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 This work aims to study and apply the adaptive sliding mode controller 

(ASMC) for the pendulum system with the existence of the parameters 

uncertainty, external disturbances, and coulomb friction. The adaptive 

sliding mode controller has several features over the conventional sliding 

mode control method. Firstly, the magnitude of the control signal is 

reduced to the minimally acceptable level defined by special conditions 

concerned with ASMC algorithm. Secondly, the upper bounds of 

uncertainties are not necessary to be defined before starting the work. For 

this reason, the ASMC can be used successfully to control the pendulum 

system with minimum control effort. These properties of the ASMC are 

confirming graphically by the simulation results using MATLAB 2019. The 

ASMC achieves an asymptotically stable system better than the Classical 

Sliding Mode Controller (CSMC). The unwanted phenomenon is called 

“chattering", which is appearing in the control action signal. These 

drawback properties are suppressed by employing a saturation function. 

Finally, the comparison between the results of the ASMC and CSMC 

showed that ASMC is the better one. 
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1. INTRODUCTION 

The majority of nonlinear systems are suffering from uncertainty in their dynamic parameters, 

therefore, they require high-performance and powerful controller design. Today, many strong and 

modern algorithms are using to design a robust and nonlinear controller that gives the desired 

performance. The Sliding mode controller (SMC) is one of them. It is a nonlinear and powerful 
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controller that can be employed with nonlinear systems especially, which is suffering from 

parameters uncertainty [1]. The sliding mode controller was proposed in 1950. The design 

procedures of SMC consist of two main steps; reaching phase and sliding phase [2].  The reaching 

phase is defining as the system trajectory moves from an initial position to the sliding surface, where 

the sliding phase is defining as the system trajectory moves along the sliding surface until reaches the 

origin [3]. The SMC is insensitive against parameter uncertainty and external disturbances which 

have undesired affecting on the system performance [4]. The SMC has a drawback when it has been 

used. This drawback is called the “chattering phenomenon”. The chattering phenomenon is 

considering an undesirable characteristic that appears in the control action as shown in Figure 1. The 

chattering phenomenon is appearing because of using the sign function "sign ( )" in the control law. 

The chattering phenomenon is affecting the system stability; it makes the trajectory motion as zigzag 

motion, in which the system cannot be stable in presence of this phenomenon [5]. To reduce the 

chattering, the boundary layer methodology can be utilized instead of the sign function in the control 

law.  Also, many other evaluate technical approaches are using to tune the controllers gain in many 

other types of research. In the last years, many controllers have been suggested to reduce the 

chattering, such as a fuzzy sliding mode controller, sliding mode fuzzy controller, adaptive sliding 

mode controller, and integral sliding mode controller [6]. In this paper, ASMC is proposed to knock 

down the control chattering. The arrangement of this paper is as follows. In section 2, the SMC is 

illustrating briefly while the ASMC algorithm is presenting in section 3. In section 4, the pendulum 

system is explaining with the friction. The simulation result of the pendulum system with friction is 

showing in section 5, the discussion is presenting in section 6, and finally, the conclusion is 

explaining in section 7. 

 

Figure 1: The chattering phenomenon in SMC [2] 

 

2. SMC DESIGN 

In modernistic control systems, the SMC is considering a powerful and interesting method. Since 

1950 [12, 13], SMC is used successfully with a nonlinear system. It is applying with large different 

applications such as an electrical servo drive system [2], pendulum system [2, 9], and two link robots 

[9]. The SMC is a nonlinear controller that can control linear and nonlinear systems. The control 

action can be classified into two control parts; nominal and discontinuous. The nominal control 

signal of the SMC is utilized to oblige the trajectory of the state to move from an initial state to the 

direction of the sliding surface. Where, the discontinuous control action obliges the systems states 

trajectory to slide along the switching surface till it is reaching the origin [1, 2, 11].                                          

The sliding surface can be written as [1, 2]: 

 𝑠 = 𝜆𝑒 + 𝑒̇ = 0 (1) 

  Where  is constant and it is >0. 

 Let us assumed that x1  e and x2  ė, thus the sliding variable surface is going to be re-written 

as: 

 𝑠 = 𝜆𝑥1 + 𝑥2     (2) 

when  1, the sliding variable surface expressed as : 
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  𝑠 = 𝑥1 + 𝑥2 (3) 

The complete control law can be specified as below: 

  𝑢 = 𝑢𝑛 + 𝑢𝑑𝑖𝑠  (4) 

 Where, 𝑢𝑛 is the nominal control part, and 𝑢𝑑𝑖𝑠 the discontinuous control part [1, 2]. 

The discontinuous control part is defining as below: 

  𝑢𝑑𝑖𝑠 = −𝑘(𝑥)𝑠𝑖𝑔𝑛(𝑠)  (5) 

Where k(𝑥) is a discontinuous gain. (𝑠) is known as a signum function which is described as in 

Eq. (6) and Figure 2. 

  𝑠𝑖𝑔𝑛(𝑠) = {

1                𝑖𝑓 𝑠 > 0
−1             𝑖𝑓 𝑠 < 0

𝜖[−1.1]    𝑖𝑓 𝑠 = 0
   (6) 

 

Figure 2: The signum function. 

 

Therefore, the equation for the control action can be expressed as below [5]: 

                 𝑢 = 𝑢𝑛 − 𝑘(𝑥)𝑠𝑖𝑔𝑛(𝑠)  (7) 

Figure 3. is illustrating SMC within the system. 

 

Figure 3: The Sliding Mode Control system [9] 

As mentioned above, the boundary layer is known as the saturation function (𝑠𝑎𝑡 (𝑠)) that is 

shown in Figure 4. It is employed instead of a sign(s) function in Eq. (7) to reduce the chattering. 

Therefore, Eq. (7) is rewriting as below: 

 𝑢 = 𝑢𝑛 − 𝑘(𝑥)𝑠𝑎𝑡(𝑠)  (8) 

Where saturation function can be written as below: 
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 𝑠𝑎𝑡(𝑠. 𝜑) = {
𝑠𝑖𝑔𝑛(𝑠)       𝑖𝑓 |𝑠|  >  𝜑
𝑠

𝜑
                 𝑖𝑓 |𝑠|  ≤  𝜑   (9) 

where φ=0.01, which is represented the width of the boundary layer (saturation function).  

 

Figure 4: The sat(s) function [2,3] 

 

3. THE ASMC DESIGN 

In this section, the ASMC is presenting in detail. The controller gain of the ASMC is 

continuously reducing until reached the acceptable and minimum value. This acceptable value can 

able to maintain the system stability and robustness as is in classical SMC. The target is adaptively 

tuning the controller gain without knowing the maximum bound of the system uncertainty [9,10].  

The ASMC has the following structure. 

 𝑢(𝑠. 𝑡) = −𝑘(𝑡) 𝑠𝑖𝑔𝑛((𝑥. 𝑡))  (10) 

As mentioned above, for minimizing the chattering, the signum function in Eq. (10) is replaced 

by the saturation function. 

Where k(t)  is the gain that would be varying with time, it can be written such : 

                                  𝑘(𝑡)̇ = {
𝑝 ∗ |𝑠(𝑥. 𝑡)| ∗ 𝑠𝑖𝑔𝑛(|𝑠(𝑥. 𝑡)| − є)   𝑖𝑓 𝑘 > 𝜇
𝜇                                                          𝑖𝑓 𝑘 ≤ 𝜇

     (11) 

 

Where p>0 it used to increase or decrease the value of k(t),  ϵ >0, and µ>0.  Where, µ represent 

the initial value of k. The value of k (t) must satisfy the condition below: 

µ (0) =k (0)   

 Kmax > 𝑘(0)  > kmin 

The simulation for the pendulum system is performed to clarify the effectiveness of the proposed 

control scheme [14]. The ASMC is more flexible and comfortable in the design than the classical 

SMC. As well as, the system stability is achieving with a small control effort when using the ASMC 

[7, 9].  

 

4. PLANT DESCRIPTION 

The pendulum system is usually described as a nonlinear system. many studying research uses a 

pendulum in widely studying for checking the control performance in different control algorithms 

[4]. In this work, a perturbation term is added to the pendulum system. The perturbation term is 

containing the disturbance and parameter uncertainty, coulomb friction. The Coulomb friction is 

assumed as a force that affects the opposite direction of the movement of the pendulum.   
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Figure 5: The Simple Pendulum [4] 

 

The equation of pendulum system that can describe the system is written as below: 

 Ӫ = − 𝑎 𝑠𝑖𝑛(𝜃) − 𝑏𝜃̇ + 𝑐𝑇 + 𝛿(𝑥. 𝑢) (12) 

 

Where θ: is the angular position of the link with the vertical axis, and it’s measured by (radian) 

unit. It is defined as the output of the system.  

. θ̇:is the angular velocity (radian/second). 
T: defines as the torque (control action), which is applying at the mass of the pendulum system in 

order to make it swing. It is measured in (Newton. Meter) unit. 

 

. δ(x. u) : is the perturbation term, which includes the coefficients uncertainty, external disorders, 

and the Coulomb friction.                                                               

The existence of an external disturbance and parameter uncertainty as mentioned in the 

perturbation term is considered as a general problem in the plant. 
 The nominal value of coefficients an=10, bn=1 and cn=10, The uncertainties values of the 

coefficients are δa=∓10%*an, δb = ∓10% ∗bn,  

δc = ∓10% ∗cn. 

The purpose is to move the Pendulum from an initial position to the desired position (θf).  

The error equation is the difference between the desired position and angular position, that is 

written in the below [4]: 

Assume the error equation as below. 

          𝑒 = 𝜃𝑓 – 𝜃 

                                                          ė = 𝜃̇ (13) 

By using the state-space representation to define the error and its derivatives, then   

                   𝑥1 = 𝑒  and  𝑥2 = ė  (14) 

Then 

             𝑥̇1 = ė = 𝑥2  (15) 

 𝑥̇2 = ë = − 𝑎𝑛 𝑠𝑖𝑛(𝑥1 + 𝜃𝑓) − 𝑏𝑛𝑥2 + 𝐶𝑛𝑢 + 𝛿(𝑥. 𝑢) 

Where 

 𝛿(𝑥. 𝑢) = −𝛿𝑎 𝑠𝑖𝑛(𝑥1 + 𝜃𝑓) − 𝛿𝑏𝑥2 + 𝛿𝑐𝑢 + (𝑐 + 𝛿𝑐)𝑑 − 𝑚 𝑠𝑖𝑔𝑛(𝑥2) . 

a =  δa ∓ 𝑎𝑛  

b =  δb ∓ 𝑏𝑛 . 

                                                                                                                  c =  δc ∓ 𝑐𝑛.  (16) 
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Equation (16) represents the perturbation term which is explained on the last page, that is mean 

sudden variation happens for the system as disturbance or friction or uncertainty parameter. 

The values of a, b and c either increase or decrease. For the maximum value, the parameters 

increase, while it decreasing for minimal value. m is the Coulomb friction about 1.2 (N.m). d is 

disturbance is equaled 1 (N.m). θf is π /4 as the desired position. 

TABLE I: The parameter values vary with uncertainty. 

Maximal Value Minimal value Nominal value Parameter value 

11 9 10 a 

1.1 0.9 1 b 

11 9 10 c 

 

Because the pendulum system that is adopting in this paper is containing a perturbation term, 

therefore, the nominal control part will be rejecting and the overall control action is consisting only 

of the discontinuous control part.    

In this paper, there are two cases for calculating the controller gain k(x) depending on the type of 

sliding mode controller as is discussing below: 

     

I. . The design of the Classical Sliding Mode Controller (CSMC). 

The design of discontinues control law for CSMC for uncertain values of the pendulum system is 

written as in below: 

                                                        𝑢 = 𝑢𝑑𝑖𝑠 = −𝑘(𝑥)𝑠𝑖𝑔𝑛(𝑠)  (17) 

This equation modifies by using a saturation function to eliminate the chattering in the control 

action. 

                                                        𝑢 = 𝑢𝑑𝑖𝑠 = −𝑘(𝑥)𝑠𝑎𝑡(𝑠)  (18) 

Where the sliding variable surface can be described as below: 

                                                            𝑠 = 𝑥1 + 𝑥2   (19) 

The appropriate discontinuous gain k(x) is computing from using the following procedure:  

                                                                 𝑠̇ < 0   (20) 

  By substituting Eq. (19) in Eq. (20).  

𝑥̇1+𝑥̇2 < 0 

𝑥2 − 𝑎 𝑠𝑖𝑛(𝑥1 + 𝜃𝑓) − 𝑏𝑥2 + 𝑐𝑢 + 𝛿(𝑥. 𝑢) < 0 

  And by using  𝑢 = −𝑘(𝑥) ∗  𝑠𝑖𝑔𝑛 (𝑠) in the above equation, and then finding 𝑘(𝑥) 

𝑘(𝑥) >
(𝛿𝑎 + 𝛿𝑏|𝑥2| + (𝑐𝑛 + 𝛿𝑐)𝑑 + 𝑚)

𝐶𝑚𝑖𝑛
  

                                                                                                                                       

 𝑘(𝑥) = 𝑘0 ∗
𝛿𝑎+𝛿𝑏|𝑥2|+(𝑐𝑛+𝛿𝑐)𝑑+𝑚

𝐶𝑚𝑖𝑛
   (21) 

Where, k0 is a constant and its value is greater than one (k0 = 10). Cmin = 9. 
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II. . The design of the Adaptive Sliding Mode Controller (ASMC). 

The design of the Adaptive Sliding Mode Controller (ASMC). 

As it is illustrated previously in this paper the control law of the ASMC is as presented in Eq. 

(10) and Eq. (11). 

To reduce the chattering the sign ( ) function in Eq. (10) will be replaced by the sat ( ) function as 

it is presenting in Eq. (18):  

Where, k(t) in ASMC, is calculating from Eq. (11). 

 

5. SIMULATION RESULTS 

The initial value of x1(0)= x2(0)= π /4. 

I. The outcomes of designing CSMC with sign function. 

 

Figure 6: The relationship between x1&x2  

 
 

Figure 7: The relationship of error (x1) with time. 

 

Figure 8: The relationship of derivative of error (x2) with time. 
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Figure 9: The relationship of control action U with time. 

 

 

Figure 10: The relationship of sliding variable surface S with time. 

 

 

Figure 11: The relationship of classical gain K with time. 

 

II. The outcomes of designing (ASMC) with sign function. 

In this work, є = 0.3. µ (0) = 2.2.  Kmax=3.1 and  kmin=2, p=100. 
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.  

Figure 12: The relationship between x1&x2 in ASMC. 

 

Figure 13: The relationship of error (x1) with time in ASMC. 

  

Figure 14: The relationship of derivative of error (x2) with time in ASMC. 

 

Figure 15: The relationship of control action U with time in ASMC. 
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Figure 16: The relationship of sliding variable surface S with time in ASMC. 

 

Figure 17: The relationship of gain K vs time in ASMC. 

 

III. The outcomes of designing (CSMC) with saturation function. 

  

Figure 18: The relationship of phase plane between x2 & x1. 

  

Figure 19: The relationship of error (x1) with time. 
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Figure 20: The relationship of derivative of error (x2) with time. 

 

Figure 21:  The relationship of control action U with time. 

  

Figure 22: The relationship of sliding variable surface S with time. 

  

Figure 23: The relationship of classical gain K value with time. 
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IV. The outcomes of designing (ASMC) with saturation function 

In this work, є = 0.3. µ (0) = 20.2.  Kmax=21.2 and  kmin=20, p=100. 

 

Figure 24: The relationship of x2 & x1 in ASMC. 

 

Figure 25: The relationship of error (x1) with time in ASMC. 

  

Figure 26: The relationship of derivative of error (x2) with time in ASMC. 
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           Figure 27: The relationship of control action U with time in Adaptive SMC. 

 

Figure 28: The relationship of sliding variable surface S with time in ASMC. 

  

Figure 29: The relationship of adaptive gain K with time in ASMC. 

6. DISCUSSION 

In this paper, the position of the pendulum system is controlling by using two types of controllers 

with the existence of the perturbation term. Both controllers, CSMC and ASMC, have the ability for 

making the system asymptotically stable by making the error and derivative of error approaching 

zero value as it is shown in Figures 6- 12- 18 - 24 respectively.  

Both controllers; the CSMC and ASMC are suffering from the chattering phenomenon that 

appears in the control action due to the applying of the signum function in controller law as shown in 

Figures 9-15 respectively. This chattering is knockdown by using the saturation function in control 

law instead of the signum function as shown in Figures 21- 27 respectively. 
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7. CONCLUSIONS 

The comparison between the ASMC and CSMC, showed that the ASMC can reduce the 

controller gain to an acceptable and minimum value and as a result, the magnitude of the control 

action and chattering are reduced.  

It is concluded from Table 2, that both CSMC and ASMC are a robust controller, because of their 

ability to give a good response even in case of the existence of disturbance and parameter uncertainty 

as clarified in Figures 6- 12- 18- 24.  

In figures 23- 29, the values of gain k(t) are increasing to a large value in order to make the 

steady-state error approximately reaching zero.                                                                                                                          

 It is concluded from Table 2, that the performance of the ASMC is better than the CSMC. 

TABLE II: The performance and the characteristics of the four controllers when using sign (s) and 

sat(s) function in control law. 

The steady-

state error of 

x1 (rad.) 

maximum chattering 

magnitude in the control 

action (N.m) 

 

Maximum 

Control gain k(t) 

 

Controllers type 

0.00234 29.42 14.75 Sign 

function 

C
S

M
C

 1 

0.00375 2.63 22.13 Sat 

function 

0.00477 5.23 3.01 Sign 

function 

A
S

M
C

 2 

0.00384 0.14 21.12 Sat 

function 
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