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 The aim of the work for this paper is the design of an optimal backstepping 

controller for a nonlinear pendulum system to stabilize the position of 

pendulum’s ball suspended in the desired position. The Cuckoo 

optimization algorithm (COA) has been utilized to get and tune the gain 

variables of the proposed backstepping controller in order to find the best 

torque action for the system. The numerical simulation results using 

(MATLAB package) show the robustness and the effectiveness of the 

proposed backstepping based COA controller in terms of obtaining the 

best torque control action without a saturation state that will stabilize the 

pendulum system performance. The simulation results show also that the 

proposed control system when compared with the other controller results 

has the capability of minimizing the pendulum’s ball position tracking 

error to the zero value at the steady state response and speeding up the 

system response. Moreover, the fitness evaluation value is reduced. 
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1. INTRODUCTION 

In various nonlinear control system issues, the backstepping control method is recently popular 

since it gives a nonlinear robust controller with good performance. Since 1990, Peter V. Kokotovic 

and others have developed the backstepping strategy for designing stabilizing controls for a particular 

type of block strict-feedback nonlinear systems. The Backstepping approach is a recursive procedure 

using a systematic design approach and Lyapunov function for particular forms of the nonlinear 

dynamical systems. This methodology guarantees both global and local asymptotic convergence for 

regulation and tracking properties [1, 2]. 

Consequently, various types of backstepping control algorithms have been used for controlling 

various nonlinear systems such as adaptive backstepping controller [3], the integral backstepping 

controller [4], the optimal backstepping controller [5], the fuzzy backstepping controller [6], 
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backstepping sliding mode controller [7], backstepping based PID controller [8], backstepping 

/nonlinear H∞ controller [9], and adaptive type-2 fuzzy backstepping controller [10]. 

Simple pendulums have been rigorously studied. Their nonlinear nature has turned them into an 

extensively used testbed for linear as well as nonlinear control methods. Next to serving as a control-

theoretic testbed, simple pendulums have been successfully utilized to approximate complex 

mechanisms such as robotic brachiating or the manipulation of pendulum-like objects, robotic 

walking. Therefore, a robust nonlinear controller is needed for reaching stable limit cycles when the 

ground, changes, or manipulated objects are unknown [11]. This motivates the design of a robust 

nonlinear controller for controlling a simple pendulum. 

The contribution of this paper is described as follows: 

 Utilizing the COA which has the ability of fast off-line searching in global regions to obtain 

and tune the best gain variables for the backstepping controller. These gain variables are 

responsible for generating the best torque control action. Thus, the output position of the 

pendulum will quickly reach the desired output position in the transient response. 

 Investigating the robustness performance of the backstepping based COA controller by 

adding an external torque as a disturbance effect to the pendulum system. 

The residual of this work is established as follows: Section two contains the mathematical model 

of the simple pendulum system. Section three demonstrates the design structure of the backstepping 

controller. In section four, the Cuckoo optimization algorithm is explained. Section five presents the 

simulation results of the proposed backstepping-based COA controller in the absence and presence of 

the disturbance. Finally, the conclusions are explained in section six. 

2. MODELING OF THE SIMPLE PENDULUM SYSTEM  

The simple pendulum system is described as a suspended weight from a hinge (o) that enables it 

to freely left and right swing. If a simple pendulum is pushed sideways from its equilibrium resting 

position, it will be exposed to a restoring force because of the gravity (𝑔) that accelerates it back 

toward the position of equilibrium. When the pendulum is released, the pendulum’s ball mass (𝑚) 

combined with the restoring force allows it to oscillate about the position of equilibrium, swinging 

forth and back. Consider the length of the rod (𝐿) is massless [12]. The simple pendulum system is 

shown in Figure 1 [13]. 

 

Figure 1: The simple pendulum system [13]. 

The equation of motion for the simple pendulum model is given by Eq. (1) as follows [13]: 

 �̈�(𝑡) = −𝑎 sin 𝜃 (𝑡) − 𝑏�̇�(𝑡) + 𝑐(𝑢(𝑡) + 𝑇𝑑(𝑡)    (1) 

Where, 𝜃(𝑡) represents the angle caused by the rod with the vertical axis, 𝑢(𝑡) represents the torque 

control action, 𝑇𝑑(𝑡) represents an external torque disturbance, 𝑎 = 10, 𝑏 = 1, and 𝑐 = 10. 

The 𝑥1(𝑡) state and its time derivative 𝑥2(𝑡) are defined as follows: 

 𝑥1(𝑡) = 𝜃(𝑡)  (2) 
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 𝑥2(𝑡) = 𝑥1̇(𝑡) = �̇�(𝑡)   (3) 

According to the Eqs. (2) and (3), the Eqs. (1) and (3) are written as follows: 

 𝑥1̇(𝑡) = 𝑥2(𝑡)   (4) 

 𝑥2̇(𝑡) = −𝑎 sin 𝑥1(𝑡) − 𝑏𝑥2(𝑡) + 𝑐(𝑢(𝑡) + 𝑇𝑑(𝑡))   (5) 

3. BACKSTEPPING CONTROLLER DESIGN 

In this paper, the control goal is to determine the control law 𝑢(𝑡) that makes the angular position 

𝑥1(𝑡) = 𝜃(𝑡) of the pendulum’s ball tracks the desired angular position 𝑥𝑑(𝑡) = 𝜃𝑑(𝑡) [3, 14]. The 

output position error (𝑍1(𝑡)) and its time derivative (�̇�1(𝑡)) are described as in Eqs. (6) and (7). 

 𝑍1(𝑡) = 𝑥1(𝑡) − 𝑥𝑑(𝑡)   (6) 

 �̇�1(𝑡) = �̇�1(𝑡) − �̇�𝑑(𝑡)    (7) 

Where, 𝑥𝑑(𝑡) represents the desired output position. 

The stability function is defined according to the virtual controller (𝜆(𝑡)) as in Eq. (8). 

 𝜆(𝑡) = −𝑎1𝑍1(𝑡) + �̇�𝑑(𝑡)  (8) 

Where, 𝑎1 represents a constant positive value. 

The velocity of the pendulum ball is defined as in Eq. (9). 

 𝑍2(𝑡) = �̇�1(𝑡) − 𝜆(𝑡)   (9) 

The acceleration of the pendulum ball is defined as Eq. (10) by taking the first derivative of Eq. (9). 

 𝑍2̇(𝑡) = 𝑥1̈(𝑡) − �̇�(𝑡)   (10) 

Therefore, Eq. (10) can be rewritten according to time derivative of Eq. (8) as in Eq. (12). 

 �̇�(𝑡) = −𝑎1𝑍1̇(𝑡) + 𝑥�̈�(𝑡)   (11) 

 𝑍2̇(𝑡) = −𝑎 sin 𝑥1(𝑡) − 𝑏𝑥2(𝑡) + 𝑐(𝑢(𝑡) + 𝑇𝑑) + 𝑎1𝑍1̇(𝑡) − 𝑥�̈�(𝑡)  (12) 

To confirm the closed-loop control law for the nonlinear pendulum system is asymptotically stable, 

the Lyapunov criterion is used as follows: 

 𝑉(𝑡) = 0.5𝑍1
2(𝑡) + 0.5𝑍2

2(𝑡)  (13) 

The time derivative of Eq. (13) is taken to give Eq. (14). 

 �̇�(𝑡) = 𝑍1(𝑡)𝑍1̇(𝑡) + 𝑍2(𝑡)𝑍2̇(𝑡)     (14) 

Then substituting Eqs. (7), (9), and (8) in Eq. (14) and with some rearrangement gives Eq. (15). 

 �̇�(𝑡) = −𝑎1𝑍1
2(𝑡) + 𝑍1(𝑡)𝑍2(𝑡) + 𝑍2(𝑡)𝑍2̇(𝑡)      (15) 

Put equation (15) is asymptotically stable form as Eq. (16). 

 �̇�(𝑡) = −𝑎1𝑍1
2(𝑡) − 𝑎2𝑍2

2(𝑡) ≤ 0    (16) 

Where: 𝑎2 represents a constant positive value.  

Substituting Eq. (12) into Eq. (15) leads to Eq. (17). 

�̇�(𝑡) = −𝑎1𝑍1
2(𝑡) + 𝑍1(𝑡)𝑍2(𝑡) + 𝑍2(𝑡)(−𝑎 sin 𝑥1(𝑡) − 𝑏𝑥2(𝑡) + 𝑐(𝑢(𝑡) + 𝑇𝑑(𝑡)) +

𝑎1𝑍1̇(𝑡) − 𝑥�̈�(𝑡))                                                                                                               (17)  
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Finally, the control law became as Eq. (18) to make the operation of the system asymptotically stable 

as follows: 

𝑢(𝑡) =
1

𝑐
((−𝑎1𝑎2 − 1)𝑥1(𝑡) − (𝑎2 − 𝑏 + 𝑎1)𝑥2(𝑡) + (𝑎1𝑎2 + 1)𝑥𝑑(𝑡) + 𝑎 sin 𝑥1(𝑡) −

𝑐𝑇𝑑(𝑡) + (𝑎1+𝑎2)�̇�𝑑(𝑡) + 𝑥�̈�(𝑡)                                                                                                (18) 

It is clear, when 𝑍1(𝑡) and 𝑍2(𝑡) are equal to zero 𝑉(𝑡) and �̇�(𝑡)  are equal to zero too and when 

𝑍1(𝑡) and 𝑍2(𝑡)  is not equal to zero 𝑉(𝑡) is a positive (not equal to zero) value and �̇�(𝑡) is a 

negative (not equal to zero ) value and this means the closed-loop feedback control of the pendulum 

system is asymptotically stable. Finally the control gain parameters 𝑎1 and 𝑎2 are tuned and obtained 

by using COA.  

The proposed block diagram for controlling the angular position of the simple pendulum model is 

depicted in Figure 2 and is consists of the backstepping controller, COA, and simple pendulum 

system. 

 

Figure 2: The block diagram of the optimal backstepping controller for the pendulum system. 

4. CUCKOO OPTIMIZATION ALGORITHM 

The cuckoo algorithm is an optimization algorithm inspired by the cuckoo bird’s special lifestyle; 

there is no bird of the cuckoo that gives birth to live young. The mature cuckoos must locate a nest of 

the other birds where they can lay their eggs safely and hatch in the nests of the host birds. 

Afterward, the host bird feed will be responsible for feeding. Some of the chicks have come out or 

eggs are deposited in a bad nest will be killed or destroyed. Only some of the cuckoo’s eggs have the 

opportunity for growing up and become mature birds. All of these mature cuckoos will be heading 

toward the best Habitat. After some iteration, the cuckoo's population will converge with the best 

profit values in a habitat [15]. 

Similar to the different types of evolutionary algorithms, the cuckoo algorithm starts with an 

initial cuckoos’ population. These initial cuckoos have some eggs to lay in the nests of some host 

birds. Some of these eggs that are more analogous to the host birds’ eggs have the chance to grow 

and become mature birds. While the other eggs will be detected by the host birds and are killed. The 

grown eggs reveal the appropriateness of nests in that region. As a result, the greater the eggs survive 

in a region, the greater the profit is acquired in that region. Thus, the concept that the COA is going 

to optimize is defined by the habitat in which greater eggs will survive [16, 17]. 

The steps of COA are summarized as follows: 

 Step 1: Initialize the cuckoo algorithm parameters such as the dimension of the problem (𝑑), the 

population of host nests (𝑁), maximum number of iterations (𝐼𝑡𝑒𝑟), the probability of alien eggs 

discover (𝑝𝑎), and initial cost function value for each nest (𝑐𝑜𝑠𝑡𝑛). 

 Step 2: In the cuckoo algorithm, each nest represents a feasible solution and the initial population 

for each nest can be generated randomly as in Eq. (19). 
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 𝑛𝑒𝑠𝑡𝑖𝑗 = 𝐿𝑏𝑗 + 𝑟𝑎𝑛𝑑()(𝑈𝑏𝑗 − 𝐿𝑏𝑗)  (19) 

Where, 𝑖 = 1, … , 𝑁,  𝑗 = 1, … , 𝑑, and 𝐿𝑏𝑗 and 𝑈𝑏𝑗 are the lower and upper boundaries of dimension 𝑗 

respectively. 

 Step 3: Calculate the cost function (𝐼𝑇𝐴𝐸) as in equation (20) for each nest as in Eq. (20). 

                                                                    𝑐𝑜𝑠𝑡𝑖 = ∫ 𝑡|𝑒(𝑡)|
𝑇

0
𝑑𝑡                                                     (20) 

Where, 𝑡 = 1, … , 𝑇, and 𝑇 represents the maximum simulation time.  

 Step 4:  For the 𝑖𝑡ℎ nest, if its new cost function value (𝑐𝑜𝑠𝑡𝑖) is smaller than its previous cost 

function value (𝑐𝑜𝑠𝑡𝑛𝑖) then: 

 𝑐𝑜𝑠𝑡𝑛𝑖 = 𝑐𝑜𝑠𝑡𝑖           (21) 

 𝑛𝑒𝑠𝑡𝑖𝑗 = 𝑛𝑒𝑠𝑡𝑖𝑗   (22) 

 Step 5:  Calculate the minimum cost function value (𝑓𝑚𝑖𝑛) and the best nest (𝑏𝑒𝑠𝑡𝑛𝑖𝑗) as the nest 

with the minimum cost function value as follows: 

 [𝑓𝑚𝑖𝑛, 𝑖𝑛𝑑𝑒𝑥] = 𝑚𝑖𝑛 (𝑐𝑜𝑠𝑡𝑛)      (23) 

                                                        𝑏𝑒𝑠𝑡𝑛𝑖𝑗 = 𝑛𝑒𝑠𝑡𝑖𝑗(𝑖𝑛𝑑𝑒𝑥, : )                                               (24) 

 Step 6: A Lévy distribution is generated using Mantegna’s algorithm as follows: 

 𝑛𝑒𝑠𝑡𝑖𝑗
𝑘+1 = 𝑛𝑒𝑠𝑡𝑖𝑗

𝑘 + 𝛼 ⊕ 𝐿𝑒′𝑣𝑦(𝜆)           (25) 

 𝐿𝑒′𝑣𝑦(𝛾) = 1−𝛾                (26) 

Where, k = 1, 2, … , Iter, α = 1, and 1 < γ ≤ 3. 

 Step 7: Repeat steps 3, 4, and then calculate the new minimum cost function value (𝑓𝑛𝑒𝑤) and the 

best nest (𝑏𝑒𝑠𝑡𝑛𝑖𝑗) as the nest with the minimum cost function value as follows: 

 𝑓𝑛𝑒𝑤 = 𝑚𝑖𝑛 (𝑐𝑜𝑠𝑡𝑛)       (27) 

 𝑏𝑒𝑠𝑡𝑛𝑖𝑗 = 𝑛𝑒𝑠𝑡𝑖𝑗             (28) 

 Step 8: For each nest choose a random value and if its greater than the probability of alien eggs 

discover (𝑝𝑎) then:  

 𝑛𝑒𝑠𝑡𝑖𝑗 = 𝑛𝑒𝑠𝑡𝑖𝑗 + 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒. 𝑟𝑎𝑛𝑑()                    (29) 

Where, 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 = 0.1. 

 Step 9: Repeat steps 7. 

 Step 10: If the new minimum cost function value (𝑓𝑛𝑒𝑤) is smaller than the minimum cost function 

value (𝑓𝑚𝑖𝑛) then: 

 𝑓𝑚𝑖𝑛 = 𝑓𝑛𝑒𝑤         (30) 

       𝑏𝑒𝑠𝑡𝑛 = 𝑏𝑒𝑠𝑡𝑛𝑖𝑗    (31) 

 Step 11: Stop if the maximum number of iterations (𝐼𝑡𝑒𝑟) is reached. Otherwise, Step 6 to Step 11 

is repeated. 
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5. SIMULATION RESULTS 

In this section, an optimal backstepping controller for controlling the output position of the 

pendulum ball is simulated using MATLAB package. The simulation results for the optimal 

backstepping controller with the initial conditions as (𝑥1 = 0.85 𝑟𝑎𝑑) and (𝑥2 = 0 𝑟𝑎𝑑/𝑠𝑒𝑐) with the 

desired output position as (𝜋/4 𝑟𝑎𝑑) and the maximum simulation time (𝑇) equals 10 sec are 

described as follows: 

To investigate the optimal backstepping controller as shown in Figure 2 for controlling the output 

position of the pendulum ball, cuckoo tuning control methodology has been used to find and tune the 

optimal parameters of the backstepping controller (𝑎1) and (𝑎2). These parameters lead to finding the 

optimal control action and minimizing the position tracking error with the minimum number of 

fitness evaluation, the parameters of the control methodology based on COA algorithm is defined in 

Table I. 

TABLE I: The parameters of the Cuckoo optimization algorithm. 

Description and Symbol Value 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 ℎ𝑜𝑠𝑡 𝑛𝑒𝑠𝑡𝑠 (𝑁) 20 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝐼𝑡𝑒𝑟) 100 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 (𝑑) 2 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎𝑙𝑖𝑒𝑛 𝑒𝑔𝑔𝑠 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟 (𝑝𝑎) 0.25 

Lower boundary of the dimension j 0 

Upper boundary of the dimension j 12 

 

The error (𝑍1(𝑡)) and the derivative of error (𝑥2(𝑡)) signals are equal to zero value at 1.4 𝑠𝑒𝑐 as 

depicted in Figures (3) and (4) respectively. This means that the controller can make the system 

asymptotically stable. 

 

 

Figure 3: The error signal of the optimal backstepping controller for the pendulum system. 
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Figure 4: The derivative of the error signal of the optimal backstepping controller for the pendulum 

system. 

The response of the pendulum output position (𝜃(𝑡)) reached the steady-state value at 1.4 𝑠𝑒𝑐 

and this means that the settling time equals 1.4 𝑠𝑒𝑐 as shown in Figure 5. 

 

Figure 5: The output response of the optimal backstepping controller for the pendulum system. 

The torque control action was smooth without oscillation response, no spikes behavior and the 

action response did not exceed (0.757 𝑁. 𝑚) as depicted in Figure 6. 

 

Figure 6: The torque control action of the optimal backstepping controller for the pendulum system. 

The control action is directed to force the derivative of the error (𝑥2(𝑡)) signal equals to the 

virtual controller (𝜆(𝑡)) signal. As a result, they have coincided and reached the zero value at 1.4 𝑠𝑒𝑐 

even if they are started from different values as depicted in Figure 7. 
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Figure 7: The virtual controller and the derivative of error signals of the optimal backstepping 

controller for the pendulum system. 

The error (𝑍1(𝑡)) and the derivative of error (𝑥2(𝑡)) go to the origin in the final trajectory of the 

phase plane. This means that the system is asymptotically stable as shown in Figure 8.  

 

Figure 8: The plot of the phase plane of the error against the derivative of the error. 

Figure 9 clearly shows the improved performance indices of the optimal backstepping controller 

based on the Integral Time Absolute Error (𝐼𝑇𝐴𝐸). 

 

Figure 9: The performance index (𝑰𝑻𝑨𝑬) of the optimal backstepping controller for the pendulum 

system. 

The optimal parameters values (𝑎1) and (𝑎2) and the dynamic behavior of the backstepping based 

COA controller such as the time it takes for the error to reach the zero value (𝑇𝑒), the time it takes for 

Start Point End Point 
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the derivative of the error to reach the zero value (𝑇�̇�), the settling time (𝑇𝑠), and the steady-state error 

(𝐸𝑠.𝑠) in comparison with the other controller result are summarized in Table II. 

TABLE II: The optimal parameters of the controller and the dynamic behavior of the pendulum 

system output position with different controllers.  

Parameter Backstepping Based COA Controller 
SLM Controller 

using GA [13] 

𝒂𝟏 7.594 - 

𝒂𝟐 6.348 - 

𝑻𝒆 1.4 Sec 22 Sec 

𝑻�̇� 1.4 Sec 22 Sec 

𝑻𝒔 1.4 Sec 22Sec 

𝑬𝒔.𝒔 0 

 

0 

 

 

The robustness performance of the proposed backstepping based COA controller is investigated 

by adding an external torque 𝑇𝑑(𝑡) equals (0.1 𝑁. 𝑚) as a step disturbance at the moment (4 −
5 𝑠𝑒𝑐). The error (𝑍1(𝑡)) and the derivative of error (𝑥2(𝑡)) signals have a very small overshoot at 

the moment (4 − 5 𝑠𝑒𝑐) during adding disturbance and they have a zero value at the steady-state 

response as depicted in Figures (10) and (11), respectively. This means that the controller has also the 

ability to make the system asymptotically stable in the presence of the disturbance. 

 

Figure 10: The error signal of the optimal backstepping controller for the pendulum system under 

disturbance. 

 

Figure 11: The derivative of the error signal of the optimal backstepping controller for the 

pendulum system under disturbance. 
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The output position response of the pendulum system (𝜃(𝑡)) has a very small overshoot at the 

moment (4 − 5 𝑠𝑒𝑐) during adding disturbance and the error equals zero value at the steady-state 

response. Besides,  the settling time also equals 1.4 𝑠𝑒𝑐 as shown in Figure 12. 

 

Figure 12: The output response of the optimal backstepping controller for the pendulum system 

under disturbance. 

The torque control action response in Figure 13 of the Backstepping-based COA controller is 

smooth without oscillation response, no spikes behavior, and has a small change in its value at the 

steady-state response at the moment (4 − 5 𝑠𝑒𝑐) during adding disturbance. 

 

Figure 13: The torque control action of the optimal backstepping controller for the pendulum 

system under disturbance. 

The derivative of the error (𝑥2(𝑡)) and the virtual controller (𝜆(𝑡)) signals have a very small 

overshoot at the moment (4 − 5 𝑠𝑒𝑐) during adding disturbance and they have a zero value at the 

steady-state response as depicted in Figure 14. 
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Figure 14: The virtual controller and the derivative of error signals of the optimal backstepping 

controller for the pendulum system under disturbance. 

 

6. CONCLUSIONS 

The numerical Matlab simulation results based on the off-line tuning Cuckoo optimization 

algorithm of the backstepping controller have been demonstrated in this work for the nonlinear 

pendulum system. The proposed control system has the following capabilities: 

 The off-line Cuckoo control algorithm can fast finding and tuning the optimal gains of the 

controller with the minimum fitness evaluation number. 

 A proper control action was obtained as a smooth without oscillation response and no spikes 

behavior occurs. 

 The numerical simulation results for the backstepping controller based on the Cuckoo tuning 

control algorithm show that the controller can give excellent performance in terms of 

speeding up the system response and reducing the settling time in comparison with the other 

controller result. Moreover, the fitness evaluation number is reduced. 

 High robustness performance was obtained by adding an external torque as a disturbance 

effect to the pendulum system using a backstepping controller based on the Cuckoo 

optimization algorithm. 
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