Hosoya Polynomials of Steiner Distance of an m-Cube and the Square of a Path

Ali Aziz AliHerishDept. of Mathematics,Dept. ofCollege of Computer Sciences and Mathematics
Mosul University.College

Herish Omer Abdullah Dept. of Mathematics, College of Sciences, University of Salahaddin.

Received 21/05/2007

Accepted 15/08/2007

الملخص

تضمن هذا البحث ایجاد متعددات حدود هوسویا نسبة الی مسافة ستینر – 3 لبیانات مکعبات Q_m ، و کذلك لمربع درب P_t^2 . کما تم الحصول علی اقطار ستینر – n لکل من Q_m و P_t^2 .

ABSTRACT

The Hosoya polynomials of Steiner 3-distance of hypercube graphs Q_m , and of the square of a path, P_t^2 , are obtained in this paper. The Steiner *n*-diameters of Q_m and P_t^2 are also obtained.

1. Introduction.

We follow the terminology of [2,3]. For a connected graph G = (V, E) of order p, the *Steiner distance*[4,5] of a non-empty subset $S \subseteq V(G)$, denoted by $d_G(S)$, or simply d(S), is defined to be the size of the smallest connected subgraph T(S) of G that contains S; T(S) is called a *Steiner tree* of S. If |S|=2, then d(S) is the distance between the two vertices of S. For $2 \le n \le p$ and |S|=n, the Steiner distance of S is called *Steiner n-distance of* S in G. The *Steiner n-diameter* of G (or the diameter of the Steiner *n*-distance), denoted by $diam_n^*G$ or $\delta_n^*(G)$, is defined as follows:

 $diam_n^*G = \max\{d_G(S): S \subseteq V(G), |S| = n\}.$ Remark 1.1. It is clear that

(1) If $n \ge m$, then $diam_n^* G \ge diam_m^* G$.

(2) If $S' \subseteq S$, then $d_G(S') \leq d_G(S)$.

The Steiner *n*-distance of a vertex $v \in V(G)$, denoted by $W_n^*(v,G)$, is the sum of the Steiner *n*-distances of all n-subsets containing *v*. The sum of Steiner *n*-distances of all *n*-subsets of V(G) is denoted by $d_n(G)$

or $W_n^*(G)$. It is clear that

$$W_n^*(G) = n^{-1} \sum_{v \in V(G)} W_n^*(v, G). \qquad \dots \dots (1.1)$$

The graph invariant $W_n^*(G)$ is called Wiener index of the Steiner ndistance of the graph G.

<u>**Definition**</u> 1.2[1] Let $C_n^*(G,k)$ be the number of n-subsets of distinct vertices of G with Steiner *n*-distance k. The graph polynomial defined by

$$H_n^*(G;x) = \sum_{k=n-1}^{\delta_n} C_n^*(G,k) x^k , \qquad \dots \dots (1.2)$$

where δ_n^* is the Steiner *n*-diameter of *G*; is called the *Hosoya polynomial* of Steiner *n*-distance of *G*.[1].

It is clear that

$$W_n^*(G) = \sum_{k=n-1}^{\delta_n^*} k C_n^*(G,k) \qquad \dots \dots (1.3)$$

For $1 \le n \le p$, let $C_n^*(u,G,k)$ be the number of *n*-subsets *S* of distinct vertices of *G* containing *u* with Steiner *n*-distance *k*. It is clear that

$$C_1^*(u,G,0) = 1.$$

Define

$$H_n^*(u,G;x) = \sum_{k=n-1}^{\delta_n^*} C_n^*(u,G,k) x^k . \qquad (1.4)$$

Obviously, for $2 \le n \le p$

$$H_n^*(G;x) = \frac{1}{n} \sum_{u \in V(G)} H_n^*(u,G;x). \qquad \dots \dots \dots (1.5)$$

Ali and Saeed [1] were first whom studied this distance-based polynomial for Steiner *n*-distances, and established Hosoya polynomials of Steiner *n*-distance for some special graphs and graphs having some kind of regularity, and for Gutman's compound graphs $G_1 \bullet G_2$ and $G_1:G_2$ in terms of Hosoya polynomials of G_1 and G_2 .

In this paper, we obtain the Hosoya polynomial of Steiner 3distance of Q_m and P_t^2 . Moreover, $diam_n^*Q_m$ and $diam_n^*P_t^2$ are determined.

2. <u>Hypercube Graphs (</u> m-Cube Q_m)

The Cartesian product [3] of two connected disjoint graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the graph denoted by $G_1 \times G_2$ with

vertex set $V_1 \times V_2$ in which (x_1, y_1) is joined to (x_2, y_2) whenever $\{x_1x_2 \in E_1 \text{ and } y_1 = y_2\}$ or $\{y_1y_2 \in E_2 \text{ and } x_1 = x_2\}$.

If G_1 is a (p_1, q_1) -graph and G_2 is a (p_2, q_2) -graph, then $G_1 \times G_2$ is a $(p_1p_2, p_1q_2+p_2q_1)$ -graph.

Now, the graph *m*-cube Q_m is defined recursively [3] by $Q_1 = K_2$ and $Q_m = Q_{m-1} \times K_2$ for $m \ge 2$. Thus Q_m has 2^m vertices which may be labeled by the binary *m*-tuples $(s_1, s_2, ..., s_m)$ where each s_i is 0 or 1, for $1 \le i \le m$. Two vertices of Q_m are adjacent if their binary representations differ at exactly one place.

The diameter of Q_m is m [7], and Q_m is m-regular graph. We next describe the Steiner n-diameter of the m-cube Q_m .

<u>Proposition</u> 2.1. For $m \ge 2$ and $n \ge 2^m - m + 1$,

$$diam_n^*Q_m = n-1$$

<u>**Proof.</u>** Since Q_m is *m*-connected [3], so the removal of any (*m*-1)-subset of vertices produces a connected subgraph of order $2^m - m + 1$.</u>

That is for any subset S of order $n \ge 2^m - m + 1$, the induced subgraph $\langle S \rangle$ is connected, which implies that

$$d(S) = n - 1$$

This completes the proof.

<u>Proposition</u> 2.2. For $m \ge 2$ and $2 \le n \le 2^m - m$, $diam_n^*Q_m \ge n$

<u>**Proof.</u>** We assume the contrary, that is we let $diam_n^*Q_m < n$, then for any *n*-subset *S* of vertices of Q_m , d(S) = n - 1. This means that the removal of any V - S subset of vertices produces a connected subgraph of Q_m . Thus, Q_m is (|V - S| + 1)-connected.</u>

But $|V - S| + 1 \ge 2^m - (2^m - m) + 1 = m + 1$

Contradicting the fact that Q_m is *m*-connected, so, we must have

$$diam_n^*Q_m \ge n$$

Proposition 2.2 states that for $2 \le n \le 2^m - (m-1)$, *n* is a lower bound for $diam_n^*Q_m$. We can improve this bound in the next proposition.

Proposition 2.3. For
$$2 \le n \le 2^m - m$$

 $diam_n^* Q_m \ge \max\{m, n\}$

<u>**Proof.</u>** It is clear that, this is true for m=2 and m=3. It is known that $diam_2^*Q_m = m$, and $max\{m,2\} = m \ge 2$,</u>

So it is also true for n=2.

(a) If $\max\{m,n\}=m$, that is $m \ge n$, and if S contains $u_0 = (0,0,...,0)$ and $u_m = (1,1,...,1)$, then $d(u_0,u_m) = m$ and $d(S) \ge m$. Therefore $diam_n^*Q_m \ge m$.

(b) If $\max\{m,n\} = n$, then by Proposition 2.2, $diam_n^*Q_m \ge n$.

So, $diam_n^*Q_m \ge \max\{m,n\}$ for $2 \le n \le 2^m - m$.

In the case of n=3, we have the following result.

Proposition 2.4. For $m \ge 3$

$$diam_3^*Q_m = m$$

<u>*Proof*</u>. The proof is by induction on *m*.

It is clear that $diam_3^*Q_3 = 3$, thus assume $m \ge 3$. Suppose that the result is true for $m = k(\ge 3)$, and consider m = k + 1.

Let $S = \{u_1, u_2, u_3\}$ be any 3-subset of vertices of $V(Q_{k+1})$. We know that

 $Q_{k+1} = Q_k \times K_2.$

If $S \subseteq V(Q_k)$ or $V(Q'_k)$, then by induction hypothesis $d(S) \leq k$, where Q'_k is the second copy of Q_k . (See Fig. 2.1).

Now, let $u_1, u_2 \in V(Q_k)$ and $u_3 \in V(Q'_k)$, and let u'_3 be a vertex in $V(Q_k)$ adjacent to u_3 (see Fig.2.1), then

 $d(\{u_1, u_2, u_3'\}) \le k$

Thus,

 $diam_3^*Q_{k+1} \le k+1 = m$

By Proposition 2.3, $diam_3^*Q_m \ge m$, because $2 < 2^m - m$ for $m \ge 3$. Thus,

$$diam_3^*Q_m = m$$

167

We next investigate the Hosoya polynomial of Steiner 3-distance of Q_m , which is obtained as a reduction formula in the following theorem.

<u>Theorem</u> 2.5. For $m \ge 3$,

$$H_3^*(Q_m;x) = (2+6x)H_3^*(Q_{m-1};x) + 4xH_2^*(Q_{m-1};x),$$

where

 $H_2^*(Q_{m-1};x) = 2^{m-2}(1+x)^{m-1} - 2^{m-2}.$

<u>**Proof**</u>. Let S be a 3-subset of vertices of $V(Q_m)$, and consider $Q_m = Q_{m-1} \times K_2$, assuming that Q_{m-1} and Q'_{m-1} are the two copies of the (m-1)-cube in Q_m .

We consider three cases for d_o (S).

<u>Case</u> I. If $S \subseteq V(Q_{m-1})$ or $V(Q'_{m-1})$, then $d_{Q_m}(S) = d_{Q_{m-1}}(S) = d_{Q'_{m-1}}(S).$

The Hosoya polynomial corresponding to all such S of this case is

 $F_1(x) = 2H_3^*(Q_{m-1};x).$

<u>Case</u> II. Let u,v,w be any 3 vertices of $V(Q_{m-1})$ and u',v',w' are the vertices of $V(Q'_{m-1})$ adjacent respectively to u,v,w as shown in Fig. 2.1 for k = m - 1. If $S = \{u,v,w'\} \{u,v',w\} \{u',v,w\} \{u',v',w\} \{u',v,w'\}$ or $\{u,v',w'\}$ then

If
$$S = \{u, v, w'\}, \{u, v', w\} \{u', v, w\}, \{u', v', w\} \{u', v, w'\}$$
 or $\{u, v', w'\}$ then
 $d_{Q_m}(S) = 1 + d_{Q_{m-1}}(\{u, v, w\}).$

Thus, the Hosoya polynomial for all such six possibilities of S is

 $F_{2}(x) = 6xH_{3}^{*}(Q_{m-1};x)$ <u>Case</u> III. If $S = \{u, u', v\}, \{u, u', w\}, \{u, u', v'\} \text{ or } \{u, u', w'\}$ then $d_{Q_{m}}(S) = 1 + d_{Q_{m-1}}(S') = 1 + d_{Q_{m-1}}(S''),$

where $S' = \{u, v\}$ or $\{u, w\}$ and $S'' = \{u', v'\}$ or $\{u', w'\}$ and $d_{Q_{m-1}}(S')$ and $d_{Q'_{m-1}}(S'')$ denotes the ordinary distances of S' and S'' in Q_{m-1} and Q'_{m-1} , respectively.

Thus, the Hosoya polynomial for all such possibilities of S in this case is $F_3(x) = 4xH_2^*(Q_{m-1};x).$

Now, adding the polynomials $F_1(x)$, $F_2(x)$ and $F_3(x)$ we obtain the required reduction formula.

Returning to the reduction formula obtained in Theorem 2.5, we find that $H_3^*(Q_m;x)$ can be simplified as shown in the next corollary.

<u>Corollary</u> 2.6. For $m \ge 3$

$$H_{3}^{*}(Q_{m};x) = 4x^{2}(2+6x)^{m-2} + 4x\sum_{k=1}^{m-2}(2+6x)^{k-1}H_{2}^{*}(Q_{m-k};x)$$

$$\begin{aligned} \underline{Proof}. & \text{We know that} \\ H_3^*(Q_m; x) &= (2+6x)H_3^*(Q_{m-1}; x) + 4xH_2^*(Q_{m-1}; x) \\ &= (2+6x)[(2+6x)H_3^*(Q_{m-2}; x) + 4xH_2^*(Q_{m-2}; x)] + 4xH_2^*(Q_{m-1}; x) \\ &= (2+6x)^2H_3^*(Q_{m-2}; x) + 4x[(2+6x)H_2^*(Q_{m-2}; x) + H_2^*(Q_{m-1}; x)] \\ & \vdots \\ &= (2+6x)^{m-2}H_3^*(Q_2; x) + 4x[(2+6x)^{m-3}H_2(Q_{m-(m-2)}; x) \\ &+ (2+6x)^{m-4}H_2(Q_{m-(m-3)}; x) + \dots \\ &+ H_2(Q_{m-1}; x)] \end{aligned}$$

It is obvious that $H_3(Q_2;x) = 4x^2$ Hence

$$H_3^*(Q_m;x) = 4x^2(2+6x)^{m-2} + 4x\sum_{r=2}^{m-1}(2+6x)^{m-1-r}H_2(Q_r;x).$$

Next corollary computes the Wiener index of Steiner 3-distance of Q_m .

Corollary 2.7. For
$$m \ge 3$$

$$W_3^*(Q_m) = 8^{m-2}(3m+2) + 2^{m-4} \sum_{k=1}^{m-2} 4^k \left\{ 2^{m-k+1}(m-k) + (2^{m-k}-1)(3k+1) \right\}.$$

3. <u>The Square of a Path</u> (P_t^2)

The *n*th power $G^n[6]$ of a connected graph G has vertex set V(G)and for each distinct vertices u, v of G^n , $uv \in E(G^n)$ whenever $1 \le d_G(u, v) \le n$.

It is clear that, if diamG = n then G^n is a complete graph.

In [7], W. A. M. Saeed proved that

$$diamG^n = \left\lceil \frac{diamG}{n} \right\rceil.$$

In this section, we consider the square P_t^2 of a path P_t , with respect to Steiner distance. First, we find the Steiner *n*-diameter.

<u>Proposition</u> 3.1. For even $t \ge 4$, and for $2 \le n \le t$, the Steiner *n*-diameter of P_t^2 is $\frac{t}{2} - 1 + \left| \frac{n}{2} \right|$.

<u>**Proof.</u>** The graph P_t^2 is shown in Fig.3.1.</u>

Fig. 3.1. The square of P_t .

Let $P_t = u_1, u_2, ..., u_t$, then

 $V(P_t^2) = V(P_t) = \{u_1, u_2, ..., u_t\}.$

If S is an *n*-subset of vertices of $V(P_t^2)$ such that d(S) is maximum, then S must contain the two vertices u_1 and u_t , the other vertices of S must be the first *n*-2 vertices from the sequence (See Fig. 3.1).

 $u_{2}, u_{3}, u_{4}, \dots, u_{t-2}, u_{t-1}.$ Therefore *S* contains $\left\lfloor \frac{n-2}{2} \right\rfloor$ vertices from one of the sets $A = \{u_{2}, u_{4}, \dots, u_{t-2}\}, B = \{u_{3}, u_{5}, \dots, u_{t-1}\}$ and contains $\left\lceil \frac{n-2}{2} \right\rceil$ vertices from the other set. If *S* contains $\left\lceil \frac{n-2}{2} \right\rceil$ vertices from *A*, then *T*(*S*) must contain the $u_{1} - u_{t}$ path $u_{1}, u_{2}, u_{4}, \dots, u_{t-2}, u_{t}$, and so *S* will contain the $\left\lfloor \frac{n-2}{2} \right\rfloor$ vertices from *B*, and the size of *T*(*S*) will be $\frac{t}{2} + \left\lfloor \frac{n-2}{2} \right\rfloor$. But if *S* contains $\left\lceil \frac{n-2}{2} \right\rceil$ vertices from *B*, then *T*(*S*) must contain the $u_{1} - u_{t}$ path $u_{1}, u_{3}, u_{5}, \dots, u_{t-1}, u_{t}$, and the size of *T*(*S*) will also be $\frac{t}{2} + \left\lfloor \frac{n-2}{2} \right\rfloor$.

Hence, the proof of the proposition.

<u>Proposition</u> 3.2. For odd $t \ge 3$, $2 \le n \le t$, the Steiner *n*-diameter of P_t^2 is $\frac{t-3}{2} + \left\lceil \frac{n}{2} \right\rceil$.

<u>**Proof.</u>** The proof is similar to that of Proposition 3.1. It is clear that there is exactly one shortest $u_1 - u_t$ path in P_t^2 whose length is $\frac{t-1}{2}$, namely</u>

 $u_{1}, u_{3}, u_{5}, \dots, u_{t-2}, u_{t}.$ The other (n-2) vertices of the *n*-subset *S* are the first n-2 from the sequence $u_{2}, u_{3}, u_{4}, \dots, u_{t-1}$. Therefore *S* will contain the first $\left\lceil \frac{n-2}{2} \right\rceil$ vertices from $\{u_{2}, u_{4}, \dots, u_{t-1}\}$. Thus *S* of maximum Steiner *n*-distance has $d(S) = \frac{t-1}{2} + \left\lceil \frac{n-2}{2} \right\rceil = \frac{t-3}{2} + \left\lceil \frac{n}{2} \right\rceil.$

Next, we find Hosoya polynomial of the Steiner 3-distance of the square of a path P_t .

<u>*Theorem*</u> 3.3. Let $t = 2s \ge 6$ be an even positive integer, then

$$H_3^*(P_t^2;x) = H_3^*(P_{t-2}^2;x) + F_s(x)$$

where

$$F_{s}(x) = 2x^{2} + 2x^{s} + \sum_{j=2}^{s-1} [4(x+1)j - 2x - 2]x^{j}$$

<u>**Proof.</u>** The graph P_t^2 is shown in Fig.3.1; its vertices are relabeled as shown in Fig.3.2 in order to simplify the derivation of $F_s(x)$.</u>

Let P_{t-2}^2 be obtained from P_t^2 by deleting the two vertices v_s , v'_s Then

$$H_3^*(P_t^2;x) = H_3^*(P_{t-2}^2;x) + F_s(x),$$

where

$$F_s(x) = \sum_S x^{d(S)} \, .$$

in which |S| = 3, $S \cap \{v_s, v'_s\} \neq \varphi$ and $S \cap V(P_{t-2}^2) \neq \varphi$. To find $F_s(x)$ we consider several cases for S.

(1) If
$$S = \{v_s, v'_s, w\}$$
, $w \in V(P_{t-2}^2)$, then
 $d(S) = s + 1 - i$, when $w = v_i$ or v'_i , $1 \le i \le s - 1$.

Thus, the polynomial corresponding to all such S's of this case is

$$f_1(x) = 2\sum_{i=1}^{s-1} x^{s+1-i} = 2\sum_{j=2}^s x^j$$
.

(2) If $S = \{v_s, v_i, v_j\}, 1 \le i < j \le s - 1$, then d(S) = s - i.

It is clear that for each value of *i* there are (s-i-1) values of *j*. Thus the corresponding polynomial is $\sum_{i=1}^{s-1} (s-i-1)x^{s-i}$. The same polynomial is obtained if $S = \{u'_s, u'_i, u'_i\}$.

Therefore, for such 3-subsets S we get

$$f_2(x) = 2\sum_{i=1}^{s-2} (s-i-1)x^{s-i} = 2\sum_{j=2}^{s-1} (j-1)x^j.$$

(3) If $S = \{v_s, v_i, v_i'\}$ or $\{v'_s, v_i, v_i'\}$, then $d(S) = s - i + 1, 1 \le i \le s - 1.$

Thus, the corresponding polynomial is

$$f_3(S) = 2\sum_{i=1}^{s-1} x^{s-i+1} = 2\sum_{j=1}^{s-1} x^{j+1}$$

(4) If $S = \{v_s, v_i, v_j'\}, 1 \le i < j \le s - 1$, then d(S) = s + 1 - i.

Similarly, if $S = \{v_s, v'_i, v_j\}$, $1 \le i < j \le s - 1$, then d(S) = s - i

Thus, the corresponding polynomial is

$$f_4(x) = \sum_{i=1}^{s-2} (s-i-1)x^{s+1-i} + \sum_{i=1}^{s-2} (s-i-1)x^{s-i}$$
$$= \sum_{j=2}^{s-1} (j-1)(x+1)x^j.$$

(5) If $S = \{v'_s, v_i, v'_j\}, 1 \le i < j \le s - 1$, then d(S) = s - i + 1,

and there are (s - i - 1) values for j. Similarly, if $S = \{v'_s, v'_i, v_j\}$ then d(S) = s - i + 1 for $1 \le i < j \le s - 1$. Thus, the polynomial corresponding to all these 3-subsets is

$$f_5(x) = 2\sum_{i=1}^{s-2} (s-i-1)x^{s-i+1} = 2\sum_{j=2}^{s-1} (j-1)x^{j+1}$$

If $S = \{v_s, v'_i, v'_j\}, \ 1 \le i < j \le s-1$, then
 $d(S) = s-i$.

The corresponding polynomial is

(6)

$$\sum_{i=1}^{s-2} (s-i-1) x^{s-i} \, .$$

Similarly, if $S = \{v'_s, v_i, v_j\}$, $1 \le i < j \le s - 1$, then d(S) = s - i + 1. The corresponding polynomial for such *S* is

$$\sum_{i=1}^{s-2} (s-i-1)x^{s-i+1}$$

Thus, the distance polynomial for all these 3-subsets S in this case is

$$f_6(x) = \sum_{i=1}^{s-2} (s-i-1)x^{s-i} + \sum_{i=1}^{s-2} (s-i-1)x^{s-i+1}$$
$$= \sum_{i=2}^{s-1} (j-1)(x+1)x^j$$

These are all possibilities of S. Therefore

$$\begin{split} F_{s}(x) &= \sum_{r=1}^{6} f_{r}(x) \\ &= 2x^{2} + 2x^{s} + 2\sum_{j=2}^{s-1} x^{j} + 2\sum_{j=2}^{s-1} (j-1)x^{j} + 2\sum_{j=2}^{s-1} x^{j+1} \\ &+ 2\sum_{j=2}^{s-1} (j-1)(x+1)x^{j} + 2\sum_{j=2}^{s-1} (j-1)x^{j+1} \,. \end{split}$$

Simplifying the above summations we get the reduction formula given in the theorem.

The Wiener index of the Steiner 3-distance of P_t^2 for even t is given in the next corollary.

<u>Corollary</u> 3.4. For $t = 2s \ge 4$,

$$W_3^*(P_t^2) = W_3^*(P_{t-2}^2) + \frac{4}{3}s(s-1)(2s-1).$$

We now consider the square of a path P_t of odd order t = 2s + 1. The next theorem gives us a reduction formula of $H_3^*(P_t^2;x)$.

<u>Theorem</u> 3.5. For $t = 2s \ge 7$, we have

$$H_3^*(P_t^2;x) = H_3^*(P_{t-1}^2;x) + F_s(x),$$

where

$$F_s(x) = x^2 + \sum_{j=1}^{s-1} [(x+3)j + x]x^{j+1}.$$

<u>**Proof.</u>** The graph P_t^2 is shown in Fig. 3.3 where the vertices are labeled as that of Fig. 3.2.</u>

 P_{t-1}^{2} is obtained from P_{t}^{2} by removing vertex v_{s+1} . Thus

$$H_3^*(P_t^2;x) = H_3^*(P_{t-1}^2;x) + F_s(x),$$

where

$$F_s(x) = \sum_S x^{d(S)} \, .$$

in which the summation is taken over all 3-subsets S

 $S = \{v_{s+1}, u_i, u_j\} \text{ for all } u_i, u_j \in V(P_{t-1}^2).$

We consider the following 5 cases.

(1) If $S = \{v_{s+1}, v_i, v_j\}, 1 \le i < j \le s$, then

$$d(S) = s + 1 - i .$$

The number of values of j is (s-i) for each values of i. Thus, the polynomial corresponding to such 3-subsets S of this case is

$$f_1(x) = \sum_{i=1}^{s-1} (s-i)x^{s+1-i} = \sum_{j=1}^{s-1} jx^{j+1}$$

(2) If $S = \{v_{s+1}, v_i, v_i'\}, 1 \le i \le s$, then d(S) = s + 2 - i.

Therefore the corresponding polynomial is

$$f_2(x) = \sum_{i=1}^{s} x^{s+2-i} = x^2 + x^2 \sum_{j=1}^{s-1} x^j$$

(3) If $S = \{v_{s+1}, v'_i, v'_j\}, 1 \le i < j \le s$, then

$$d(S) = s - i + 1,$$

and for each value of i there are (s-i) values for j. Thus, the corresponding polynomial for such case of S is

$$f_3(x) = \sum_{i=1}^{s-1} (s-i)x^{s-i+1} = \sum_{j=1}^{s-1} jx^{j+1}$$

(4) If $S = \{v_{s+1}, v_i, v_j'\}, 1 \le i < j \le s$, then d(S) = s + 2 - i,

and for each value of *i* there are (*s*-*i*) values for *j*. Thus, the polynomial corresponding to all **3**-subsets *S* of this case is

$$f_4(x) = \sum_{i=1}^{s-1} (s-i) x^{s+2-i} = x^2 \sum_{j=1}^{s-1} j x^j.$$

(5) Finally, If $S = \{v_{s+1}, v'_i, v_j\}$, $1 \le i < j \le s$, then d(S) = s + 1 - i, and there are (s-i) values for j for each value of i. Therefore, the corresponding polynomial is

$$f_5(x) = \sum_{i=1}^{s-1} (s-i) x^{s+1-i} = \sum_{j=1}^{s-1} j x^{j+1}$$

Thus,

$$F_{s}(x) = \sum_{r=1}^{5} f_{r}(x) = \sum_{j=1}^{s-1} (jx + x^{2} + jx + x^{2}j + jx)x^{j} + x^{2}$$
$$= x^{2} + \sum_{j=1}^{s-1} [(x+3)j + x]x^{j+1}.$$

The next corollary gives us the Wiener index of the Steiner 3-distance of P_t^2 for odd *t*.

<u>Corollary</u> 3.6. For odd t = 2s + 1, $s \ge 2$, the Wiener index of P_t^2 is

$$W_3^*(P_t^2) = W_3^*(P_{t-1}^2) + \frac{1}{3}(s-1)(4s^2+7s+6) + 2.$$

References

- [1] Ali, A.A. and Saeed, W.A; (2006), "Wiener polynomials of Steiner distance of graphs", J. of Applied Sciences, Vol.8, No.2.
- [2] Buckly, F. and Harary, F.;(1990), Distance in Graphs, Addison-Wesley, Redwood, California.
- [3] Chartrand, G. and Lesniak, L.; (1986), Graphs and Digraphs, 2nd ed., Wadsworth and Brooks/ Cole, California.
- [4] Danklemann, P., Swart, H.C., and Oellermann, O.R.; (1997), "On the average Steiner distance of graphs with prescribed properties", Discrete Applied Maths., Vol.79, pp.91-103.
- [5] Danklemann, P., Oellermann, O. R., and Swart, H.C.; (1996), "The average Steiner distance of a graph", J. Graph Theory, Vol.22, No.1, pp.15-22.
- [6] Harary, F.;(1969), Graph theory, Addison-Wesley, Reading, Mass.
- [7] Saeed, W.A.M.; (1999), Wiener Polynomials of Graphs, Ph.D. thesis, Mosul University, Mosul.