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 Network reconfiguration is the best way to inquisitive a flexible, reliable 
and effective distribution network. An efficient optimization technique that 
uses Particle Swarm Optimization (PSO) is described and analyzed with 
the goal of reducing power losses and enhancing the voltage profile in the 
distribution network by reconfiguring the network, taking into account the 
branch current limit, branch capacity limit, bus voltage limits and radial 
structure constraint (no meshed loop). The approach is applied to the part 
of AL-KUT city distribution system (TAMOZE region system) to attain an 
optimum network configuration in connection with power loss. Two 
dissimilar load situations are regarded, and the performance of the 
suggested approach is also proved by increasing the decrease in power 
loss by using MATLAB under steady-state conditions. 
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1. INTRODUCTION 
Network reconfiguration of distribution systems is a very significant energy-saving strategy. As 

well, due to its characteristics, it is inherently an optimization issue. Distribution systems are an 
important connection between the utility and the consumer, where sectionalizing switches are used 
for both security and configuration administration. New studies have shown that up to 13% of the 
overall power generated is lost in the form of line losses at the distribution level. The investigation of 
approaches for the reconfiguration of the network is therefore of huge advantage. The goal of 
network reconfiguration is to decrease power loss and enhances the network voltage profile by 
altering the status of present sectionalizing and tie switches. [1] 

Consumer requirements fluctuate with the time of day, the day of the week, and the season; thus, 
the reconfiguration of the feeder allows to transport loads from high to low loaded areas. Network 
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reconfiguration can also be utilized in planning studies, to calculate the optimum structure of the 
network throughout the total planning process. [2] 

Since the distribution system comprises of numerous switches and the number of switching 
operations available is enormous. Network reconfiguration is therefore a very complicated decision-
making issue. On the other hand, the radial and discrete nature of the switch values prevent the use of 
classical optimization approaches to resolve the reconfiguration issue. Most approaches are therefore 
dependent on heuristic search methods, using either analytical or knowledge-based engines [3], 
which they search for a close to – optimum solution for large power systems in a rational time. 

Over the last two decades, several researchers have solved the issue of network reconfiguration 
using various approaches aimed at reducing the loss of power and/or improving the voltage profile of 
power distribution networks [4]. 

Merlin and Back in 1975, suggested a heuristic branch and bound form approach for evaluating 
network configuration for minimal line losses. In the first step, the solution scheme begins with a 
meshed network by closing all network switches. The switches are then opened one at a time until 
reaching a new radial configuration. In this method, the switch to be opened at each level is selected 
to reduce the loss of the resulting network line [5]. Shirmomohammadi and Hong in 1989, improved 
the Merlin and Back methods. As a result, it shares the two key benefits of that approach, 
convergence to the optimum or near optimum solution and independence from the initial status of the 
network switches from the final solution. At the same time, this approach removes all of Merlin and 
Back's key disadvantages [6]. Nara in 1992, proposed the Genetic Algorithm (GA). The basic design 
of GA makes it ideal for various multi-objective optimization problems. The key issue when using 
GA is the effective chromosome coding and decoding process that describes the distribution network 
and the structure of the fitness function [7]. Li and Chen in 2003, developed an effective and reliable 
approach based on the Tabu Search (TS) technique; TS is a heuristic optimization technique that 
offers an optimal solution to solve the problem of network reconfiguration in the distribution system 
in order to minimize line losses under normal operating conditions [8]. Charles and Khan in 2005, 
suggested a new technique for network reconfiguration, based on an ant colony system algorithm. In 
the presence of constraints, the approach is highly versatile and globally optimal. It has some good 
features, such as positive feedback, distributed computing and greedy heuristics, which make it the 
best method of network reconfiguration [9]. Salazar and Gallego in 2006, proposed an algorithm 
based on artificial neural network theory and they also present a clustering technique to determine the 
best training set for a single neural network with the generalization ability [10]. Gupta and Niazi in 
2011, present a new method for reconfiguration of radial distribution systems for minimization of 
real power loss using adaptive particle swarm optimization without involving any additional cost for 
the installation of tap changing transformers, capacitors, and concerned switching equipment. The 
initial population for particle swarm optimization is created using a heuristic approach and the 
particles are adapted with the help of graph theory to generate feasible individuals [11]. The 
available research on network reconfiguration to minimize power loss commonly considers a 
scenario of constant load demand and less attention was paid to the representation of the variable 
load demand in the reconfiguration of the network. These approaches, therefore, consist of 
disadvantages with regard to the demand for a practical load. Ignoring variations in load demand 
causes a lack of certainty in the distribution network to minimize power losses. 

This work proposes a Particle Swarm Optimization (PSO) technique for good analysis since it 
describes the impact of loading patterns on the performance of the distribution system for active and 
passive networks. The suggested method seeks to detect the real loss of power under different load 
characteristics. Thus, the likely advantage of this method is the involvement in offering more 
flexibility for power companies in terms of distribution network operation, as well as opening up new 
prospects for the automation of smart distribution networks. 

The suggested technique is checked on the part of AL-KUT distribution system with the goal of 
minimizing the real power losses. The system was programmed and implemented using a MATLAB 
environment. The key objective of this work is to analyze the reconfiguration of the network from a 
diverse viewpoint with respect to loading models. This method allows the exchange of a pre-defined 
set of different reconfigurations; thus, it is essential for an automated modern distribution system for 
planning and operation. 
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The content in this article is structured as follows: The distribution system reconfiguration 
problem formulation is given in Section 2. Section 3 explains the algorithm that was suggested here. 
The test system is described in section 4. The results of the simulation are presented and discussed in 
Section 5. This article ends with some conclusions. 

2. DISTRIBUTION SYSTEM RECONFIGURATION PROBLEM FORMULATION 

I. Load Flow Calculations using Backward / Forward Sweep  
Load flow is fundamental for the analysis of the distribution systems, for the investigation of 

design, planning, control and operation issues. The network load flow is iteratively resolved from 
two sets of recursive equations. The first set of equations to determine the power flow through the 
branches beginning with the last branch and continuing backward towards the root bus. The second 
set of equations was used to calculate the magnitude and voltage angle of each bus beginning from 
the root bus and continuing in the forward direction towards the last bus. These equations can be 
derived as follows, and Figure 1 illustrates the representation of two buses in a distribution line. 
Consider that the ‘j’ branch is linked between the ‘i’ and ‘i+1’ buses. [12] 

 
 Figure 1:The representation of two buses in a distribution line 

The efficient active ( 𝑃𝑃𝑖𝑖 ) and reactive (𝑄𝑄𝑖𝑖) powers that flow from bus ‘i' to the bus ‘i+1’ through 
branch ‘j’ can be computed backwards from the last bus and are given as in Eq. (1) and (2) 
respectively: 

𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑖𝑖+1′ + 𝑟𝑟𝑗𝑗
(𝑃𝑃𝑖𝑖+1

′ +𝑄𝑄𝑖𝑖+1
′ )

𝑉𝑉𝑖𝑖+1
2       (1) 

𝑄𝑄𝑖𝑖 = 𝑄𝑄𝑖𝑖+1′ + 𝑥𝑥𝑗𝑗
(𝑃𝑃𝑖𝑖+1

′ +𝑄𝑄𝑖𝑖+1
′ )

𝑉𝑉𝑖𝑖+1
2                                        (2) 

Where: 
𝑃𝑃𝑖𝑖+1′ = 𝑃𝑃𝑖𝑖+1 + 𝑃𝑃𝐿𝐿𝑖𝑖+1  and 𝑄𝑄𝑖𝑖+1′ = 𝑄𝑄𝑖𝑖+1 + 𝑄𝑄𝐿𝐿𝑖𝑖+1  
𝑃𝑃𝐿𝐿𝑖𝑖+1 and 𝑄𝑄𝐿𝐿𝑖𝑖+1 : the connected load at bus ‘i+1’. 
𝑃𝑃𝑖𝑖+1 and  𝑄𝑄𝑖𝑖+1: the effective active and reactive power flows from node ‘i+1’. 
The voltage magnitude and angle at each bus are computed in the forward direction. Consider a 

voltage 𝑉𝑉𝑖𝑖⎿ 𝛿𝛿𝑖𝑖   at the bus ‘i’ and 𝑉𝑉𝑖𝑖+1⎿ 𝛿𝛿𝑖𝑖+1 at bus ‘i+1’, then the current that flows through the 
branch ‘j’ having an impedance, 𝑧𝑧𝑗𝑗 = 𝑟𝑟𝑗𝑗 + 𝑗𝑗𝑥𝑥𝑗𝑗 connected between ‘i’ and ‘i+1’is given as in Eq. (3): 

𝐼𝐼𝑗𝑗 = 𝑉𝑉𝑖𝑖⎿ 𝛿𝛿𝑖𝑖− 𝑉𝑉𝑖𝑖+1⎿ 𝛿𝛿𝑖𝑖+1
𝑟𝑟𝑗𝑗+𝑗𝑗𝑥𝑥𝑗𝑗

      (3) 

The overall active and reactive power loss of the radial distribution system can be computed as in 
Eq. (4) and (5) respectively: 

𝑇𝑇𝑃𝑃𝑇𝑇 = ∑ 𝑟𝑟𝑗𝑗  �𝑃𝑃𝑖𝑖
2+𝑄𝑄𝑖𝑖

2�
𝑉𝑉𝑖𝑖
2

𝑁𝑁𝑏𝑏
𝑗𝑗=1      (4) 

𝑇𝑇𝑄𝑄𝑇𝑇 = ∑ 𝑥𝑥𝑗𝑗  �𝑃𝑃𝑖𝑖
2+𝑄𝑄𝑖𝑖

2�
𝑉𝑉𝑖𝑖
2

𝑁𝑁𝑏𝑏
𝑗𝑗=1     (5) 
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Initially, a flat voltage profile is presumed at all nodes i.e., 1.0 𝑝𝑝𝑝𝑝. The branch powers are 
evaluated iteratively by the updated voltages at each node. [12] 

II. The Objective Function 
The primary aim of the reconfiguration of the feeder is to achieve optimum operation of the 

distribution system, by re-configuring the distribution lines in such a way that the specified objective 
function is fulfilled. Subsequent goals are accomplished through the network reconfiguration, for 
example: 
1) Actual power loss reduction. 
2) Balancing feeder loads and helping to handle network overload situations by transporting 
loads from extremely loaded feeders to low-loaded feeders. 
3) Bus voltage profile improvement.  
4) Restoration of service under faulty conditions, thus enhancing system protection, reliability 
and improving power efficiency. 
5) Planning outages for maintenance service restoration under faulty conditions. 

These research goals that can be satisfied by network reconfiguration are the decrease of power 
loss and enhancing the voltage profile, taking into account limitations and dissimilar scenarios of 
load variations. The objective function used to calculate the smallest value of the overall active 
power losses is illustrated in Eq. (6) [13]. 

𝐹𝐹 (𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑇𝑇𝑃𝑃𝑇𝑇)                                           (6) 

𝑥𝑥 = [𝑇𝑇𝑚𝑚𝑇𝑇₁;𝑇𝑇𝑚𝑚𝑇𝑇₂; . . . . . . ;𝑇𝑇𝑚𝑚𝑇𝑇𝑁𝑁𝑁𝑁𝑖𝑖𝑁𝑁; 𝑆𝑆𝑆𝑆₁; 𝑆𝑆𝑆𝑆₂; . . . . . . 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑖𝑖𝑁𝑁] 

Where 
 𝑥𝑥: control variable vector; 𝑇𝑇𝑚𝑚𝑇𝑇ᵢ: 𝑚𝑚𝑖𝑖ℎ tie switch state; 𝑆𝑆𝑆𝑆ᵢ: 𝑚𝑚𝑖𝑖ℎ switch. 
The objective function is subjected to the subsequent limitations: 

1) Radiality means that no loops are permitted on the network. 
2) The voltage of each bus must be within the top and minimum limitations as illustrated in 

Eq. (7). 

𝑣𝑣𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 ≤ |𝑣𝑣𝑖𝑖| ≤ 𝑣𝑣𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥       𝑚𝑚 = 1,2, … ,𝑁𝑁𝑚𝑚    (7) 

Where: 𝑣𝑣𝑖𝑖 is the 𝑚𝑚𝑖𝑖ℎ bus voltage magnitude, 𝑣𝑣𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 and 𝑣𝑣𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥  are the minimum and maximum 
voltage magnitude limitations of the 𝑚𝑚𝑖𝑖ℎ bus. 

 
1) Branch power limit: Power flow at each branch must be always below or equal to its 

maximum capacity, as illustrated in Eq. (8) 
 

𝑆𝑆𝑗𝑗 ≤ 𝑆𝑆𝑗𝑗𝑚𝑚𝑚𝑚𝑥𝑥                                                           (8) 

2) Branch current limit: 

�𝐼𝐼𝑗𝑗� ≤ 𝐼𝐼𝑚𝑚𝑚𝑚𝑥𝑥                                                           (9) 

Where:  �𝐼𝐼𝑗𝑗� is the current magnitude flowing in the branch 𝑗𝑗, 𝐼𝐼𝑚𝑚𝑚𝑚𝑥𝑥 is the maximum permissible 
current limit. 

3. PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM 
In the year 1995, a novel evolutionary computation method called Particle Swarm Optimization 

(PSO) was suggested by Kennedy (social-psychologist) and Eberhart (electrical engineer) [14]. PSO 
is one of the heuristic approaches employed by researchers to overcome several issues associated 
with power systems. The main principle of PSO is depending on the social actions (foraging) of 
creatures for example, birds (flocking) and fish (schooling). The birds or the fish will travel to the 
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food at a specific position or speed. Their motion will be based on their own experiences and on the 
experiences of other ‘friends’ in the group (𝑝𝑝𝑝𝑝𝑇𝑇𝑝𝑝𝑖𝑖 and 𝑔𝑔𝑝𝑝𝑇𝑇𝑝𝑝𝑖𝑖). PSO has a kind of specific language 
and terminology, Table I summarizes these terminologies [15]. 

TABLE I: Some keywords used to describe the PSO algorithm 

Particle or Agent One single individual in the swarm. 

Swarm The entire collection of agents. 
Fitness A single number representing the quality of a given solution. 
pbest The location of the best fitness returned for a specific agent. 
gbest The location of the best fitness returned for the entire swarm. 

Maximum velocity The maximum allowed velocity in a given direction. 

The main appealing characteristic of PSO is its simplicity since it includes only two models of 
equations. In PSO, the coordinates of any particle symbolize a potential solution related to two 
vectors, the position ( 𝑥𝑥𝑖𝑖 ) and velocity ( 𝑣𝑣𝑖𝑖 ) vectors. The size of vectors 𝑥𝑥𝑖𝑖 and 𝑣𝑣𝑖𝑖 is like the number 
of particles. A swarm comprises a number of particles “or probable solutions” that move thru a 
feasible solution space to discover optimum solutions. Any particle updates its position on the basis 
of its own finest exploration (finest swarm total experience) and its previous velocity vector 
according to the following Equations [16]. 

𝑣𝑣𝑖𝑖𝑘𝑘+1 = 𝑆𝑆 𝑣𝑣𝑖𝑖𝑘𝑘 + 𝑐𝑐1 ⨯ 𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟 ⨯ �
𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖−𝑥𝑥𝑖𝑖

𝑘𝑘

∆𝑁𝑁
� + 𝑐𝑐2 ⨯ 𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟 ⨯ �𝑔𝑔𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖−𝑥𝑥𝑖𝑖

𝑘𝑘

∆𝑁𝑁
�      (10)      

    𝑥𝑥𝑖𝑖𝑘𝑘+1 = 𝑥𝑥𝑖𝑖𝑘𝑘 + 𝑣𝑣𝑖𝑖𝑘𝑘+1 ∗  ∆𝑖𝑖                                         (11) 

Where: 
𝑣𝑣𝑖𝑖𝑘𝑘+1 : is the new velocity of  𝑚𝑚𝑖𝑖ℎ particle; 𝑣𝑣𝑖𝑖𝑘𝑘 : is the original velocity of  𝑚𝑚𝑖𝑖ℎ particle; 𝑆𝑆: is the 

inertia weight and is generally set to 1 or is changing with time; 𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟: is a random number between 
0 and 1; 𝑥𝑥𝑖𝑖𝑘𝑘: is the present position in the 𝑚𝑚𝑖𝑖ℎ dimension; 𝑐𝑐1, 𝑐𝑐2: are the acceleration coefficients; 
𝑝𝑝𝑝𝑝𝑇𝑇𝑝𝑝𝑖𝑖𝑖𝑖: is the personal best position in the 𝑚𝑚𝑖𝑖ℎ dimension; 𝑔𝑔𝑝𝑝𝑇𝑇𝑝𝑝𝑖𝑖𝑖𝑖: is the global best position in the 
𝑚𝑚𝑖𝑖ℎ dimension; ∆𝑖𝑖:is the time step. 

 
The flow chart of the proposed PSO method presented here is seen in Figure 2. The following 

steps provide clarification to the flow chart: 

  

1) Initialize a population of particles with arbitrary positions and velocities on dimensions 
in the space. 

2) Read the distribution system load and line data and perform load flow. 
3) Set maximum iterations = max_ite. 
4) Calculate fitness function (power loss) for Pbest. 
5) Max_ite = max_ite -1. 
6) Update the velocity and the position using Equations (10) and (11) respectively. 
7) Calculate the fitness function (power loss) for each particle. 
8) If satisfying all the restrictions; If the particle fitness is better than the 𝑝𝑝𝑝𝑝𝑇𝑇𝑝𝑝𝑖𝑖, the value is 

set to 𝑝𝑝𝑝𝑝𝑇𝑇𝑝𝑝𝑖𝑖. If the best fitness better than the 𝑔𝑔𝑝𝑝𝑇𝑇𝑝𝑝𝑖𝑖, the value is set to 𝑔𝑔𝑝𝑝𝑇𝑇𝑝𝑝𝑖𝑖. 
9) If Max_ite = 0 prints the results.  
10) Stop. 



Engineering and Technology Journal                   Vol. 39, Part A (2021), No. 05, Pages 738-753 
 

743 
 
 

 
 Figure 2: Flow Chart of the load flow and Particle Swarm Optimization (PSO) Algorithm 

The load flow and Particle Swarm Optimization (PSO) algorithm were tested on the standard 
IEEE 33-bus test system and compared to other approaches in our paper [17]. 
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4. TEST DISTRIBUTION SYSTEM AND SIMULATION STUDIED CASES 

I. TAMOZE Region 35-Bus System 
The TAMOZE region system is part of the AL-KUT city distribution system, the schematic 

diagram of this system can be seen in Figure 3, its line and load data are given in appendix A Table 
A.1 and Table A.2 respectively. This system consists of two feeders, 35 buses, five usually opened 
switches (tie switches) are Sw-36 to Sw-40, recognized by dotted lines and 35 usually closed 
switches (sectionalizing switches) are Sw-01 to Sw-35, recognized by solid lines. The base network 
voltage is 12.66 𝑘𝑘𝑉𝑉, the 𝑆𝑆𝑝𝑝𝑟𝑟𝑝𝑝𝑇𝑇 is 100 MVA and the overall network loads are 6186.511 kW and 
4639.876 𝑘𝑘𝑉𝑉𝑟𝑟𝑟𝑟. 

1 3 4 65 72 8 9
S

Sw1 Sw3 Sw4 Sw5 Sw6 Sw7 Sw8 Sw9

11 12 13 14 15 16 17

Sw14 Sw15

21 22 24 25 26 27

Sw22 Sw23 Sw24 Sw25

23

28 29 31

32 33

30

Sw2

Sw
10

Sw11 Sw12 Sw13 Sw16 Sw17

1810

Sw18

Sw
19

Sw20 Sw21 Sw26 Sw27

19 20

34

Sw
28

Sw29 Sw30 Sw31

Sw
32

Sw33 Sw34

Sw
35

Sw
36

Sw
37

Sw
38

Sw
40

Sw
39

35

Loop 3

 
 Figure 3:TAMOZE region (in AL-KUT city) system before reconfiguration 

In this paper, the efficiency of the proposed method evaluated in two separate cases; constant 
load case study and different load patterns case study. 

II. Different Load Patterns Case Study 
Modern electrical networks are a complicated blend of dynamic and static components that work 

in a variety of configurations [18]. A constant load model may be defined as a polynomial load 
representing the power relationship to voltage magnitude and frequency [19]. As shown in Eq. (12) 
and (13), the general structure of a load model comprising of actual and reactive power reliance on 
voltage (𝑉𝑉) and frequency (𝑓𝑓) is: 

𝑃𝑃𝑇𝑇𝑖𝑖 = 𝑓𝑓𝑃𝑃𝐿𝐿(𝑉𝑉, 𝑓𝑓)                                                                  (12) 

𝑄𝑄𝑇𝑇𝑖𝑖 = 𝑓𝑓𝑄𝑄𝐿𝐿(𝑉𝑉, 𝑓𝑓)                                                                  (13) 

Where: 
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(𝑃𝑃𝑇𝑇𝑖𝑖), (𝑄𝑄𝑇𝑇𝑖𝑖): real and reactive load demand; 𝑓𝑓𝑃𝑃𝐿𝐿, 𝑓𝑓𝑄𝑄𝐿𝐿: are the functions of system actual and 
reactive load demand. 

The load that depends on frequency is frequently ignored, as voltage variations are often extra 
recurrent and observable than system frequency variations [20]. In this study, the main network 
connection maintains the frequency constant; thus Eq. (14) and (15) act as the load model based on 
the variations in the bus voltages. Load demands have been updated to depend on voltage, and the 
system reconfiguration was varied to the voltage profile of the system buses. As a result, demand 
action has altered with the reconfiguration of the system. In order to implement the real and reactive 
load, this load was defined as voltage-dependent as indicated in Eq. (14) and (15). 

𝑃𝑃𝑇𝑇𝑖𝑖 = 𝑃𝑃𝑇𝑇𝑖𝑖0 �𝑝𝑝1 �
𝑉𝑉𝑖𝑖
𝑉𝑉𝑖𝑖0
�
2

+ 𝑝𝑝2  + 𝑝𝑝3 �
𝑉𝑉𝑖𝑖
𝑉𝑉𝑖𝑖0
�
0
�                   (14) 

𝑄𝑄𝑇𝑇𝑖𝑖 = 𝑄𝑄𝑇𝑇𝑖𝑖0 �𝑞𝑞1 �
𝑉𝑉𝑖𝑖
𝑉𝑉𝑖𝑖0
�
2

+ 𝑞𝑞2 + 𝑞𝑞3 �
𝑉𝑉𝑖𝑖
𝑉𝑉𝑖𝑖0
�
0
�                    (15) 

𝑝𝑝1 + 𝑝𝑝2 + 𝑝𝑝3 = 1                                                      (16) 

𝑞𝑞1 + 𝑞𝑞2 + 𝑞𝑞3 = 1                                                       (17) 

In addition, Eq. (14) and (15) represent the ZIP model, where Z, I and P denote the load 
component of constant impedance, constant current and constant power, respectively. The parameters 
(p1 and q1), (p2 and q2), and (p3 and q3) in Eq. (16) and (17) indicate the relative involvement of 
constant impedance load, constant current load, and constant power for active and reactive loads, 
respectively. 𝑃𝑃𝑇𝑇𝑖𝑖0 and 𝑄𝑄𝑇𝑇𝑖𝑖0 are the references of real and reactive power of the 𝑚𝑚𝑖𝑖ℎ customer at rated 
voltage 𝑉𝑉𝑖𝑖0 = 1 per unit. 𝑉𝑉𝑖𝑖 is the per-unit delivering voltage of the 𝑚𝑚𝑖𝑖ℎ customer. Equations (14) and 
(15) can be modified as Eq. (18) and (19), respectively, for the voltage-exponential load. 

𝑃𝑃𝑇𝑇𝑖𝑖 = 𝑃𝑃𝑇𝑇𝑖𝑖0 �   �
𝑉𝑉0
𝑉𝑉𝑖𝑖0
�
𝜎𝜎
�                               (18) 

𝑄𝑄𝑇𝑇𝑖𝑖 = 𝑄𝑄𝑇𝑇𝑖𝑖0 � �
𝑉𝑉𝑖𝑖
𝑉𝑉𝑖𝑖0
�
𝜏𝜏
  �                               (19) 

Where 

σ ≅ p1×2+p2×1+p3×0
p1+p2+p3

                                 (20) 

τ ≅ q1×2+q2×1+q3×0
q1+q2+q3

                                 (21) 

Equations (18) and (19),  σ and τ denote the voltage-exposing features of the actual (𝑃𝑃𝑇𝑇𝑖𝑖) and 
reactive (𝑄𝑄𝑇𝑇𝑖𝑖) load requirements, respectively; σ , τ can be computed from Eq. (20) and (21) 
respectively. The actual and reactive power exponent values used here are illustrated in Table II. 

TABLE II: Type of loads and the exponent values [21] 

Load Type condition 𝝈𝝈 𝝉𝝉 

 
 

Residential Consumer 

Summer and Spring /at day time 
Summer and Spring /at night 

Winter and Autumn /at day time 
Winter and Autumn /at night 

0.72 
0.92 
1.04 
1.30 

2.96 
4.04 
4.19 
4.38 

 
 

Commercial Consumer 

Summer and Spring /at day time 
Summer and Spring /at night 

Winter and Autumn /at day time 
Winter and Autumn /at night 

1.25 
0.99 
1.50 
1.51 

3.50 
3.95 
3.15 
3.40 
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5. SIMULATION RESULTS AND DISCUSSION 
For the two different load scenarios of the TAMOZE region (in AL-KUT city) system and when 

the PSO method is applied, a group of 200 particles is generated to construct the viable solution of 
the system in each iteration; where the maximum number of iterations is 60. The parameters of PSO 
methods which they selected by the trial and error approach are illustrated in Table III below: 

TABLE III: The parameters of PSO algorithm 

 𝑆𝑆    c1 c2 

Constant load 
Case study 

0.9 1.2 0.12 

Different 
load patterns Case 

study 

0.9 1.1 0.12 

 

I. Best Reconfiguration Results for Constant Load Case Study 
The system active and reactive load demands of every bus in March 2020 shall be used without 

any change. Network reconfiguration, depending on the constant load demand is implemented by 
using the proposed PSO algorithms. The results of this analysis are listed in Table IV. 

TABLE IV: Simulation results of TAMOZE region system (in KUT city) with constant load demand 
(𝝈𝝈 = 𝟎𝟎, 𝝉𝝉 = 𝟎𝟎) 

Approach Open 
State 

𝑻𝑻𝑻𝑻𝑻𝑻 
(𝒌𝒌𝒌𝒌) 

𝑻𝑻𝑻𝑻𝑻𝑻 
(𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌) 

𝑻𝑻𝑻𝑻𝑻𝑻 
(𝒌𝒌𝒌𝒌𝒌𝒌) 

𝒌𝒌𝒎𝒎𝒎𝒎𝒎𝒎 
(𝒑𝒑.𝒖𝒖. ) 

Initial 
configuration 

Sw36, Sw37, 
Sw38, Sw39, 

Sw40 

 
96.4865 

 

 
46.6438 

 
107.1694 

 
0.9727 

 
(PSO) 

Sw29, Sw36, 
Sw37, Sw38, 

Sw39 

 
50.4638 

 

 
28.3375 

 
58.3661 

 
0.9844 

Table IV illustrates that the finest reconfiguration obtained from the switches set (Sw-29, Sw-36, 
Sw-37, Sw-38, Sw-39) for the TAMOZE region system with constant feeder load demand, due to the 
minimum TPL, TQL and TSL for the optimum switch set. The real loss of power of the best 
reconfiguration compared to the initial system configuration showed a significant decrease in a real 
power loss of 47.69 % from 96.4865 𝑘𝑘𝑘𝑘 to 50.4638 𝑘𝑘𝑘𝑘 with a total reduction in a real power loss of 
46.0227 𝑘𝑘𝑘𝑘. The minimum voltage was also enhanced by 1.17 % from   0.9727 𝑝𝑝.𝑝𝑝. to 0.9844 𝑝𝑝.𝑝𝑝. 

It has been shown that the voltage profile for all buses was enhanced after reconfiguration. When 
applying the PSO technique, the voltage profile of the original and ideal system configurations with 
constant load demand is shown in Figures 4. 

 
 Figure 4: The voltage profile (pre- and post the reconfiguration) for TAMOZE region system (in 

KUT city), using the PSO algorithm, with constant load demand when (𝝈𝝈 = 𝟎𝟎, 𝝉𝝉 = 𝟎𝟎) 
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II.  Best Reconfiguration Results for Different Load Patterns Case Study 
Tables V–XII show the results of the reconfiguration when PSO techniques are applied to the 

TAMOZE region (in AL-KUT city) system for various load patterns (for all seasons). From these 
tables, it was observed that the reconfiguration pattern with switch sets (Sw-29, Sw-36, Sw-37, Sw-
38, Sw-39) had the minimum TPL, TQL and TSL. When applying the PSO algorithm, the voltage 
profiles of the original and ideal system configurations, with different values of actual and reactive 
power exponents (𝜎𝜎, 𝜏𝜏) are shown below. 

TABLE V: Simulation results of TAMOZE region (in KUT city) system when 𝝈𝝈 = 𝟎𝟎.𝟕𝟕𝟕𝟕 , 𝝉𝝉 = 𝟕𝟕.𝟗𝟗𝟗𝟗 

Approach Open 
State 

𝑇𝑇𝑃𝑃𝑇𝑇 
(𝑘𝑘𝑘𝑘) 

𝑇𝑇𝑄𝑄𝑇𝑇 
(𝑘𝑘𝑉𝑉𝑟𝑟𝑟𝑟) 

𝑇𝑇𝑆𝑆𝑇𝑇 
(𝑘𝑘𝑉𝑉𝑘𝑘) 

𝑉𝑉𝑚𝑚𝑖𝑖𝑚𝑚 
(𝑝𝑝.𝑝𝑝. ) 

Initial 
configuration 

Sw36, Sw37, 
Sw38, Sw39, 

Sw40 

 
90.4577 

   
  

 
43.7295 

 
100.4732 

 

 
0.9735 

 
(PSO) 

Sw29, Sw36, 
Sw37, Sw38, 

Sw39 

 
48.9241 

  

 
27.4241 

 
56.5566 

 
0.9847 

 
 Figure 5: The voltage profile (pre- and post the reconfiguration) for TAMOZE region system (in 

KUT city), using the PSO algorithm when 𝝈𝝈 = 𝟎𝟎.𝟕𝟕𝟕𝟕 , 𝝉𝝉 = 𝟕𝟕.𝟗𝟗𝟗𝟗 

TABLE VI: Simulation results of TAMOZE region (in KUT city) system when 𝝈𝝈 = 𝟎𝟎.𝟗𝟗𝟕𝟕 , 𝝉𝝉 = 𝟒𝟒.𝟎𝟎𝟒𝟒 

Approach Open 
State 

𝑇𝑇𝑃𝑃𝑇𝑇 
(𝑘𝑘𝑘𝑘) 

𝑇𝑇𝑄𝑄𝑇𝑇 
(𝑘𝑘𝑉𝑉𝑟𝑟𝑟𝑟) 

𝑇𝑇𝑆𝑆𝑇𝑇 
(𝑘𝑘𝑉𝑉𝑘𝑘) 

𝑉𝑉𝑚𝑚𝑖𝑖𝑚𝑚 
(𝑝𝑝.𝑝𝑝. ) 

Initial 
configuration 

Sw36, Sw37, 
Sw38, Sw39, 

Sw40 

 
88.5754 

     

 
42.8196 

 
98.3825 

 
0.9738 

 
(PSO) 

Sw29, Sw36, 
Sw37, Sw38, 

Sw39 

 
48.4236 

  

 
27.1277 

 
55.9687 

 
0.9848 

 
 Figure 6: The voltage profile (pre- and post the reconfiguration) for TAMOZE region system (in 

KUT city), using the PSO algorithm when 𝝈𝝈 = 𝟎𝟎.𝟗𝟗𝟕𝟕 , 𝝉𝝉 = 𝟒𝟒.𝟎𝟎𝟒𝟒 
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TABLE VII: Simulation results of TAMOZE region (in KUT city) system when 𝝈𝝈 =
𝟏𝟏.𝟎𝟎𝟒𝟒 , 𝝉𝝉 = 𝟒𝟒.𝟏𝟏𝟗𝟗 

Approach Open 
State 

𝑇𝑇𝑃𝑃𝑇𝑇 
(𝑘𝑘𝑘𝑘) 

𝑇𝑇𝑄𝑄𝑇𝑇 
(𝑘𝑘𝑉𝑉𝑟𝑟𝑟𝑟) 

𝑇𝑇𝑆𝑆𝑇𝑇 
(𝑘𝑘𝑉𝑉𝑘𝑘) 

𝑉𝑉𝑚𝑚𝑖𝑖𝑚𝑚 
(𝑝𝑝.𝑝𝑝. ) 

Initial 
configuration 

Sw36, 
Sw37, 
Sw38, 

Sw39, Sw40 

 
88.0832 

     

 
42.5816 

 
97.8358 

 
0.9739 

 
(PSO) 

Sw29, 
Sw36, 
Sw37, 

Sw38, Sw39 

 
48.2936 

 

 
27.0508 

 

 
55.8161 

 
0.9848 

 

 
 Figure 7: The voltage profile (pre- and post the reconfiguration) for TAMOZE region system (in 

KUT city), using the PSO algorithm when 𝝈𝝈 = 𝟏𝟏.𝟎𝟎𝟒𝟒 , 𝝉𝝉 = 𝟒𝟒.𝟏𝟏𝟗𝟗 

TABLE VIII: Simulation results of TAMOZE region (in KUT city) system when 𝝈𝝈 =
𝟏𝟏.𝟑𝟑𝟎𝟎 , 𝝉𝝉 = 𝟒𝟒.𝟑𝟑𝟑𝟑 

Approach Open 
State 

𝑇𝑇𝑃𝑃𝑇𝑇 
(𝑘𝑘𝑘𝑘) 

𝑇𝑇𝑄𝑄𝑇𝑇 
(𝑘𝑘𝑉𝑉𝑟𝑟𝑟𝑟) 

𝑇𝑇𝑆𝑆𝑇𝑇 
(𝑘𝑘𝑉𝑉𝑘𝑘) 

𝑉𝑉𝑚𝑚𝑖𝑖𝑚𝑚 
(𝑝𝑝.𝑝𝑝. ) 

Initial 
configuration 

Sw36, 
Sw37, 
Sw38, 

Sw39, Sw40 

 
87.1903 

  

 
42.1500 

 
96.8441 

 
0.9740 

 
(PSO) 

Sw29, 
Sw36, 
Sw37, 

Sw38, Sw39 

 
48.0583 

  

 
26.9118 

 
55.5399 

 
0.9848 

 
 Figure 8: The voltage profile (pre- and post the reconfiguration) for TAMOZE region system (in 

KUT city), using the PSO algorithm when 𝝈𝝈 = 𝟏𝟏.𝟑𝟑𝟎𝟎 , 𝝉𝝉 = 𝟒𝟒.𝟑𝟑𝟑𝟑 
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TABLE IX: Simulation results of TAMOZE region (in KUT city) system when 𝝈𝝈 = 𝟏𝟏.𝟕𝟕𝟐𝟐 , 𝝉𝝉 = 𝟑𝟑.𝟐𝟐𝟎𝟎 

Approach Open 
State 

𝑇𝑇𝑃𝑃𝑇𝑇 
(𝑘𝑘𝑘𝑘) 

𝑇𝑇𝑄𝑄𝑇𝑇 
(𝑘𝑘𝑉𝑉𝑟𝑟𝑟𝑟) 

𝑇𝑇𝑆𝑆𝑇𝑇 
(𝑘𝑘𝑉𝑉𝑘𝑘) 

𝑉𝑉𝑚𝑚𝑖𝑖𝑚𝑚 
(𝑝𝑝.𝑝𝑝. ) 

Initial 
configuration 

Sw36, 
Sw37, 
Sw38, 

Sw39, Sw40 

 
88.4052 

  

 
42.7373 

 
98.1935 

 
0.9739 

 
(PSO) 

Sw29, 
Sw36, 
Sw37, 

Sw38, Sw39 

 
48.3875 

     

 
27.1067 

 

 
55.9265 

 

 
0.9848 

 
 Figure 9: The voltage profile (pre- and post the reconfiguration) for TAMOZE region system (in 

KUT city), using the PSO algorithm when 𝝈𝝈 = 𝟏𝟏.𝟕𝟕𝟐𝟐 , 𝝉𝝉 = 𝟑𝟑.𝟐𝟐𝟎𝟎 

TABLE X: Simulation results of TAMOZE region (in KUT city) system when 𝝈𝝈 = 𝟎𝟎.𝟗𝟗𝟗𝟗 , 𝝉𝝉 = 𝟑𝟑.𝟗𝟗𝟐𝟐 

Approach Open 
State 

𝑇𝑇𝑃𝑃𝑇𝑇 
(𝑘𝑘𝑘𝑘) 

𝑇𝑇𝑄𝑄𝑇𝑇 
(𝑘𝑘𝑉𝑉𝑟𝑟𝑟𝑟) 

𝑇𝑇𝑆𝑆𝑇𝑇 
(𝑘𝑘𝑉𝑉𝑘𝑘) 

𝑉𝑉𝑚𝑚𝑖𝑖𝑚𝑚 
(𝑝𝑝.𝑝𝑝. ) 

Initial 
configuration 

Sw36, 
Sw37, 
Sw38, 

Sw39, Sw40 

 
88.5064 

 

 
42.7862 

 
98.3059 

 
0.9738 

 
(PSO) 

Sw29, 
Sw36, 
Sw37, 

Sw38, Sw39 

 
48.4073 

     

 
27.1181 

 
55.9496 

 
0.9848 

 
 Figure 10: The voltage profile (pre- and post the reconfiguration) for TAMOZE region system (in 

KUT city), using the PSO algorithm when 𝝈𝝈 = 𝟎𝟎.𝟗𝟗𝟗𝟗 , 𝝉𝝉 = 𝟑𝟑.𝟗𝟗𝟐𝟐 

TABLE XI: Simulation results of TAMOZE region (in KUT city) system when 𝝈𝝈 = 𝟏𝟏.𝟐𝟐𝟎𝟎 , 𝝉𝝉 = 𝟑𝟑.𝟏𝟏𝟐𝟐 

Approach Open 
State 

𝑇𝑇𝑃𝑃𝑇𝑇 
(𝑘𝑘𝑘𝑘) 

𝑇𝑇𝑄𝑄𝑇𝑇 
(𝑘𝑘𝑉𝑉𝑟𝑟𝑟𝑟) 

𝑇𝑇𝑆𝑆𝑇𝑇 
(𝑘𝑘𝑉𝑉𝑘𝑘) 

𝑉𝑉𝑚𝑚𝑖𝑖𝑚𝑚 
(𝑝𝑝.𝑝𝑝. ) 
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Initial 
configuration 

Sw36, 
Sw37, 
Sw38, 

Sw39, Sw40 

 
88.2203 

  

 
42.6479 

 
97.9881 

 
0.9739 

 
(PSO) 

Sw29, 
Sw36, 
Sw37, 

Sw38, Sw39 

 
48.3424 

  

 
27.0805 

 

 
55.8739 

 
0.9848 

 
 Figure 11: The voltage profile (pre- and post the reconfiguration) for TAMOZE region system (in 

KUT city), using the PSO algorithm when 𝝈𝝈 = 𝟏𝟏.𝟐𝟐𝟎𝟎 , 𝝉𝝉 = 𝟑𝟑.𝟏𝟏𝟐𝟐 

TABLE XII:  Simulation results of TAMOZE region (in KUT city) system when 𝝈𝝈 =
𝟏𝟏.𝟐𝟐𝟏𝟏 , 𝝉𝝉 = 𝟑𝟑.𝟒𝟒𝟎𝟎 

Approach Open 
State 

𝑇𝑇𝑃𝑃𝑇𝑇 
(𝑘𝑘𝑘𝑘) 

𝑇𝑇𝑄𝑄𝑇𝑇 
(𝑘𝑘𝑉𝑉𝑟𝑟𝑟𝑟) 

𝑇𝑇𝑆𝑆𝑇𝑇 
(𝑘𝑘𝑉𝑉𝑘𝑘) 

𝑉𝑉𝑚𝑚𝑖𝑖𝑚𝑚 
(𝑝𝑝.𝑝𝑝. ) 

Initial 
configuration 

Sw36, 
Sw37, 
Sw38, 

Sw39, Sw40 

 
87.8764 

 

 
42.4817 

 
97.6061 

 
0.9740 

 
(PSO) 

Sw29, 
Sw36, 
Sw37, 

Sw38, Sw39 

 
48.2505 

 

 
27.0259 

 
55.7658 

 
0.9848 

 
 Figure 12: The voltage profile (pre- and post the reconfiguration) for TAMOZE region system (in 

KUT city), using the PSO algorithm when 𝝈𝝈 = 𝟏𝟏.𝟐𝟐𝟏𝟏 , 𝝉𝝉 = 𝟑𝟑.𝟒𝟒𝟎𝟎 

Tables V-XII illustrate that the real loss of power of the best reconfiguration compared to the 
initial system configuration, showed a significant decrease in the real power loss and the minimum 
voltage was also enhanced when the values of 𝜎𝜎 and 𝜏𝜏 are increased and vice versa. Also Figures 5-
12 show the voltage profile improvement, post the system reconfiguration for different values of 𝜎𝜎 
and 𝜏𝜏. 
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6. CONCLUSION 
The primary aim of this work is to analyze the reconfiguration of power distribution systems 

under different load demands using the PSO method, in order to reduce system power losses and 
enhance the voltage profile.  This work, therefore, forms the foundation for electrical companies to 
use it in the reconfiguration of distribution systems to minimize the operating costs and improving 
the efficiency of their systems. PSO reaches the optimal solution for the TAMOZE region system 
(which is a part of AL-KUT city distribution system) after 72.6 sec. and the results were obtained 
showed a decrease of real power loss by 47.69 % after the system reconfiguration at constant demand 
and the minimum voltage of the system improved by 1.29%. Extensive series of test cases pertain to 
the practical system for different loading conditions show that for minimum loss, two tie switches 
should be closed. Also, the voltage profile all over the system is also improved. There are no tie lines 
in the network in practice, so to implement the reconfiguration process the tie lines are assumed. This 
work can be conducted into the means of increasing the PSO convergence, which may lead to a fine 
search for starting and initializing the algorithm. Extra work is required for dynamic parameter 
refinements so as to speed up the convergence process. 

 

7. APPENDIX A 

TABLE A.1: Line data of TAMOZE region (in AL-KUT city) system 

Line 
No. 

From        
Bus 

To 
Bus 

 R 
     (Ω) 

 X 
(Ω) 

1 S 1 0.1149 0.0556 
2 1 2 0.1226 0.0593 
3 2 3 0.1252 0.0605 
4 3 4 0.1539 0.0744 
5 4 5 0.0632 0.0306 
6 5 6 0.0498 0.0241 
7 6 7 0.0344 0.0167 
8 7 8 0.0517 0.0250 
9 8 9 0.0613 0.0296 

10 2 10 0.0926 0.0448 
11      10 11 0.0811 0.0392 
12      11 12 0.0671 0.0324 
13      12 13 0.0511 0.0247 
14      13 14 0.0485 0.0235 
15      14 15 0.0383 0.0185 
16      15 16 0.0575 0.0278 
17      16 17 0.0843 0.0408 
18      17 18 0.0958 0.0463 
19 S 19 0.1693 0.0818 
20      19 20 0.1054 0.0509 
21      20 21 0.1379 0.0667 
22      21 22 0.1117 0.0540 
23      22 23 0.1316 0.0636 
24      23 24 0.1214 0.0587 
25      24 25 0.1214 0.0587 
26      25 26 0.0735 0.0355 
27      26 27 0.1852 0.0895 
28      23 28 0.0849 0.0412 
29 28 29 0.0479 0.0232 
30 29 30 0.0447 0.0216 
31 30 31 0.0575 0.0278 
32 30 32 0.0798 0.0386 
33 32 33 0.0779 0.0377 
34 33 34 0.0722 0.0349 
35 30 35 0.0626 0.0303 
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TABLE A.2: Load data of TAMOZE region (in AL-KUT city) system 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

References 
[1] S. Mehfuz, F. Rashid, Ant colony system algorithm for optimal network reconfiguration, Int. J. Comput. 

Intel. Syst., 7 (2014) 973-978. https://doi.org/10.1080/18756891.2014.960235 

 [2] F. V. Gomes, S. Carneiro, J. L. R. Pereira, M. P. Vinagre, P. A. N. Garcia, L. R. Araujo, A new heuristic 
reconfiguration algorithm for large distribution systems, IEEE Trans. Power Syst., 20 (2005) 1373-1378. 
https://doi.org/10.1109/TPWRS.2005.851937 

36* 2 23 2.0000 2.0000 
37* 4 25 2.0000 2.0000 
38* 7 15 2.0000 2.0000 
39* 18 33 0.5000 0.5000 
40* 11 32 0.5000 0.5000 

  *tie 
switch 

  

Bus 
No. 

     Real Power Load 
           (kW) 

   Reactive Power 
Load         

(Kvar) 
1 143.683 107.762 
2 141.046 105.784 
3 193.451 145.088 
4 256.814 192.610 
5 165.465 124.098 
6 183.222 137.416 
7 222.856 167.142 
8 206.598 154.948 
9 198.340 148.755 

10 225.267 168.950 
11 153.467 115.100 
12 157.583 118.187 
13 144.447 108.335 
14 139.394 104.546 
15 131.239 98.4290 
16 122.615 91.9610 
17 134.183 100.637 
18 188.453 88.8390 
19 160.286 120.214 
20 195.176 146.382 
21 190.485 142.864 
22 193.258 144.944 
23 182.620 136.965 
24 215.669 161.751 
25 109.865 82.3980 
26 161.159 120.869 
27 161.825 121.369 
28 180.489 135.367 
29 175.206 131.404 
30 157.479 118.109 
31 169.146 126.860 
32 199.583 149.687 
33 208.304 156.228 
34 159.000 119.250 
35 162.221 121.665 

https://doi.org/10.1080/18756891.2014.960235
https://doi.org/10.1109/TPWRS.2005.851937


Engineering and Technology Journal                   Vol. 39, Part A (2021), No. 05, Pages 738-753 
 

753 
 
 

[3] M.  Assadian, M. M. Farsangi , H. Nezamabadi-pour, distribution network reconfiguration for loss reduction 
using particle swarm optimization, TPE-06 3rd International Conference on Technical and Physical 
Problems in Power Engineering, Ankara, turkey, 2006. 

[4] S. Essallah , A. Khedher, Optimal Distribution System Reconfiguration for Loss Minimization using BPSO 
Algorithm, IEEE 2019 10th International Renewable Energy Congress, (2019) 1-6. 
https://doi.org/10.1109/IREC.2019.8754519 

[5] A. Merlin , H. Back, Search for a minimal-loss operating spanning tree configuration in an urban power 
distribution system, 5th Power System Computation Conference,  Cambridge, UK, (1975) 1-18. 

[6] D. Shirmohammadi , H.W. Hong, Reconfiguration of electric distribution networks for resistive line losses 
reduction, IEEE Trans. Power Delivery, 4 (1989)1492- 1498. https://doi.org/10.1109/61.25637 

[7] K. Nara, A. Shiose, M.  Kitagawoa , T. Ishihara, Implementation of genetic algorithm for distribution 
systems loss minimum re-configuration, IEEE Trans. Power Syst., 7 (1992) 1044–1051. 
https://doi.org/10.1109/59.207317 

[8] K. K. Li, T. S. Chung, G. J. Chen, G. Q. Tang, A tabu search approach to distribution network 
reconfiguration for loss reduction, Electr. Power Compon. Syst., 32 (2004) 571-585. 
https://doi.org/10.1080/15325000490228414 

[9] L. Charles, H. Khan , S. Rarichandrson, Distribution network reconfiguration for loss reduction using ant    
colony system algorithm, IEEE Indicon Conference, Chennai, India, (2005) 619-622. 
https://doi.org/10.1109/INDCON.2005.1590246 

[10] H. Salazar, R. Gallego, R. Romero, Artificial Neural Networks and Clustering Techniques Applied in the 
Reconfiguration of Distribution Systems, IEEE Trans. Power Delivery, 21 (2006) 1735-1742.  
https://doi.org/10.1109/TPWRD.2006.875854 

[11] N. Gupta, A. Swarnkar , K. R. Niazi, Reconfiguration of Distribution Systems for Real Power Loss 
Minimization Using Adaptive Particle Swarm Optimization, Electr. Power Compon. Syst., 39 (2011) 317–
330. https://doi.org/10.1080/15325008.2010.528532 

[12] M. R. Nayak, Optimal Feeder Reconfiguration of Distribution System with Distributed Generation Units 
using HC-ACO, Int. J. Electr. Eng. Inform., 6 (2014) 107-128. 

[13] F. M. F. Flaih, X. Lin, M. K. Abd, S. M. Dawoud, Z. Li , O. S. Adio, A New Method for Distribution 
Network Reconfiguration Analysis under Different Load Demands, Energies, 10 (2017). 
https://doi.org/10.3390/en10040455 

[14] J. Kennedy, R. Eberhart, Particle swarm optimization, ICNN'95 - International Conference on Neural 
Networks, Perth, WA, Australia, 4 (1995)1942-1948. https://doi.org/10.1109/ICNN.1995.488968 

[15] J. Robinson , Y. Rahmat-Samii, Particle swarm optimization in electromagnetics, IEEE Transactions on 
Antennas and Propagation, 52 (2004) 397-407. https://doi.org/10.1109/TAP.2004.823969 

[16] Q. M. Alias, R. A. Abttan, Al - Kalij Sub-Station: Feeder Reconfiguration by Particle Swarm Optimization, 
Eng. Tech. J., 29 ( 2011) 2375-2385. 

[17] Z. H. Dawood , R. H. AL-Rubayi, Distribution System Reconfiguration Analysis Under Different Load 
Demand Using ACO and PSO Algorithms, Int. J. Sci. Eng. Res., 11 (2020). 

 [18] A. Savio, F. Bignucolo, R. Sgarbossa, P. Mattavelli, A. Cerretti , R.  Turri, A novel measurement-based 
procedure for load dynamic equivalent identification, 2015 IEEE 1st International Forum on Research and 
Technologies for Society and Industry Leveraging a better tomorrow, (2015) 274-279. 
https://doi.org/10.1109/RTSI.2015.7325110 

[19] W. W. Price, H. D. Chiang, H. K. Clark , E. Vaahedi, Load representation for dynamic performance 
analysis of power systems, IEEE Trans. Power Syst., 8 (1993) 472–482. https://doi.org/10.1109/59.260837 

[20] J. V. Milanovic´, J. Matevosiyan, A. Borghetti, S. Z. Djokic , Z. Y. Dong, Modelling and Aggregation of 
Loads in Flexible Power Networks, CIGRE Technical Brochure 566, CIGRE: Paris, Frace., 2014. 

[21] S. M. Mousavi, H. A. Abyaneh, Effect of load models on probabilistic characterization of Aggregated load 
patterns, IEEE Trans. Power Syst., 26 (2011) 811–819. https://doi.org/10.1109/TPWRS.2010.2062542 

https://doi.org/10.1109/IREC.2019.8754519
https://doi.org/10.1109/61.25637
https://doi.org/10.1109/59.207317
https://doi.org/10.1080/15325000490228414
https://doi.org/10.1109/INDCON.2005.1590246
https://doi.org/10.1109/TPWRD.2006.875854
https://doi.org/10.1080/15325008.2010.528532
https://doi.org/10.3390/en10040455
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/TAP.2004.823969
https://doi.org/10.1109/RTSI.2015.7325110
https://doi.org/10.1109/59.260837
https://doi.org/10.1109/TPWRS.2010.2062542

	1. Introduction
	2. DISTRIBUTION SYSTEM RECONFIGURATION PROBLEM FORMULATION
	I. Load Flow Calculations using Backward / Forward Sweep
	II. The Objective Function

	3. PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM
	4. TEST DISTRIBUTION SYSTEM AND SIMULATION STUDIED CASES
	I. TAMOZE Region 35-Bus System
	II. Different Load Patterns Case Study

	5. SIMULATION RESULTS AND DISCUSSION
	I. Best Reconfiguration Results for Constant Load Case Study
	II.  Best Reconfiguration Results for Different Load Patterns Case Study

	6. CONCLUSION
	7. APPENDIX A
	References


