)(12( )
4

213
1

nnn xx    

).2mod(1)12( 214
1

nnxand    Hence }12,,,1{ 1
412  nxxA is a  

Smarandache 2-Sylow subgroup of order 4 generated by 4x  and also 

generated by 1x . Let us compute ,,, 4
2

3
2

2
2 xxx   

),2mod(12 1-2
2

nnx           

),2mod(12-222-2 3
213-21-23

2
nnnnnn xx  

  
).2mod(1)12( 214

2
nnx    Hence }12,,,1{ 1

323  nxxA  is a 

Smarandache 2-Sylow subgroup of order 4 generated by x2 and also it is 

generated by x3. Hence 2
n
 has three Smarandache 2-Sylow subgroups of 

order four namely A1, A2 and A3.  
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Theorem 2.3.  

     The semigroup 2
n
,.), n>4 has three Smarandache 2-Sylow subgroups 

of order 8. 

Proof: Similar to the proof of Theorem 2.2. 

Theorem 2.4. 

      The semigroup 2
n
,.), n>5 has three Smarandache 2-Sylow subgroups  

of order 16. 

Proof: As we have seen in the last theorem that 2
n 

has eight elements of 

order 8 which are 

 122,122,122,12 3
4

31
3

32
2

3
1   nnnnnnn yyyy  

.122,122,122,12 31
4

3
3

31
2

3
1   nnnnnnn zandzzz

Since )8(mod11 y , ),8(mod13 y )8(mod12 z and )8(mod13 z . As 

before each of the following congruence has four solutions  

           )1()2(mod1
2 nyx   

           )2()2(mod3
2 nyx   

           )3()2(mod2
2 nzx   

           )4().2(mod3
2 nzx   

So there are 16 elements of 2
n
 of order 16 which are 

122,122,122,12 41
4

41
3

4
2

4
1   nnnnnnn AAAA

,1222,122,122 42
3

42
2

42
1   nnnnnnn BBB

1222 43

4   nnnB , ,122,12 41
2

4
1   nnn CC 122 4

3  nnC ,

122 41
4   nnC , 122,122 42

2
42

1   nnnn DD

.1222,1222 43
4

42
3   nnnnnn DandD  Then E1={C1, y3, 

B3, x1, D2, z3, A2, w1, C2, y1, x1 , B1, D4, z4,  A4, 1} 

 where w1=2
n-1

+1, is a cyclic group generated by any one of the elements 

C1, B3, D2, A2, C2, B1, D4, and  A4. Hence E1 is a Smarandache 2-Sylow 

subgroup of order 16. E2={A1, z2, D3, x2, B2, C3 ,y1, w1, A3, z3, D1 , x1, B4, y3, 

C4, 1} is a cyclic group of order 16 generated by any one of elements A1, 

D3, B2, C3, A3, D1 , B4, and C4. Since by the last theorem 
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}1,,,,,,,{ 3231211 zxywzxy  and }1,,,,,,,{ 4241112 zxywzxy  and 

},,,,1,,,{ 3121321413 xxxxxxwxxA  are subgroups of order 8 then  

E3= },,,,,,,1,,,,,,,{ 41411121,44123231211 zyyyzyyyzyzyzxywzxy        

},,,,,,,,1,,,,,,,{ 41131141314131433231211 xxyxxyxyxyxxxxxxzxywzxy  

},,,,,,,,1,,,,,,,{ 41231242324131434241112 xxyxxyxyxyxxxxxxzxywzxy , 

Is a Smarandache 2- Sylow subgroup of order 16. Then 2
n
 has three 

Smarandache 2- Sylow subgroups of order 16.  

     Combining the previous theorems, we get the following result. 

Theorem 2.5.   

       2
n
,.) n>1, has (3n-5) Smarandache 2- Sylow subgroups  

Proof: It is well known that 
*
m, the set of all invertible elements in m, the 

ring of the integer modulo m contains φ (m) elements, so 2
n
 has φ (2

n
) 

=2
n-1

 invertible elements. Hence the semigroup 2
n
,.) Contains a subgroup 

of order 2
n
-1 which is the largest subgroup with 1 as its identity namely G1. 

By Theorem 2.1 for large n, 2
n
 has 3-Sylow subgroup of order 2 and by 

Theorems 2.2, 2.3 2
n
,.)  Has three subgroup of order 8 and three subgroup 

of order 16. Continuing in this manner we get that 2
n
 contains three 

subgroup of order 2
k
 for each 1≤ k ≤ n-2.Hence the number of Sylow 

subgroup equal to 3(n-2) +1=3n-5.   

Example 2.6.   

      The Smarandache semigroup ( 64,.), has the following 2-Sylow 

subgroups,   of order 2.  

It has three Smarandache 2- Sylow subgroups of order 4, three 

Smarandache 2- Sylow subgroups of order 8, three Smarandache 2- Sylow 

subgroups of order 16 and one Smarandache 2-Sylow subgroup of order 

32. 

Theorem 2.7.   

      If )2( npk  , then  has two cyclic subgroups of order k. 

Proof: Suppose )2( npk  . By Theorem 1.6,  has two maximal  

Subgroups of order )2( np  and since   )2( npk  , each maximal subgroup 

has exactly one cyclic subgroup of order k (Neal & Thomas, 1977), then 

 has two cyclic subgroups of order k.  
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Corollary 2.8.  

      If )2( nm pk  where k, p are prime numbers, then has 2m 

Smarandache k-Sylow subgroups. 

 

S3. Smarandache ideals and Smarandache normal subgroups 
     A non empty subset T of a semigroup S is a left ideal of S if s∈S, t T∈  

imply st∈T, T is a right ideal if s∈S, t∈T imply ts∈T, T is a two-sided 

ideal if it is both a left and right ideal(Mario, 1973, p.5). In this section we 

study Smarandache normal subgroups and we introduce the concepts of 

Smarandache ideal and Smarandache prime ideal of a semigroup and 

discuss the relation between Smarandache ideals and Smarandache normal 

subgroups.   

Definition 3.1.  

      Let S be a semigroup and I an ideal of S. Then I is said to be a 

Smarandache ideal of S if I contains a proper subset which is a group. 

     Clearly every Smarandache ideal of a semigroup is an ideal of the 

semigroup but the converse need not be true, for example, ( ,.) is a 

semigroup and I=3  is an ideal of  but not a Smarandache ideal because 

no subset of I is a subgroup. 

Remark 3.2.  

     If I1 and I2 are Smarandache ideals of  the semigroup S, then I1∩I2 need 

not be a Smarandache ideal, for example in( 20,.) take I1= 

{0,2,4,6,8,10,12,14,16,18} and I2={ 0,5, 10, 15}. I1 and I2 are Smarandache 

ideals but I1∩I2= {0, 10} is an ideal but not a Smarandache ideal of ( 20,.) 

Theorem 3.3. 

         Let S be a Smarandache semigroup and I is a Smarandache ideal of S. 

Then I contain a maximal subgroup of S. 

Proof: Let A be a subgroup of S with identity e. Then Ge is the maximal 

subgroup of S with e as its identity. Clearly A is a subgroup of Ge. If Ge I, 

then there exists xGe, xI. Since I is an ideal, hence x=x.e I, 

contradiction. Therefore Ge I and I contains a maximal subgroup of S. 

Definition 3.4.  
     Let S be a semigroup. A Smarandache ideal I of S is a Smarandache 

prime ideal if it is a prime ideal of S. 

Example 3.5. 

    I= {2, 4, 6, 8, 10, 12, 14, 16, 18, 0} is a Smarandache prime ideal of the 

multiplicative semigroup Z20. 

      Note that if M be a Smarandache maximal ideal of a semigroup S with 

identity, then M is a Smarandache prime ideal. 
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Proposition 3.6. 

       Let nSSS ,...,, 21  be Smarandache semigroups, Ii be an ideal of Si for 

each i. Then  nIII  ...21  is a Smarandache ideal of nSSS  ...21 . 

Proof: Suppose that Ii is a Smarandache ideal of Si, we will show that  

nIII  ...21  is a Smarandache ideal of nSSS  ...21 . Let ),...,( 21 naaa be an 

element of nIII  ...21  and ),...,( 21 nbbb  be an element in nSSS  ...21  

then ),...,( 21 naaa . ),...,( 21 nbbb = ).,...,.,.( 2211 nn bababa  nIII  ...21 . Since Ii is 

an ideal, iii Iba .  for each 1≤i≤n. Hence nIII  ...21 is an ideal 

of nSSS  ...21 . Let Ai be a subgroup of Ii for each i, then (A1, A2... An) Is a 

subgroup of nIII  ...21 . Then nIII  ...21  is a Smarandache ideal of 

the semigroup nSSS  ...21 .  

Definition 3.7 (Mario, 1973).   

     An element 0 of a semigroup S (if exists) called the zero of S if 

x0=0x=0 for each xS. 

Definition 3.8(Kandasamy, 2002). 

     A subgroup A of a Smarandache semigroup S is called a Smarandache 

normal subgroup of S if xAA and AxA or xA= {0} and Ax= {0} for all 

xS (0 is the zero of S) 

Theorem 3.9.  
       Let S be a Smarandache semigroup with identity 1. If 1 is the identity 

of all subgroups of S, then S has no Smarandache normal subgroup 

Proof: Suppose that A is a proper subgroup of S and 1A, let 0≠x S\A. 

Then 0≠x.1=xA, which implies xAA and xA ≠ {0}. Hence A is not a 

Smarandache normal subgroup of S. 

Theorem 3.10.  
       Let S be a Smarandache semigroup. If A is a Smarandache normal 

subgroup of S, then A is a maximal subgroup of S.  

Proof: Suppose A is a Smarandache normal subgroup of S contained in a 

subgroup A
/
≠S i.e AA

/
.Then there is an element xA

/
 \A. This implies 

0≠x=x.eA where e is the identity of A, thus xAA and xA ≠ {0} 

contradiction.  

Theorem 3.11.  

      Let S be a Smarandache semigroup with 0, and A be Smarandache 

normal subgroup of S. Then A  {0} is a Smarandache ideal of S. 



Journal of Kirkuk University – Scientific Studies , vol.6, No.1,2011 

 

 

 100 

Proof: Since xAA or xA={0} for xS, then clearly  A {0} is an ideal of 

S and A is a subgroup of A {0}. There fore A  {0} is a Smarandache ideal 

of S.  

    The converse of the last theorem need not be true in general for example, 

I={2,4,6,8,10,12,14,16,18,0} is a Smarandache ideal of (Z20,.) but not a 

Smarandache normal subgroup. 

Theorem 3.12.  

   The Smarandache semigroup ( ,.), has only one Smarandache normal 

subgroup which is trivial. 

Proof: We show that no non trivial subgroup is normal. We saw (Theorem 

1.5) that  has two maximal subgroups one of them is generated by a 

primitive root a of 2p
n
 and the other generated by a+p

n
, and both of them 

are of order φ (2p
n
) =p

n-1
(p-1). The subgroup generated by a cannot be 

normal, since it contains 1. It remains to prove that the subgroup generated 

by a+p
n
 is not normal. Remember that (1+p

n
) is the identity of this  

Subgroup which usually denoted by Gp
n

+1, and it is the maximal subgroup 

 having 1+p
n
 as its identity. We claim that 2 Gp

n
+1. First 2(1+p

n
) =2 (mod 

2p
n
). Next consider the congruence 2x=p

n
+1 (mod 2p

n
), which has exactly 

two solutions (Edmund, 1966, p.62). So 2 Gp
n

+1. Since p (p
n
+1) = p

n
+p 

(mod2p
n
)≠p (mod 2p

n
) hence pGp

n
+1 moreover 2pGp

n
+1 and 2p≠0, hence 

Gp
n

+1 is not a Smarandache normal subgroup of . So no non trivial 

subgroup is Smarandache normal subgroup.  

Theorem 3.13. 

      ( pq
n
,.) p,q are odd prime numbers  is a Smarandache semigroup which 

 has a nontrivial Smarandache normal subgroup. 

Proof: Let S1= {q
n
, 2qn… (p-1) qn}. We claim that S1 is a Smarandache  

normal subgroup. Its well known that  pq
n
   p×  q

n
 as rings so pq

n
 has a 

subring isomorphic to  p, that is F1={0,q
n
,2q

n
,…,(p-1)q

n
}is a field with 

addition and multiplication mod pq
n
. Hence S1 is a group under 

multiplication. It remains to show that S1 is a normal subgroup of  pq
n
. Let 

xS1. If x=lq then lqa=0 for each aS1. If x≠lp and 0<x<p, then xq
nS1. If 

x≠lp and x>p, then by Euclidean Algorithm x=sp+r 0 r<p, thus xq
n
= 

(sp+r)q
n
=spq

n
+q

nS1. Hence xS1 S1 or xS1=0 Finaly if xS1 then xS1S1. 

This means that S1 is normal. Similarly pq
n
 has a subring isomorphic to q

n
 

which is T={0,p,2p,…,(q
n
-1)p} and T has a subfield namely 

F2={0,p,2p,…(q-1)p,(q+1),…(2q-1)p,(2q+1)p,…(q
n
-1)p}, then 

S2={p,2p,…(q-1)p,(q+1),…(2q-1)p,(2q+1)p,…(q
n
-1)p} with multiplication  

is a group which is not a normal subgroup, since q  pq
n
, but pq≠0 and 

pqS2. There are three maximal subgroups S1, S2 and S3 where S3= {a: (a, 
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pq
n
) =1}, S1 is Smarandache normal subgroup, but S2, S3 are not 

Smarandache normal subgroups. 

Theorem 3.14. 

      Let n= p1p2…pn, where pi are prime numbers. Then the semigroup n 

has at least n Smarandache normal subgroup. 

Proof: For each as rings and 

  which is a subring of   . put 

. Then which is a 

field. Hence  is a group under multiplication 

which is a subgroup of the semigroup ( n,.n). Now if x n, and x=tpj, 

0<t<n then xk=0 so xS={0}. If 0<x<pj-1, then xS S, otherwise x=tpj+r, 

0<r<p, xk= xtpj+rx S. Hence S is a Smarandache normal subgroup. Then 

n has at least n Smarandache normal subgroups.   
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 داشيةحول شبه الزمر السمرن
 

 بيشةوا محمد دشتى   بروين على حمادى   
 قسم الرياضيات

 معة صلاح الديناج -كلية تربية العلوم
4/12/0220، تاريخ القبول:1/5/0220تاريخ الاستلام:  

 
 الخلاصة

 
هذا البحث درسنا بعض انواع شبه الزمر السمرنداشية و الزمرالجزئية السمرنداشية لشبه زمرة ، مثل  في     

سايلو السمرنداشية و الزمر الجزئية السمرنداشية الناظمية. -pشبه الزمرة السمراندشية الدائرية والزمر الجزئية 
سنا العلاقة بينها و بين الزمررة الجزئيرة   بالاضافة الى ذلك عرضنا مفهوم مثالية سمرنداشية لشبه زمرة  ودر

 السمرنداشية الناظمية.
 


