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 This paper presents a study on the behavior of fiber reinforced concrete 

slabs using finite element analysis. A previously published finite element 

program is used for the nonlinear analysis by including the steel fiber 

concrete properties. Concrete is represented by degenerated quadratic 

thick shell element, which is the general shear deformable eight node 

serendipity element, and the thickness is divided into layers. An elastic 

perfectly plastic and strain hardening plasticity approach are used to 

model the compression behavior of concrete. The reinforcing bars were 

smeared within the concrete layers and assumed as either an elastic 

perfectly plastic material or as an elastic-plastic material with linear 

strain hardening. Cracks initiation is predicted using a tensile strength 

criterion. The tension stiffening effect of the steel fibers is simulated using 

a descending parabolic stress degradation function, which is based on the 

fracture energy concept. The effect of cracking in reducing the shear 

modulus and the compressive strength of concrete parallel to the crack 

direction is considered. The numerical results showed good agreement 

with published experimental results for two fibrous reinforced concrete 

slabs. 
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1. INTRODUCTION 

Reinforced concrete slabs are important structural members in any reinforced concrete building, since 

it is the only member that takes the live loads directly. The thickness of the flat plate or flat slab is 

mostly controlled by the punching shear stresses created at the slab-column connection. To prevent the 

catastrophic and brittle punching shear failure, the ACI Code (318-19) [1] recommend the increase of 

the slab thickness or use of shear reinforcement. The shear reinforcement may be in the form of single 

leg, multiple legs, bent-down bars, shear studs, or shear head reinforcement.     
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Steel, glass, polymer, and other types of short discrete fibers have been added as reinforcement to 

concrete, thus producing a composite material with enhanced tensile strength, ductility, well defined 

post cracking behavior, and strain capacity [2,3]. The ACI Code (318-19) [1] recommends the use of 

deformed steel fibers complying with ASTM Specifications [4] as shear reinforcement with length to 

diameter ratio ranging between 50 and 100. Steel fibers have been used to improve the flexural and 

shear resistance of reinforced concrete slabs [5-11].   

Nonlinear finite element (FE) analysis is used extensively for the analysis of fiber reinforced concrete 

(FRC) members [12-14]. Geometrical and material nonlinearity due to tensile cracking, bond-slip 

between the tension reinforcement bars and the surrounding concrete, nonlinear behavior of concrete 

in compression have been considered. The nonlinear (FE) is used also by many researchers for 

analysis of fiber reinforced concrete slabs [11,15-21]. 

Six (FRC) slabs were cast, and tested by Alvarez [19], the slabs were 3.0 (m) of length and 200 (mm) 

thickness and three different widths, 1.5, 2.0, and 3.0 (m). Hooked steel fibers 50×0.62 (mm) was used 

with a volume fraction of 0.5%. The slabs were then analyzed using the software ATENA for the 

nonlinear analysis.  The expression suggested by Barros and Figueiras [22] is used for the SFRC in 

uniaxial compression. Concrete in tension modelled using nonlinear fracture mechanics combined 

with the crack band method and the smeared crack approach using a tri-linear diagram. Tetrahedral 

solid elements were used for meshing the slabs. Cracks patterns were predicted with acceptable 

accuracy, and an overestimation of the experimental results was observed for all the slabs. 

Eight high strength steel fiber reinforced concrete slabs that were tested by Yaseen [7] analyzed by 

Sayhood et al. [20] using the program (P3DNFEA) for the nonlinear (FE). Concrete is represented by 

20-node quadratic brick elements, and the reinforcing bars was simulated by embedded axial elements. 

In compression, concrete is assumed to follow an elastic-plastic work hardening model followed by a 

perfectively plastic response, which ended at the onset of crushing. A parabolic equivalent uniaxial 

stress-strain curve has been used to simulate the work hardening stage of behavior and the plastic 

strain is controlled by an associated flow rule. Concrete in tension assumed to behave elastically up to 

the cracking strain, followed by three descending trilinear lines for (FRC). A shear retention model is 

used to simulate the effect of cracking on the shear strength normal to the crack’s direction. The 

average ratio of the numerical to the experimental failure loads was 0.915 with a standard deviation of 

0.027.   

Abdel-Rahman et al. [11] tested fourteen reinforced concrete slabs reinforced longitudinally with 1.2% 

in both directions under concentric and eccentric load. Steel fibers with dimensions (50×0.52×0.72 

mm) and volume fractions of 0.5 to 1.5% were used to study the influence of steel fibers on the 

punching shear strength of the slabs. The test results showed an increase in the punching shear 

strength up 24%. A nonlinear (FE) analysis is conducted using the program ANSYS R14.5 to compare 

the numerical with the experimental results. Concrete is represented by eight node solid elements, 

solid65, and three-dimensional link elements 180 were used to simulate the reinforcing bars. The 

average ratio of the numerical to the experimental load is 0.98 with a standard deviation of 0.14, which 

indicates an excellent agreement. 

Puddicome[21] presented a (FE) model using the program ABAQUS for the analysis of (FRC) slabs. 

Concrete damaged Plasticity constitutive model is used to model the nonlinear behavior of concrete. 

The tension – stiffening effect is modelled using an exponential decay expression with variables to 

account for varying concrete grades, flexural reinforcement ratio, concrete of steel fibers in the 

concrete mix, and the yield strength of steel. Eight-nodded hexahedral (brick) elements were used to 

model concrete with reduced integration, and the reinforcement is modeled as two-node linear truss 

elements. The model is calibrated using the test results from nine slabs from the literature, and the 

ratio of the numerical to the experimental failure load varied from 0.78 to 1.281 with an average ratio 

of 1.068 and a standard deviation of 0.195. 

In this paper,the computer program of Ref. [23] for the nonlinear analysis of reinforced concrete plates 

and shells is modified in this study by including the constitutive material relationships of steel fiber 

concrete is used for the nonlinear (FE) analysis of (FRC) slabs under increasing monotonic loading. 

Modified version of the Newton-Raphson method has been used for the solution of the nonlinear 

problem.  
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1. MATERIALS CONSTITUTIVE RELATIONSHIPS 

I. Compression 

The first part of the curve in compression can be treated using the elasticity theory, Figure 1, and 

the second part using the theory of plasticity. The growth of the yield surface during plastic loading is 

used to model the hardening phenomena. The mean normal stress, I1 and the shear stress invariant, 

J2 is used as dependent variables for the yield function: 

𝑓(𝐼1, 𝐽2) = √𝛽𝑓(3𝐽2) + 𝛼𝑓𝐼1 = 𝜎𝑜  (1) 

where αf and βf are material parameters, and σo is the equivalent effective stress, taken as the 

compressive strength f'cf of fibrous concrete. For the biaxial compression state: 

𝜎1 = 𝜎2 = 𝜔𝑓𝑐𝑓
′   (2) 

 is the biaxial stress ratio (𝜔 = 𝜎1/𝜎2) 

      The experimental results reported in Refs. [24-26] is used in a regression analysis, and the 

following relationship is used taking into account the influence of the ratio of stresses, aspect ratio 

and volume fraction of steel fibers, then   equals to [27]:  

𝜔 = 𝑒𝑥                             (3) 

𝑥 = 1/[(3.339 − 0.9772 ln(𝑉𝑓𝐿𝑓/𝐷𝑓)]                                (4) 

αf and βf can be expressed as follow: 

𝛼𝑓 =
𝜎𝑜(1−𝜔2)

𝜔2−2𝜔
                           (5) 

𝛽𝑓 = (1 − 2𝜔)/(𝜔2 − 2𝜔)                                           (6) 

the stress components can then be used in the yield function and can be written as:  

𝑓(𝜎) = [𝛽𝑓{(𝜎𝑥
2 + 𝜎𝑦

2 + 𝜎𝑥𝑦) + 3(𝜏𝑥𝑦
2 + 𝜏𝑥𝑧

2 + 𝜏𝑧𝑦
2 )} + 𝛼𝑓(𝜎𝑥 + 𝜎𝑦)]

1/2
(7) 

To predict the crushing state of concrete, the yield criterion is converted into strain instead of 

stress components. The experimental results reported by [24-26] are used to estimate the ultimate 

compression strain of steel (FRC), [27]: 

𝜖𝑐𝑓𝑢 = 0.003011 + 0.002295𝑉𝑓                      (8)

 

Figure 1: Stress-strain relationships for fibrous concrete in uniaxial compression [27] 
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II. Tension 

As for plain concrete, the initial part of the stress-strain curve in tension, up to first cracking, 

Figure 2 is linear. Then it deviates from linearity due to micro-cracks initiation and propagation. This 

is followed by a formation of an unstable micro-crack system, which grows rapidly under the tensile 

stress bringing the material to its post-peak region [28]. The equations derived by Soroushian and 

Lee [29] fo  

𝑓𝑡𝑓
′ = 𝑓𝑡

′(1 + 0.016𝑁
𝑓

1

3 + 0.05𝜋𝐷𝑓𝐿𝑓𝑁𝑓) (9) 

∈𝑡𝑓=∈𝑡 (1 + 0.35𝐷𝑓𝐿𝑓𝑁𝑓)                                        (10) 

where Nf is the number of fibers crossing a unit area [30]: 

𝑁𝑓 = 1.64𝑉𝑓/(𝜋𝐷𝑓
2)                          (11) 

After the formation of a continuous crack, a stress drop occurs, and the crack is arrested at a 

certain level by the pullout resistance of the fires. It is assumed that the fibers bridging the crack start 

resisting the applied stress immediately after composite cracking.This stress is defined as fu. The post 

cracking tensile strength fu can thus be calculated as the product of the average bond stress and the 

interfacial area of fibers bridging the cracked section [28]:  

𝑓𝑢 = 𝜂𝑜𝜏𝑢𝑉𝑓𝐿𝑓/𝐷𝑓                                                      (12) 

where ηo is the orientation factor representing the percentage of fibers aligned in a certain 

direction. Different values were proposed for this factor like (1/3, 0.41, and 0.5), the probabilistic 

value of 0.41 is used in this study [30]. τu is the average bond strength and is equal to [29]:  

𝜏𝑢 = 2.62 − 0.0036𝑁𝑓  (13) 

After the sudden drop in stress from ftf' to fu a descending nonlinear stress-strain relationship is 

adopted in the present study to simulate the post-peak constitutive model as shown in Figure 2. The 

derivation of the nonlinear curve is based on the fracture energy concept [27] using experimental 

load-deformation curve reported by Visalvanich and Naaman [31]. The stress-strain relation can be 

expressed as follows:  

𝜎𝑖 = 𝑓𝑢[(𝜖𝑖 − 𝜖𝑚)/(𝜖𝑡𝑓 − 𝜖𝑚)]
2

                                                     (14) 

where εm is the limiting tensile strain. This value is calculated [27] assuming that the descending 

stress-strain curve is similar to that of a load- displacement curve of a fiber exhibiting pull-out, and 

the area under this curve is equal to the fracture energy Gf: 

∈𝑚= 3𝐺𝑓/(ℎ𝑓𝑢) +∈𝑡𝑓                                    (15) 

h is the Gauss pointcharacteristic length. The fracture energy Gf which is derived by Visalvanich 

and Naaman [31] is adopted in this study: 

𝐺𝑓 = 0.171𝛽𝜏𝑢𝑉𝑓(2𝐿𝑓
2/𝐷𝑓)                             (16) 

The tension stiffening effect is considered as indicated in Figure 2 by assuming a gradual release 

of the concrete stress component normal to the cracked plane. Unloading and reloading of cracked 

concrete is supposed to follow the linear behavior shown in Figure 2 with a fictitious secant modulus 

Ets.                                                

In the biaxial tension-compression zone, the parabolic relationship derived by Al-Taan and 

Mahmood [32] is used:  
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𝜎2𝑝 = [(√1 + 4(𝛼2
2𝑆2) − 1) /(2𝛼2

2𝑆2)] 𝑓𝑐𝑓
′          (17) 

S = f'cf / ftf, and the peak tensile strength as:  

𝜎1𝑝 = 𝜎2𝑝𝛼22                      (18) 

where σ1p and σ2p are the limiting principal tensile and compressive strengths respectively in 

this zone and α2 is the principal stress ratio = σ2/σ1.   

When cracking occurs, the concrete is assumed to be in a state of uniaxial compression parallel to 

the cracks and exhibiting characteristics of the strain hardening elasto-plastic model. After cracking 

the relationship proposed by Vecchio and Collins [33] is adopted:  

𝑓𝑐𝑓𝑚𝑎𝑥
′ = 𝑓𝑐𝑓

′ /(0.8 +
0.34𝜖1

𝜖2
) ≤ 𝑓𝑐𝑓

′               (19) 

In the direction perpendicular to the crack,the elastic modulus and Poisson's ratio is reduced to 

zero and a reduced shear modulus is employed to simulate the aggregate interlock.   

 

 

Figure 2: Stress-strain curve for fibrous concrete in tension [27] 

 

III. Shear Modulus of Cracked Concrete 

Four different expressions are used to reduce the shear modulus, Figure 3: Shear Modulus of 

Cracked Concrete 

Four different expressions are used to reduce the shear modulus, Figure 3:  

Approach G1, in this approach the value of   is linearly decreasing with the current tensile strain 

as assumed by Cedolin and Poli [34], Figure 3, if cracks appeared in direction 1, 

�̅�12 = 0.25𝐺(1 − 𝜖1/𝜖𝑚)          for    𝜖1 < 𝜖𝑚   (20a) 

 �̅�12 = 0                                    for    𝜖1 ≥ 𝜖𝑚   (20b) 

Biaxial orthotropic approach G2: This approach has been proposed by Chen [35]. The shear modulus 

of cracked concrete can be written as follows: 

�̅�12 = 𝐸1𝐸2/(𝐸1 + 𝐸2 + 2𝜐𝐸2)                          (21) 

        If Poisson's ratio (ʋ) equal to zero Eq. (21) becomes: 

�̅�12 = 𝐸1𝐸2/(𝐸1 + 𝐸2)                                            (22) 

        where E1 and E2 are the elastic moduli in directions 1and 2 respectively. 
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Approach G3:  In this approach the value of G is parabolically decreasing with the current tensile 

strain, using a function similar to that used in Eq. (14), [27], if the cracks appeared in direction 1,  

�̅�12 = 0.25𝐺[(𝜖1 − 𝜖𝑚)/(𝜖𝑡𝑓 − 𝜖𝑚)]2           for   𝜖1 < 𝜖𝑚   (23a) 

 �̅�12 = 0for𝜖1 ≥ 𝜖𝑚   (23b) 

Approach G4: This approach was proposed initially proposed by [36] and modified in this study by 

substituting εtffor εt. The shear modulus of concrete cracked in direction 1, can be calculated as 

follows: 

�̅�12 = 0.4𝐺/(𝜖1/𝜖𝑡𝑓)                                   (24) 

 

Figure 3: Reduced shear moduli 

2. FINITE ELEMENT FORMULATION 

The eight-node serendipity thick shell element is used in the present study to represent the slabs. 

Three displacements and two independent rotations of the normal to the element mid surface are 

considered for each node. The formulations of this element are mentioned by Onate et al. [37]. This 

element is the most popular degenerated shell element in isoparametric formulation, and it is the 

simplest element considered in the original work of Ahmad [37], and this element requires C0 

continuity. Shear locking occurs even in moderately thin situations when using full integration. A 

great improvement of the results was obtained when the reduced integration was used [37]. The 

element can be divided into a number of concrete layers through the thickness. The stresses of each 

layer are computed at the Gauss points and assumed to be constant. Smeared approach is 

implemented for the steel reinforcement which is incorporated with the layered approach. 

3. NUMERICAL EXAMPLES 

Two examples were analyzed, the first one (FS-20) is a square lightweight (FRC) slab tested by 

Theodorakopoulos and Swamy [6], and the second one (S-2) is a square normal (FRC) slab-column 

connection tested by Swamy and Ali [5]. Both slabs were with a side length of 1.8 m and 125 mm 

thick provided with a central square column stub. One quarter of each slab is analyzed due to 

symmetry, Figure 4. Dimensions, reinforcement details and loading are shown in Figure 4a.  The 

material properties for the first slab are summarized in Table I. 

A convergence study is conducted on the optimum number of elements and layers. The slabs 

were modelled in the present study by three meshes containing four, nine, and eleven elements. 

However, the loading, geometry of the slab, and the obtained results showed that using eleven 

elements as shown in Figure 5 gave a reliable simulation and results. The number of layers were 

varied from 3 to 10, to find the optimum number to be used in the analysis. The numerical results 
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show that the optimum number of layers that give the best agreement with the experimental results is 

10 as will be shown later. 

 

 

Figure 4: Details and finite element mesh for slab FS-20, (a) Dimensions and reinforcement, (b) Finite 

element mesh 

Table I: Materials properties of slab FS-20 [6] 

Ecf(GPa) Es
’ (GPa) Vf

*   % fcuf
' (MPa) ft

' (MPa) fy  (MPa) As bars ϵcuf
** ×10-3 

19.4 17 1.0 46.3 4.38 425 8-ɸ 10 5.3 

* Crimped steel fibers 0.5×50 (mm), ** calculated from Eq. (8), νc = 0.15, Es = 204 GPa. 

Figure 5 shows the load-deflection for slab (FS-20) with 3, 4, 5, 6, 8, and 10 layers across the 

depth using models G3 and G4 for reducing the shear moduli. The Figures showed that the 10 layers 

simulation gave the best agreement with the experimental results for both G models. The four 

reduced shear modulus relationships, Eqs. (20-24) were used in the analysis of the same slab to check 

their suitability for the analysis of (FRC) slabs. Figures 6a and 6b show the load-deflection curves 

using the elasto-plastic and strain hardening respectively to model concrete together with all the G 

models. The Figures showed that in the pre-yield stage all the proposed G models gave good 

agreement with the experimental results and in general there is no remarkable difference in the 

behavior at this stage for all the proposed G models. In the post-yield stage, the models G1 and G3 

gave good agreement with the experimental results but overestimated the failure load.  Model G2 

underestimated the ultimate loads, and G4 gives good agreement with the experimental results 

specially with the value of ultimate load (numerical ultimate load = 210.94 kN versus the 

experimental ultimate load = 211 kN). 

Figure 6 also show that using elastic-plastic and strain hardening models, does not yield 

considerable difference in the results, and this may be attributed to the relatively small compression 

stresses developed in the compression zone prior to final failure since the slab is under reinforced 

(reinforcement ratio = 0.37%).   

Figure 7 shows that the full integration rule for both models G3 and G4 give slightly a larger 

ultimate load than the ultimate load obtained using these models with reduced integration. The 

locking phenomena does not occur because (span/thickness) equals to 13.5 [23].  
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Initial damage to the slab occurred in the form of tension cracking in the radial direction Figures 

8 and 9. With increasing load, cracks propagate extensively through the depth and in the radial 

direction and in the circumferential direction in region close to the column stub, Figure 8.  Such 

distribution of cracks forms a mechanism of flexural failure similar to what is assumed in yield line 

analysis (circular fans).  Figures 8 and 10 show the region where crushing occurred near the loaded 

area, cracked zone in one or two direction and the uncracked zone. The Figures show that the plastic 

zone spread over about 3 % of the total area of the slab. 

 

 

Figure 5: Experimental and numerical load-deflection curves for slab FS-20 using different number of 

layers, (a) G3 model, (b) G4 model 
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Figure 6: Experimental and numerical load-deflection curves for slab FS-20 using elasto-plastic  

and strain hardening models, (a) Elasto-plastic model, (b) Strain hardening model 

 

 

Figure 7: Experimental and numerical load-deflection curves for slab FS-20 using  

full and reduced integration, (a) Full integration, (b) Reduced integration 
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Figure 8: Cracking patterns and crushing, (a) Cracking at load 67.5 kN, (b) Cracking atload 180 

kN, (c) Cracking at load 208.125 kN, (d) Crushing at the compression face 

 

Figure 9: Experimental crack pattern of slab FS-20 [6] 

 

Figure 10: Profile of cracked and damaged zone at load 205.3 kN 
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The second example S-2 is a square normal (FRC) slab-column connection tested by Swamy and 

Ali [5] with the same dimensions as Example (1) FS-20, Figure 4.    The slab was designed to fail in 

shear and incorporated 0.5×50 mm crimped steel fibers at volume of 0.5%. The material properties of 

the tested slab are summarized in Table II. The reinforcement in tension and compression were 

represented by two steel layers respectively and six concrete layers are found to be enough for the 

analysis.  

Table II: Materials properties of slab S2 [5] 

Ecf(GPa) Es
’ (GPa) Vf

*   % fcuf
' 

(MPa) 

ft
' (MPa) fy  (MPa) As

’ bars As bars ϵcuf
** 

×10-3 

33.29 17 0.5 34.87 4.2 425 7- ɸ 8 12-ɸ 10 4.4 

* Crimped steel fibers 0.5×50 mm, ** calculated from Equation (8), νc = 0.15. 

 

 

Figure 11 shows the load-deflection curves, all the G models gave good agreement with the 

experimental results prior to failure, but G2 and G4 models give lower values of failure load while 

G1 and G3 models give higher value of failure load. 

Figure 12a shows the load tensile steel strain curve near midspan for the experimental and the 

numerical values using G4 with strain hardening model and reduced integration rule.  It is clear from 

this figure that the numerical results have a good agreement with the experimental values especially 

in the post cracking stage up to the ultimate load. Figure 12b shows the load compression steel strain 

curves near midspan using also G4 with strain hardening model and reduced integration rule. It is 

clear from this figure that below a load of about 100 kN, the strain is compression. Then, the neutral 

surface is rising and the steel becomes in the tension zone. A reasonable agreement can be noticed 

between experimental and numerical values of strain. 

 

 

Figure 11: Load-deflection curves for slab S-2, (a) Strain hardening model, (b) Elasto-plastic model 
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Figure 12: Load-steel strains curves for slab S-2, (a) Tension steel, (b) Compression steel 

4. CONCLUSIONS 

The adopted constitutive materials relationships with the finite element results showed a good 

agreement with the experimental results which includes cracks initiation and propagation, deflection,  

Steel strains, and load capacities for both lightweight and normal weight (FRC) slabs. The eight 

nodded (Serendipity) general shear deformable shell elements with five degrees of freedom showed 

good performance for the nonlinear analysis of normal weight and lightweight (FRC) slabs. Shear 

reduced modulus G2 and G4 showed better agreement for the failure load than G1 and G3. The 

proposed method can be used as a design guide for other cases. Refined materials constitutive 

relationships may give numerical results that may agree better with the experimental results.  
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