
Engineering and Technology Journal                   Vol. 39, Part A (2021), No. 04, Pages 653-667 
 

 

Engineering and Technology Journal  
Journal homepage: engtechjournal.org 

 
 

 

 

 

653 
 

Design of Robust FOPI-FOPD Controller for Maglev System 
Using Particle Swarm Optimization 

Salwan Y. Yousif a*, Mohamed J. Mohamed  b* 

a Control and Systems Engineering Department, University of Technology-Iraq, Baghdad, Iraq, 

Babylon.telecom@gmail.com 

b Control and Systems Engineering Department, University of Technology, Baghdad, Iraq, 

60098@uotechnology.edu.iq   

* Corresponding author. 

Submitted: 21/12/2020 Accepted: 30/01/2021 Published: 25/04/2021 
 

K E Y W O R D S   A B S T R A C T  

Magnetic Levitation 
System, Robust Control, 
PID Controller 
Fractional Order PID 
Controller, Particle 
Swarm Optimization 
(PSO). 

 Magnetic Levitation System (MLS) is one of the benchmark laboratories 
models for designing and testing feedback control systems in the presence 
of the parametric uncertainties and disturbances effect. Therefore, the 
MLS can be regarded as a tool to study and verify a certain robust 
controller design. In this paper, two types of powerful control schemes are 
presented to control the MLS. The first controller is a robust PI-PD 
controller, while the other is a robust fractional order FOPI-FOPD 
controller which provides two extra degrees of freedom to the system. In 
both controller design procedures, the Particle Swarm Optimization (PSO) 
algorithm is used to find the best values of controller parameters subject to 
the time-domain objective function and H∞ constraints. All modeling 
processes including parameterization, optimization, and validation of the 
controllers are performed using MATLAB. The simulation results show 
that the MLS with robust FOPI-FOPD is faster and more stable than the 
MLS with robust classical PI-PD. Also, the proposed FOPI-FOPD 
controller gives far superior results than the PI-PD controller for 
disturbance rejection. 
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1.  INTRODUCTION 
The PID controller is widely used in control design for simple and complex industrial systems for 

more than 60 years ago. The problem of using a PID controller is this controller sometimes hardly 
satisfies the requirements of good robustness by using three gain 
parameters  𝐾𝐾𝑝𝑝 ,𝐾𝐾𝑖𝑖  , and 𝐾𝐾𝑑𝑑.Therefore, Fractional Order PID (FOPID) controller is considered as a 
new version of the PID controller is used. The FOPID controller is the same as the PID controller in 
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gains but has an extra degree in the derivative and integral order. This degree is non-integer and can be 
adjusted from 0 to 2 [1]. Most real systems are especially exposed to measurement noise, external disturbance, 
and model uncertainty [2]. Therefore, robustness is an essential principle in controller design. On the other side, 
the classical controller does not guarantee to satisfy the robustness. So, a recent control theory aims to design a 
simple controller with a fixed order to satisfy multiple objectives (frequency-domain performance, Time-
domain performance, and robust performance criterion). These controllers provide the same result as the 
standard H∞ control design [3]. It is worth mentioning the robust fractional order controllers have better 
performance and robustness than conventional controllers because of the extra degree of freedom related to the 
order. The Magnetic Levitation System (MLS) is considered a good benchmark laboratory model for 
understanding control systems because it is a highly nonlinear and open-loop unstable system, as well as its 
internal dynamics, which are very complex. So, controlling such a system is a challenging task. Several control 
approaches were used to stabilize the MLS, such as fractional order PID controller [4,], PID controller [5], H_∞ 
controller [3, 6], fuzzy logic controller (FLC) [7], sliding mode controller (SMC) [8, 9]. This paper proposes 
PI-PD and FOPI-FOPD to stabilize the MLS and achieve adequate performance in presence of noise signals, 
disturbance, unmolded system dynamics, and system parameters uncertainty [3]. The essential objective of 
the design is tuning the parameters of PI-PD and FOPI-FOPD controllers to achieve robustness. The 
result of robust PI-PD controller is compared with robust FOPI-FOPD to show the effect of the extra 
degree of FOPI-FOPD on robustness and time response of the controlled system.  The particle swarm 
optimization PSO algorithm is used to obtain the best and optimal parameter values of the PI-PD and 
FOPI-FOPD controllers and the performance weighting function parameters, with a guarantee to a 
controlled system with robust stability and robust performance.  

 
Figure 1: Electromagnetic levitation system [3]. 

2. MAGNETIC LEVITATION SYSTEM MODEL 
The magnetic levitation system is shown in Figure 1 [3]. The system consists of an interface 

connection panel connected with the main electrical-mechanical part. The magnetic field is provided 
by electromagnetic coils mounted on the mechanical part. When the current is passed through the 
coil, the necessary lifting force is produced. This force directly impacts the metallic object. The 
temperature of the coil is regulating by the heat sink. In MLS, the infrared light (IR) sensor is used 
with a mechanical subsystem and consists of two parts transmitter and receiver, which incessantly 
measures the ball position by changing the ball's position to the initial ball position. The system MLS 
also contains an Analogue and Digital (A/D) interface, which is used to connect with a computer. 
This interface board is used to transfer the signal measured from the MLS system to the PC and the 
control signal from the PC to the MLS system. The electromagnetic levitation system is highly 
nonlinear, and the system open loop is unstable. Besides, to adjust the current through the coil, a 
suitable controller must be designed to stabilize the vertical position of the levitating ball and make it 
follow a reference trajectory. Deriving an exact model for the system is the first and important step in 
the control system from fundamental physics. Each element can be obtained from the behaviors of 
the system. Many equations are dependent on geometry and materials in the MLS system and are 
thus specific to the hardware. The free body diagram of MLS is shown in Figure 2 [3][10] 
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Figure 2: Electromagnetic levitation system free body diagram. 

where:  𝑅𝑅 and 𝐿𝐿  is the resistance and inductance of the coil respectively. 
 𝑖𝑖  is the electric current passing in the electromagnetic circuit 𝑣𝑣  is the voltage that is applied to 

the circuit  𝑔𝑔   is the gravitational acceleration 𝑚𝑚  is the mass of the levitating ball,  𝑑𝑑  is the vertical 
distance from the bottom of the coil to the levitating ball,  𝑒𝑒  is the voltage measured through the 
sensor, 𝑓𝑓  is the magnetic force produced by the electromagnet As shown in Figure 2, two forces 
affect the ball, the gravity and electromagnetic force generated by the coils. The non-linear model is 
derived by analyzing electromagnetic and mechanical subsystems. So, after neglecting drag force and 
friction, Newton’s 2nd law of motion is applied and given by [11, 12]: 

    

 𝑓𝑓net  = 𝑓𝑓g −  𝑓𝑓em  (1)  

 𝑚𝑚�̈�𝑥  = 𝑚𝑚𝑔𝑔 −  𝑐𝑐 𝑖𝑖2

𝑥𝑥2
  (2) 

Where  𝑓𝑓𝑒𝑒𝑒𝑒  = 𝑐𝑐 𝑖𝑖2

𝑥𝑥2
 and  𝑐𝑐  is a constant depending on the coil (electromagnet) parameters, 𝑖𝑖  is 

the current in the coil of the electromagnet, and  𝑥𝑥  is the ball's position. 𝑓𝑓𝑒𝑒𝑒𝑒 denotes the magnetic 
force generated by the coil.  The electromagnetic force becomes equal to the gravitational force on 
the object at an equilibrium situation, the acceleration of the object is zero. So, Eq. (2) will be: 

 𝑚𝑚𝑔𝑔 =  𝑐𝑐 𝑖𝑖2

𝑥𝑥2
        (3)                                                                      

On the other hand, the electromagnetic part of the system is shown in Figure 2. By applying 
Kirchhoff's voltage and current laws, the following equations are developed: 

 𝑒𝑒(𝑡𝑡)  =  𝑉𝑉R  +  𝑉𝑉 𝐿𝐿 =  𝑖𝑖𝑅𝑅 +  𝐿𝐿 d𝑖𝑖
d𝑡𝑡

  (4) 

 
Where: 
e(t) = u(t) : Applied voltage.                                                                                                                                                                  
𝑉𝑉𝑅𝑅: Resistance voltage. 
𝑉𝑉𝐿𝐿: Inductance voltage. 
The following differential equations express the nonlinear model of MLV based on the electro-

mechanical mode [10]:                                                                                                                                                                                                                                                                                                                             

 𝑣𝑣 =  d𝑥𝑥
d𝑡𝑡

  (5) 

  𝑚𝑚�̈�𝑥  = 𝑚𝑚𝑔𝑔 −  𝑐𝑐 𝑖𝑖2

𝑥𝑥2
  (6) 

  𝑢𝑢(𝑡𝑡) =  𝑉𝑉𝑅𝑅  +  𝑉𝑉 𝐿𝐿   (7) 

 𝑢𝑢(𝑡𝑡) =  𝑖𝑖𝑅𝑅 +   d 𝐿𝐿(𝑥𝑥)𝑖𝑖
d𝑡𝑡

  (8) 



Engineering and Technology Journal                   Vol. 39, Part A (2021), No. 04, Pages 653-667 
 

656 
 
 

It's clear that from Eq. (8) that 𝐿𝐿(𝑥𝑥) is a non-linear function of balls position x. Different 
approaches are used for the determination of inductance for an MLS. In this work, we take the 
inductance changes with the inverse of the ball position, that is [10][11]; 

 𝐿𝐿(𝑥𝑥) = 𝐿𝐿 + 𝐿𝐿0𝑥𝑥0
𝑥𝑥

  (9) 

Where 𝐿𝐿 is the constant inductance of the electromagnetic coil without the suspended ball, 𝑥𝑥0 is 
the equilibrium position, 𝐿𝐿0 is the inductance caused by the effect of the ball. Substituting Eq. (9) 
into Eq. (8) results in [5]; 

 𝑢𝑢(𝑡𝑡) =  𝑖𝑖𝑅𝑅 + d
dt

 �𝐿𝐿𝑐𝑐 +  𝐿𝐿0𝑥𝑥0
𝑥𝑥
� 𝑖𝑖  (10) 

 𝑢𝑢(𝑡𝑡) =  𝑖𝑖𝑅𝑅 + 𝐿𝐿 d
dt
−  �𝐿𝐿0𝑥𝑥0𝑖𝑖

𝑥𝑥2
� d𝑥𝑥
d𝑡𝑡

  (11) 

Substituting 𝐿𝐿0𝑥𝑥0 = 2𝑐𝑐, we get [11] 

 𝑢𝑢(𝑡𝑡) =  𝑖𝑖𝑅𝑅 + 𝐿𝐿 d𝑖𝑖
d𝑡𝑡
−  𝐶𝐶 � 𝑖𝑖

𝑥𝑥2
� d𝑥𝑥
d𝑡𝑡

   (12) 

Using  𝑥𝑥1 = 𝑥𝑥, 𝑥𝑥2 = 𝑉𝑉 𝑎𝑎𝑎𝑎𝑑𝑑 𝑥𝑥3 = 𝑖𝑖  as  the state of the system, 𝑢𝑢 = 𝑣𝑣𝑖𝑖𝑖𝑖  , the state equations 
that  describe the system become [12]: 

 d𝑥𝑥1
d𝑡𝑡

= 𝑥𝑥2  (13) 

 d𝑥𝑥2
d𝑡𝑡

= 𝑔𝑔 − 𝑐𝑐
𝑒𝑒

(x3
x1

)2   (14)  

 d𝑥𝑥3
d𝑡𝑡

= −𝑅𝑅
𝐿𝐿
𝑥𝑥3 + 2𝑐𝑐

l
�𝑥𝑥2𝑥𝑥3
𝑥𝑥12
� + 1

𝐿𝐿
𝑢𝑢  (15) 

The problem of nonlinearity can be solved by linearizing the nonlinear electromagnetic force. At 
the equilibrium state, the total model of the magnetic levitation system is obtained [3].  

 G(s) = 𝑥𝑥(s)
𝑢𝑢(s)

=

−�2𝒊𝒊𝒐𝒐
 

𝑥𝑥𝑜𝑜2
�

R
𝑚𝑚𝑚𝑚
𝑅𝑅 s3+𝑒𝑒s2−c�2𝑖𝑖𝑜𝑜

2

𝑥𝑥𝑜𝑜
3 �

𝑚𝑚
𝑅𝑅s−𝑐𝑐�

2𝑖𝑖𝑜𝑜2

𝑥𝑥𝑜𝑜
3 �

  (16) 

, where 𝑖𝑖𝑜𝑜 is the current in the coil of electromagnet at the equilibrium point, 𝑥𝑥𝑜𝑜  is the position of 
the ball at the equilibrium point, 𝑚𝑚 is the metal sphere mass and 𝑔𝑔 is the gravitational force. After 
substituting the values of  𝑚𝑚,𝑔𝑔 and 𝑥𝑥𝑜𝑜 in Eq. (3), 𝑐𝑐  will equal to 6.53*10-5. The magnetic ball 
position will be influenced by the inductance of the electromagnet coil. 

3. PARTICLE SWARM OPTIMIZATION (PSO) 
The PSO algorithm is one of the best optimization approaches, with great ability compared to 

other optimization methods. The PSO was produced in 1995 by Dr. Eberhart and Dr. Kennedy. In the 
PSO algorithm, the potential solutions of the problem are named “particles”, these particles are 
connected with the best solution through the target that they wanted to achieve so far.  A swarm of 
particles is put into the problem space search (D-dimensional) and treated as points in this dimension. 
At first, each particle takes a random position and initial velocity equal to zero. These particles fly 
throughout the search space according to the flying experience and a specific formula where each 
particle adjusts its flying. The best previous position which provides the maximum fitness value is 
recorded and called pbest while gbest of the population is the best particle among all particles.   

The particle velocity and position of the standard PSO can be updated by the flowing equations 
[13,14]: 

𝑉𝑉𝑖𝑖(𝑗𝑗) = 𝑉𝑉𝑖𝑖(𝑗𝑗 − 1) + 𝐶𝐶1. 𝑟𝑟𝑎𝑎𝑎𝑎𝑑𝑑1[𝑃𝑃𝑏𝑏𝑒𝑒𝑏𝑏𝑡𝑡 𝑖𝑖 − 𝑥𝑥𝑖𝑖(𝑗𝑗 − 1)] + 𝐶𝐶2. 𝑟𝑟𝑎𝑎𝑎𝑎𝑑𝑑2[𝐺𝐺𝑏𝑏𝑒𝑒𝑏𝑏𝑡𝑡 −  𝑥𝑥𝑖𝑖(𝑗𝑗 − 1)]                       (17) 
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                 𝑖𝑖 = 1,2, … . ,𝑁𝑁                                     
𝑥𝑥𝑖𝑖(j) = 𝑥𝑥𝑖𝑖(𝑗𝑗 − 1) + 𝑉𝑉𝑖𝑖(𝑗𝑗)                                                                                                            (18) 
     𝑖𝑖 = 1,2, … . ,𝑁𝑁                                                                                                   

Where, 𝑥𝑥𝑖𝑖(𝑗𝑗) is the position of the 𝑖𝑖th particle at (𝑗𝑗) iterations, 𝑉𝑉𝑖𝑖(𝑗𝑗) is the velocity of the 𝑗𝑗th 
particle at (𝑗𝑗)  iterations, 𝑟𝑟𝑎𝑎𝑎𝑎𝑑𝑑1 and 𝑟𝑟𝑎𝑎𝑎𝑎𝑑𝑑2 are uniformly distributed random numbers in the range 0 
to 1, 𝐶𝐶1 and 𝐶𝐶2 are acceleration constants, and  𝑁𝑁 is the number of particles in swarm[15]. Inertia 
term  𝑊𝑊  is added to reduce the speed because the particle velocities usually grow up very fast. 
Usually, the assumed value of  𝑊𝑊 changes linearly from (0.9 - 0.4) as the iterative process 
progresses. The particles' speed in a swarm with the term of inertia, as giving as the following 
[14,15]: 

 𝑉𝑉𝑖𝑖(𝑗𝑗) = 𝑊𝑊𝑉𝑉𝑖𝑖(𝑗𝑗 − 1) + 𝐶𝐶1. 𝑟𝑟𝑎𝑎𝑎𝑎𝑑𝑑1[𝑃𝑃𝑏𝑏𝑒𝑒𝑏𝑏𝑡𝑡 𝑖𝑖 − 𝑥𝑥𝑖𝑖(𝑗𝑗 − 1)] + 𝐶𝐶2. 𝑟𝑟𝑎𝑎𝑎𝑎𝑑𝑑2[𝐺𝐺𝑏𝑏𝑒𝑒𝑏𝑏𝑡𝑡𝑖𝑖 −  𝑥𝑥𝑖𝑖(𝑗𝑗 − 1)]                (19) 
                    𝑖𝑖 = 1,2, … . ,𝑁𝑁        

 The inertia weight  𝑊𝑊  was added to the velocity equation to dampen the velocities over time (or 
iterations). 

4. ROBUST CONTROL SYSTEM DESIGN 
A robust control system aims to design a controller that can operate on the real dynamic system 

despite the uncertainties in its mathematical model. A robust control ensures stability and 
performance for the system if and only if the following characteristics are satisfied; 

1. Nominal Stability. 
2. Nominal Performance. 
3. Robust Stability. 
4. Robust Performance. 

The performance analysis is defined in the frequency domain in terms of sensitivity functions at 
system inputs and/or at system outputs. These functions are the sensitivity function S (s) and the 
complementary sensitivity function T (s), and they are defined by the following equations [16, 17]. 

 𝑆𝑆(s) = (1 + 𝐺𝐺𝑝𝑝(𝑠𝑠) 𝐾𝐾(𝑠𝑠))−1    (20) 

 𝑇𝑇(s) = 𝐺𝐺𝑝𝑝(𝑠𝑠)𝐾𝐾(𝑠𝑠)(1 + 𝐺𝐺𝑝𝑝(𝑠𝑠)𝐾𝐾(𝑠𝑠))−1  (21) 

Figure 3 shows the feedback control system for the perturbation model with disturbance dy (s) 
and sensor noises η(s). It can be seen that Eqs. (20) and (21) yield also to the following identity. 

 S (s) + T (s) =1  (22)              

Nominal Stability. 
A system satisfied this condition if the closed-loop of the controlled system has internal stability. 

Nominal Performance. 
Nominal performance requires the plant to satisfy all the requirements for the specific model. The 

nominal performance condition is [16, 17].          

 |𝑊𝑊𝑃𝑃 𝑆𝑆| < 1        ∀ 𝜔𝜔  (23)            

 |𝑊𝑊𝑃𝑃 | < 1
|𝑆𝑆|  = |1 + 𝐺𝐺𝐾𝐾|         ∀ 𝜔𝜔    (24) 
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Figure 3: Feedback control model with disturbance dy(s) and sensor noises η(s)  

Robust Stability. 
The closed-loop system is robustly stable if the following condition is satisfied under the 

assumption of multiplicative uncertainty [16,18].   

  ‖𝑇𝑇(𝑠𝑠)𝑊𝑊𝑒𝑒(𝑠𝑠)‖∞ < 1    (25) 

While additive uncertainty is satisfied, if and only if the following condition is satisfied [16,18]. 

   ‖𝐾𝐾𝑆𝑆(𝑠𝑠)𝑊𝑊𝑎𝑎(𝑠𝑠)‖∞ < 1 (26)                              

Robust Performance. 
This condition requires robust stability as well as nominal performance [19].  

1. Robust performance with multiplicative uncertainty condition: 

 ‖|𝑊𝑊𝑃𝑃(𝑠𝑠) 𝑆𝑆(𝑠𝑠)| + |𝑇𝑇(𝑠𝑠) 𝑊𝑊𝑒𝑒(𝑠𝑠)‖∞ < 1  (27) 

2. Robust performance with additive uncertainty condition: 

 ‖|𝑊𝑊𝑃𝑃(𝑠𝑠) 𝑆𝑆(𝑗𝑗𝜔𝜔)| + |𝐾𝐾𝑆𝑆(𝑠𝑠)𝑊𝑊𝑎𝑎(𝑠𝑠)‖∞ < 1 (28) 

5. DESIGN METHODOLOGY OF THE WEIGHTING FUNCTION  
A weighting function transfer function must be a stable minimum phase system. Some examples 

of the weighting functions are the performance weighting functions (𝑊𝑊𝑃𝑃) and the uncertainty 
weighting function (𝑊𝑊𝑒𝑒 or 𝑊𝑊𝑎𝑎). All weighting functions add special constraints to the transfer 
function when multiplied by it. 

Performance Weighting Functions (𝑾𝑾𝑷𝑷) 
The important part of the design of a robust controller is the selection of weighting function. This 

part is not an easy process and frequently needs more iterations of tuning. To select the performance 
weighting functions, the following general equations are used as first and second-order filters [18]. 

 𝑊𝑊𝑃𝑃
1(s) =

𝑆𝑆
𝑀𝑀𝑆𝑆

+𝜔𝜔𝑏𝑏

s+𝜔𝜔𝑏𝑏𝑒𝑒𝑠𝑠𝑠𝑠
    (29) 

 𝑊𝑊𝑃𝑃
2(s) =

( 𝑆𝑆
�𝑀𝑀𝑆𝑆  

+𝜔𝜔𝑏𝑏)2

(s+𝜔𝜔𝑏𝑏�𝑒𝑒𝑠𝑠𝑠𝑠)2
   (30) 

 
       𝜔𝜔𝑏𝑏  ∶ The minimum acceptable bandwidth (for disturbance rejection). 
       𝑀𝑀𝑆𝑆  ∶ The maximum peak magnitude of  |𝑆𝑆(𝑗𝑗𝑗𝑗)| . 
       𝑒𝑒𝑆𝑆𝑆𝑆 ∶  Allowed steady-state error. 

           Note:  |𝑆𝑆(s)| < 1
|𝑊𝑊𝑃𝑃(𝑏𝑏)|    the minimum of    1

|𝑊𝑊𝑃𝑃(𝑏𝑏)|  is equal to 𝑒𝑒𝑆𝑆𝑆𝑆 
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The parameters of the performance weighting function and the parameters of the controller are 
obtained using the PSO algorithm during minimizing the cost function. 

Uncertainty Weighting Function 
The design of robust control deals with both unstructured and structured uncertainty. However, 

the evaluation of the disk of uncertainty is done by selecting a set of nominal plants. The uncertainty 
weight function is used to bound all the uncertainty for the system. 

 The model with multiplicative uncertainty [20]. 

 𝐺𝐺𝑃𝑃(s) = 𝐺𝐺𝑖𝑖(s)(1 + 𝑗𝑗𝑒𝑒(𝑠𝑠)  ∆𝑒𝑒)  (31) 

 where  ∆𝑚𝑚 ≤ 1 . 
From Eq. (31), the multiplicative uncertainty weight function 𝑗𝑗𝑒𝑒(s)  can be written as: 

   𝑗𝑗𝑒𝑒(s) = 𝐺𝐺𝑝𝑝(s)−𝐺𝐺𝑛𝑛(s)
𝐺𝐺𝑛𝑛(s)    (32)  

where, 
 𝐺𝐺𝑝𝑝(s): Transfer function of plant with uncertain parameter. 
 𝐺𝐺𝑖𝑖(s): Transfer function of plant with nominal parameter. 
Thus, 𝑗𝑗𝑒𝑒 represents the frequency response of all variations of plants’ parameters. The curve 

fitting method is used to find uncertainty model by the following steps: 

1. Plotting the frequency response of the system with all uncertain parameters. 
2. Finding the largest magnitudes (upper bound frequency response) of the uncertain system. 
3. Plotting a fitting curve that fits the plot of the large magnitude. 
4. Selecting the curve order that fits the plot of the large magnitude. 
5. The final uncertainty model (𝑗𝑗𝑒𝑒 ) can be created after selecting a large curve’s magnitudes 

with a suitable order. 
In this work, the uncertainty model (𝑗𝑗𝑒𝑒) is selected with the case of parameters uncertainty 10% 

as in Table I [21]. The determination of uncertainty weighting function 𝑗𝑗𝑒𝑒 (s) from the frequency 
responses of the family of the uncertain system is shown in Figure 4. The obtained uncertainty model 
is: 

 𝑗𝑗𝑒𝑒(s)=0.17739s+5.3
s+39.21

  (33) 

TABLE I: The magnetic levitation nominal system parameters [21]. 

Parameter Definition 
Mini
mum 
value 

Value 
Maxi
mum 
Value 

Unit 

𝐦𝐦 The mass of the ball 0.0612 0.068 0.0748 Kg 

𝐠𝐠 The gravitational constant  9.81  m/sec2 

𝐑𝐑 The coil’sresistance 9 10 11 Ω 

𝐋𝐋 The coil’s inductance 0.3712 0.4125 0.4537 H 

𝐜𝐜 The magnetic force 
constant  6.53*10-5  H/m 

𝐗𝐗𝟎𝟎𝟎𝟎 Initial position  0.012  Meter 

𝐗𝐗𝟎𝟎𝟎𝟎 Initial velocity  0  M/s 
𝐗𝐗𝟎𝟎𝟎𝟎 Initial current  0.5  Amp 
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Figure 4: Determination of uncertainty weighting function 𝒘𝒘𝒎𝒎 (s)from the frequency responses of 

the family of uncertain system 

6. COST FUNCTION  
The optimal values of the controller parameters depending directly on the selected performance 

index. A performance index must be a positive number or zero. There are different types of 
performance criteria. The commonly used performance indices are [22]: 

• Integral of Squared Error (ISE): 

      𝐼𝐼𝑆𝑆𝐼𝐼 = ∫ 𝑒𝑒2(𝑡𝑡)𝑑𝑑𝑡𝑡∞
0    (34) 

• Integral of Time multiplied Squared Error (ITSE): 

  𝐼𝐼𝑇𝑇𝑆𝑆𝐼𝐼 = ∫ 𝑡𝑡𝑒𝑒2(𝑡𝑡)𝑑𝑑𝑡𝑡∞
0   (35) 

• Integral of Absolute Error (IAE): 

 𝐼𝐼𝐼𝐼𝐼𝐼 = ∫ |𝑒𝑒(𝑡𝑡)|𝑑𝑑𝑡𝑡∞
0   (36) 

• Integral of Time multiplied Absolute Error (ITAE): 

 𝐼𝐼𝑇𝑇𝐼𝐼𝐼𝐼 = ∫ 𝑡𝑡|𝑒𝑒(𝑡𝑡)|𝑑𝑑𝑡𝑡∞
0   (37) 

, where, 𝑒𝑒(𝑡𝑡) is the error between the reference input and the output response. 
In this paper, the PSO algorithm is used to optimize the cost function which is a combination of 

time-domain specifications represented by the performance index (ISE) and norm infinity 
specifications with multiplicative uncertainty. The cost function is: 

 Cost Function = ∫ |𝑒𝑒(𝑡𝑡)|𝑑𝑑𝑡𝑡∞
0 + ‖ 𝑊𝑊𝑃𝑃𝑆𝑆 ||

∞
+ ‖𝑊𝑊𝑒𝑒𝑇𝑇 ||∞  (38) 

7. DESIGN AND IMPLEMENTATION OF ROBUST PI-PD CONTROLLER 
In this section, the design of a robust PI-PD controller is introduced. The advantages of the robust 

PI-PD controller in the disturbance rejection and system parameters uncertainty can be verified. The 
block diagram of the system with PI-PD controller is shown in Figure 5. The transfer functions of PI 
and PD controllers are defined as [23]: 

 G(s) = 𝑁𝑁(s)
𝐷𝐷(s)

   (39) 

 PI(s) = 𝐾𝐾P + 𝐾𝐾i
s

   (40) 

 PD(s) = 𝐾𝐾G + 𝐾𝐾d
𝑘𝑘n

1+𝑘𝑘n/s
  (41) 



Engineering and Technology Journal                   Vol. 39, Part A (2021), No. 04, Pages 653-667 
 

661 
 
 

, where: 𝑁𝑁(𝑠𝑠) is the numerator of the system and 𝐷𝐷(𝑠𝑠) is the denominator of the system. 
(𝐾𝐾P,𝐾𝐾i) are the parameters of the outer loop controller portion PI while (𝐾𝐾G,𝐾𝐾d, 𝑘𝑘n) are the 
parameters of inner loop controller portion PD. The PSO algorithm is used to obtain the best and 
optimal parameter values of the PI-PD controllers and the performance weighting function 
parameters with a guarantee to control the system with robust stability and robust performance. The 
step size of the simulation used in this case is  ℎs = 0.001 sec while the time of simulation is  𝑇𝑇ob= 
100 sec. The number of maximum iterations in the PSO is   𝐼𝐼𝑡𝑡𝑒𝑒𝑡𝑡=5000, Population Size=10, inertia 
factor ℎ=2, 𝐶𝐶1 = 𝐶𝐶2 = 2. The cost function to be minimized using the PSO method is given in 
Equation (35). 

The optimal parameters of the controller are shown in Table II and the parameters of the 
weighting performance function are: 

 𝑊𝑊𝑃𝑃(𝑠𝑠) = 0.3546𝑏𝑏+0.701
𝑏𝑏+1.81

  (42)       

 
Figure 5: Block diagram of MLS with PI-PD controller 

 

TABLE II: The optimal parameters of PI-PD controller and value of ISE criterion with robustness 
condition 

Initial 
Position 𝑲𝑲𝐏𝐏 𝑲𝑲𝐢𝐢 𝑲𝑲𝐆𝐆 𝑲𝑲𝐝𝐝 𝒌𝒌𝐧𝐧 ‖ 𝐖𝐖𝐏𝐏𝐒𝐒 ||∞ ‖𝐖𝐖𝐦𝐦𝐓𝐓 ||∞ ISE 

 

0.012 146.
9 

86.50
6 

965.4
5 

113.5
6 

0.00
2 0.4891 0.2233 

 
0.024

6 
 

8. DESIGN AND IMPLEMENTATION OF ROBUST FOPI-FOPD CONTROLLER 
This section introduces the design of a robust FOPI-FOPD controller for MLS to achieve robust 

stability and performance to control the position of the metal ball in a specific position. Now, 
consider the control system, as shown in Figure (6), where 𝐺𝐺(𝑠𝑠) is the actual plant that has some 
uncertainty, 𝐾𝐾(𝑠𝑠) is the FOPI-FOPD controller as shown in the following model, 𝑟𝑟(𝑡𝑡) is the 
reference input, 𝑢𝑢(𝑡𝑡) is the control input, 𝑒𝑒(𝑡𝑡) is the error signal, 𝑑𝑑(𝑡𝑡) is the external disturbance, and 
𝑦𝑦(𝑡𝑡) is the system output response. In the modified structure of the FOPI-FOPD control, the FOPD 
control is used in the inner loop while the FOPI control is used in the outer loop. The components of 
the FOPD and FOPI control parts are defined as follows [23, 24, 25]: 

 𝐺𝐺(s) = 𝑁𝑁(s)
𝐷𝐷(s)

  (43) 

 𝐹𝐹𝐹𝐹𝑃𝑃𝐼𝐼(s) = 𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐼𝐼
𝑏𝑏𝜆𝜆

  (44) 

 𝐹𝐹𝐹𝐹𝑃𝑃𝐷𝐷(s) = 𝐾𝐾𝐺𝐺 + 𝐾𝐾𝑑𝑑
𝑘𝑘𝑛𝑛

1+𝑘𝑘𝑛𝑛/𝑏𝑏𝛿𝛿
  (45) 

, where: 𝑁𝑁(𝑠𝑠) is the numerator of the system and 𝐷𝐷(𝑠𝑠) is the denominator of the system.  FOPI is 
the outer-loop portion of the controller and the FOPD is the inner loop portion of the controller. The 
FOPI-FOPD controller provides more flexibility and robustness in tuning while adding two extra 
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degrees of freedom to the system. These degrees of freedom are related to the orders of the integral 
and derivative parts (𝜆𝜆, 𝛿𝛿) which are extended to non-integer (fractional) values [23, 24].  

 
Figure 6: Block diagram of MLS with FOPI-FOPD controller. 

The proposed FOPI-FOPD controller has an advantage where the internal FOPD controller is 
utilized to adjust the poles of the plant transfer function 𝐺𝐺(𝑠𝑠) to more suitable locations. Therefore, 
the FOPI-FOPD structure has extra more advantages over the conventional design FOPID controller 
[23]. The FOPI-FOPD is proposed to control integrating processes either with dead time or without 
dead time and processes with unstable transfer functions. The objective is to design the controller 
𝐾𝐾(𝑠𝑠) or FOPI-FOPD to achieve the robustness conditions mentioned in section (4). 

The PSO algorithm is used to obtain the best and optimal values of the FOPI-FOPD controller 
parameters and the performance weighting function parameters, as shown in Figure 7, with a 
guarantee to control the system with robust stability and robust performance. The step size of the 
simulation used in this case is  ℎs = 0.001 sec while the time of simulation is  𝑇𝑇𝑜𝑜𝑏𝑏=100 sec. The 
number of maximum iterations in the PSO is  𝐼𝐼𝑡𝑡𝑒𝑒𝑡𝑡=5000, Population Size=10, inertia factor ℎ = 
2, 𝐶𝐶1 = 𝐶𝐶2 =2. The cost function to be minimized using the PSO method is given in Eq. (35). 

 

 
Figure 7: Block diagram of the proposed controller using PSO 

 
The optimal parameters of the FOPI-FOPD controller are shown in Table III and the parameters 

of the weighting performance function are: 

 

 𝑊𝑊𝑃𝑃(𝑠𝑠) = 0.446𝑏𝑏+0.501
𝑏𝑏+1.01

  (46) 

 

TABLE III: The optimal parameters of FOPID controller and the value of ISE criterion 
with robustness condition. 

Initial 
Position 𝑲𝑲𝐏𝐏 𝑲𝑲𝐢𝐢 λ 𝑲𝑲𝐆𝐆 𝑲𝑲𝐝𝐝 𝒌𝒌𝐧𝐧 δ ‖ 𝐖𝐖𝐏𝐏𝐒𝐒 ||∞ ‖𝐖𝐖𝐦𝐦𝐓𝐓 ||∞ IS

E 

0.012 335.
1 

989.
93 

1.
13 

883
.2 

117.
36 

0.02
58 

0.
95
1 

0.5080 0.2421 0.0
16 
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9. RESULTS AND DISCUSSION 
The MLS is a non-linear system moreover the system openـloop is highly unstable. Figure 8 and 

Figure 9 show the position responses of the linear and nonlinear systems respectively, where the 
initial conditions in this simulation are taken as established in Table I [23]. In both figures, the ball 
position curve goes to infinity, which describes that the ball is unsettled. Extensive tests on the 
magnetic levitation system have been performed to demonstrate the effectiveness of the proposed 
robust PI-PD and robust FOPI-FOPD controllers. From Figures  10 to 13, it can be seen that the 
magnitudes of sensitivity and complementary sensitivity functions are less than the magnitudes of the 
inverse of performance and uncertainty weighting functions for all frequencies and both robust PI-PD 
and robust FOPI-FOPD controllers. This means that robust stability and robust performance 
conditions in Eqs. (23) and (25) have been achieved. On the other hand, the obtained time response 
specifications for robust PI-PD and robust FOPI-FOPD controllers can be shown in Figure 14. Also, 
Table IV depicts the time response specifications for both robust controllers. The system with a 
robust FOPI-FOPD has less overshoot, less rise time, and less settling time than the same system 
with a robust classical PI-PD. That means the system is faster and more stable with a robust FOPI-
FOPD controller than the system with robust classical PI-PD. On the other hand, to show the 
robustness of the proposed PI-PD controller and FOPI-FOPD controller, the disturbance ( 𝑑𝑑 ) with 
the magnitude of 0.001 was added into the system at time 5.4 sec to 8.2 sec. The proposed FOPI-
FOPD controller gives far superior results than the PI-PD controller for the setpoint response and 
excellent disturbance rejection. Figures 15 and 16 show the effect of disturbance on the control 
system. The step responses of the uncertain system as in Table I [21] with the robust PI-PD controller 
and robust FOPI-FOPD controller are shown in Figures (17) and (18) respectively. Furthermore, the 
time response specifications of the control efforts using the robust PI-PD controller and robust FOPI-
FOPD controller are shown in Figure 19 and Figure 20, respectively. 

 
Figure 8: The unstable ball position response for linear model 

 
Figure 9: The unstable ball position response for nonlinear model 

 
Figure 10: The Frequency characteristics of sensitivity function S using the robust PI-PD controller 

and the inverse of the weighting function 𝑾𝑾𝑷𝑷  
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Figure 11: The Frequency characteristics of complementary sensitivity function T using the robust 

PI-PD controller and the inverse of the weighting function 𝑾𝑾𝒎𝒎. 

 
Figure 12:  The Frequency characteristics of sensitivity function S using the robust FOPI-FOPD 

controller and the inverse of the weighting function 𝑾𝑾𝑷𝑷 .  

. 
Figure 13: The characteristics of complementary sensitivity   function T using the robust FOPI-

FOPD controller and the inverse of the weighting function 𝑾𝑾𝒎𝒎 . 

 
Figure 14: The position of the ball of MLS with PI-PD and FOPI-FOPD controllers. 

TABLE IV: The time response specifications for both controllers 

 
 
 
 
 
 
 
 

Transient 
 Parameter 

Robust  
FOPI-FOPD 

 Robust 
 PI-PD 

Rise Time ( 𝑇𝑇r ) 472.277ms 727.756ms 
Settling Time (𝑇𝑇s ) 5% 0.7499 s 1.0634s 

Peak time (𝑇𝑇p) 2.6192 s 1.5906 
Overshoot  ( 𝑀𝑀p) 0.3103% 0.689% 
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Figure 15:  Setpoint and disturbance responses for PI-PD controlled system  

 
Figure 16: Setpoint and disturbance responses for FOPI-FOPD controlled system   

 
Figure 17: Figure (17): The close loop response when PI-PD controller is used with 10% parameter 

uncertainty 

 
Figure 18: The close loop response when FOPI-FOPD controller is used with 10% parameter 

uncertainty 

 
Figure 19: The resultant control signal for the designed robust PI-PD controller. 
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Figure 20: The resultant control signal for the designed robust FOPI-FOPD controller. 

 

10. CONCLUSION 
In this paper, a robust FOPI-FOPD controller has been presented as a new version of robust PI-

PD because it has an extra fractional order in the derivative and integral. The particle swarm 
optimization (PSO) algorithm was used to find both the optimal parameters of the robust controller 
and the optimal parameters of the performance weighting function for each controller.  The proposed 
controllers have been applied to MLS which is considered as one of the high nonlinearities and 
uncertain systems. The unstructured multiplicative uncertainty was used to express the uncertainty of 
MLS. The robust performance and stability of the system have been achieved with both PI-PD and 
FOPI-FOPD controllers. The robust PI-PD and FOPI-FOPD controllers have achieved adequate 
frequency and time response specifications. The results showed the superiority of the proposed FOPI-
FOPD controller by provides more flexibility and robustness in tuning because of adding two extra 
degrees of freedom, On the other hand, the system with a robust FOPI-FOPD has less overshoot, less 
rise time, and less settling time than the same system with a robust classical PI-PD. That means the 
system is faster and more stable with a robust FOPI-FOPD controller than the system with robust 
classical PI-PD. The proposed FOPI-FOPD controller gives far superior results than the PI-PD 
controller for disturbance rejection. 
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