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1. Introduction

Since the end of the nineteenth century and the beginning

of the twentieth century, concepts of fracture mechanics were 

beginning to appear depending on experimental and 

theoretical studies [1]. Fracture mechanics is the study of the 

mechanical behavior of cracked materials subjected to an 

applied load. The formation of cracks may be a complex 

fracture process, which strongly depends on the microstructure 

of a particular crystalline or amorphous solid, applied loading, 

and environment. The failure in concrete can occur by the 

growth of cracks gradually during loading. As the load is 

increasing, cracks increase in number and grow until one of 

the cracks will propagate through the member [2]. The shear 

failure is very dangerous because it happens suddenly with 

little or no previous warning. The shear design must ensure 

that the shear strength for every member in the structure 

exceeds the flexural strength. The shear failure mechanism 

varies depending upon the cross-sectional dimensions, the 

member properties, the geometry, and the loading types [3]. 

The numerical simulation of crack propagation and the 

analysis of crack growth in reinforced concrete members is 

still an unsolved problem and an important part of current 

research. The development of reliable analytical models can 

reduce the number of required test specimens for the solution 

of a given problem, recognizing that tests are time-consuming 

and costly and often do not simulate exactly the loading and 

support conditions of the actual structure. Full-scale 

simulations of structural systems which cannot be produced 

and tested in a laboratory cannot be produced and tested in a 

laboratory environment can result in a better understanding of 

the failure and cracking behavior of these systems. Many 

computer software packages are available for these 

simulations. The commercially available ABAQUS software 

has dedicated concrete material models that are quite effective 

in realistic simulations [4]. Recent advancements in 

computational simulations have paved the possibility for 

carrying out the design and analysis of concrete structures in a 

more realistic manner.  

Many researchers have used numerical methods to study 

the fracture behavior of members. In 1999, Belytschko and 

Moës suggested a new computational method named the 

“extended finite element method (X-FEM)” [5]. Belytschko 

with Black in 1999 and Moës et al., 1999, produced a 

substantial perfection to the basis of traditional FEM to 

simulate the crack without modification of the initial finite 

element mesh. After that, the modifications of the method 

continued to be used in various problems such as localized 

deformation, discontinuous field, fracture, and so on. It has 

become widely used in civil engineering and other fields 

because it offers a good simulation. Then, Moës et al. 1999 

produced the Heaviside function and crack tip function as the 

enrichment shape function of elements including the crack 

surface and tip respectively. Later, Daux et al. in 2000, utilized 

more than one enrichment shape function in crack tip 

Basrah Journal for Engineering Sciences, Vol. 21, No. 3, (2021), 55-65 

Original Article
Journal homepage: www.bjes.edu.iq 

ISSN (Online): 23118385, ISSN (Print): 18146120 

Study on the Shear Failure of Reinforced Concrete Beams 

Using Extended Finite Element Method (XFEM) 

Hanadi Abdulridha Lateef 1,*, Rafil Mahmood Laftah 2, Nabeel Abdulrazzaq Jasim 3 

1 Department of Structure and Construction, Basrah Technical Institute, Southern Technical University, Basrah, Iraq 
2 Department of Mechanical Engineering, College of Engineering, University of Basrah, Basrah, Iraq 

3 Department of Civil Engineering, College of Engineering, University of Basrah, Basrah, Iraq 

E-mail addresses:  hanadi.ridha@stu.edu.iq , rafil.laftah@uobasrah.edu.iq , nabeel_ali58@yahoo.com

Received: 23 August 2021; Revised: 26 August 2021; Accepted: 6 September 2021; Published: 5 October 2021 

Abstract 

This research concerns with the fracture behavior of reinforced concrete beams without shear reinforcement numerically. The software 

ABAQUS is adapted to simulate the crack propagation using the eXtended Finite Element Method (XFEM), taking into account materials 

nonlinearities using concrete damage plasticity CDP criteria. XFEM is used to solve the discontinuity problems in the simulation. The 

maximum principal stress failure criterion is selected for damage initiation, and an energy-based damage evolution law based on a model-

independent fracture criterion is selected for damage propagation. The traditional nonlinear finite element analysis is used to specify the crack 

initiation position, which is required to specify the crack location in the analysis of beams using XFEM. Three-dimensional reinforced concrete 

beam models are investigated subjected to three and four-point loading tests. Simply supported beams under the effect of applied static load 

are investigated. An elastic perfectly plastic model is used for modeling the longitudinal steel bars. The main variables considered in the study 

are beam depth and the shear span with beam length. The numerical results are compared with the available experimental results to demonstrate 

the applicability of the model. The XFEM provides the capability to predict the concrete member fracture behavior. 

Keywords: Concrete Damage Plasticity, Fracture Energy, Shear Span, XFEM. 

© 2021 The Authors. Published by the University of Basrah. Open-access article. 

https://doi.org/10.33971/bjes.21.3.7 

https://creativecommons.org/licenses/by/4.0/
http://www.bjes.edu.iq/
mailto:%20hanadi.ridha@stu.edu.iq
mailto:%20hanadi.ridha@stu.edu.iq
mailto:qahtan.jawad@yahoo.com
http://dx.doi.org/10.33971/bjes.21.3.7


56 H. A. Lateef et al. / Basrah Journal for Engineering Sciences, Vol. 21, No. 3, (2021), 55-65                              

elements, and crack branching was successfully simulated. 

Later, a new crack nucleation criterion was introduced into    

X-FEM by Belytschko et al. 2003. The crack propagation path 

and velocity can be well predicted using this criterion as cited 

in Ref. [6]. Giner et al. in 2009 [7] used XFEM with the finite 

element software ABAQUS to simulate the fracture 

mechanism for the two-dimensional model. User Element 

subroutine (UEL) was used for combining XFEM with 

classical FEM because XFEM was not included in the 

ABAQUS program at that time. In 2011, Johannsson [8] dealt 

with the modeling of cracks in a three-dimensional reinforced 

concrete beam subjected to three-point bending in the 

ABAQUS program. XFEM was used to model the cracking in 

cooperation with the Concrete Damaged Plasticity material 

model. Yang in 2016 [9], used the XFEM and FEM with 

concrete damage plasticity material models to predict the 

failure for a two-dimensional concrete beam with recycled 

aggregate. Al-Zuhairi and Taj in 2018 [10], investigated two-

dimensional, simply supported, plain concrete beams under 

flexural stresses using meso-scale mode by XFEM with 

ABAQUS program for the numerical model. In 2020 [11], 

chen et al. was proposed the XFEM-based multiscale modeling 

approach to investigate the monotonic and hysteretic 

performance of RC columns and Ahmed et al. in 2021 [12], 

conducted the numerical modelling of foamed concrete beam 

under flexural using traction-separation relationship. The 

traction separation relationship was used as a constitutive 

model to incorporate independent material properties and used 

in the modelling framework. 

More studies are required to understand the effect of many 

significant parameters on concrete beam behavior and carrying 

capacity such as change shear span and beam dimensions. The 

major objective of this research is to investigate the fracture 

mechanics of reinforced concrete beams numerically. First, the 

ultimate strength and load-deflection relationships, as well as 

crack patterns, are validated with the corresponding 

experimental results from the previous study carried out by 

Kornbak [13]. After the verification of the XFEM model, it is 

used for conducting a parametric study to determine the effect 

of some parameters on the behavior of reinforced concrete 

beams. 

2. XFEM for crack simulation 

In practice, discontinuities may be found in imperfections, 

cracks, shear bands and in many structural problems. 

Discontinuity can be classified into types: strong and weak 

discontinuity, which represent respectively the cracks and the 

interfaces between two different materials in structural 

concepts [14]. With the conventional finite element method, it 

is difficult to be analyzed the discontinuity that occurs in a 

concrete model. XFEM allows simulation of initiation and 

propagation of a discrete crack along an arbitrary solution path 

without the requirement of remeshing [15]. 

The major concept of this method is adding enrichment 

functions to the standard finite element analysis solution. It is 

based on the multiplication of the enrichment function by the 

nodal shape function. The technique of enrichment could be 

applied to a specific region of the general domain by enriching 

only within that region. Equations (1) and (2) below shown the 

final finite element approximation using enrichment functions 

[1]. 

 

 

u(x) = u FE + u enr                                                                          (1) 

 u(x) = ∑ Nj(x) uj + ∑ Nk(x) ψ(x) ak

m

k = 1

n

j = 1

                                     (2) 

where uj is the vector of regular degrees of nodal freedom 

in the finite element method. ak is the added set of degrees of 

freedom to the standard finite element model and ψ is the 

discontinuous enrichment function defined for the set of nodes 

that the discontinuity has in its influence (support) domain. 

2.1. Level set method (LSM) 

LSM is a numerical technique for describing a crack and 

tracking the motion of the crack. Combining XFEM with level 

sets improves the XFEM in modelling a growing crack or 

moving phase boundaries. The level set function consists of 

many types of functions, the most common function is the 

signed distance function. The level set approach was 

introduced by Osher [16]. In other words, the signed distance 

function can take one of the following values, Fig. 1 [17]. 

 φ(x) = {

 > 0 if  x  ϵ  ΩA

= 0  if  x ϵ Γd

< 0  if  x ϵ ΩB

                                                                (3) 

 

Fig. 1 Domain with weak discontinuity defined by a bi-material with close 

interface [15]. 

2.2. Enrichment functions 

To solve discontinuities problems, the XFEM relies on the 

Partition of Unity (PU) technique. Equation (4) illustrates how 

the enrichment functions are added to the convenient solution 

in the PU method. There are a number of different enrichment 

options available. Heaviside enrichment function (HSF), H(x) 

is commonly used for strong discontinuities such as crack. It 

was first introduced by Moe's [5]. 

Strong discontinuities can be created when the 

displacement of one side of the crack interface is different 

from the other, this led to a discontinuity in the solution. HSF 

can take two approaches as follows [15]: 

 H(x) = {
 0  if  φ(x) < 0
 1  if  φ(x) > 0

                                                                (4) 

or, 

 H(x) = {
 − 1  if  φ(x) < 0
 + 1  if  φ(x) > 0

                                                            (5) 

Where, φ(x) is the signed distance function illustrated in 

the previous section. 
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Table 1. The characteristics of concrete and steel. 

Concrete Characteristics Steel Characteristics 

Compressive Strength fc
’ 

(MPa) 

Poisson’s ratio 

(ʋ) 

Density 

(kg/m3) 

Yielding Stress fy 

(MPa) 

Modulus of elasticity Es 

(GPa) 

Poisson’s ratio 

(ʋ) 

Cross-sectional area 

(mm2) 

43 0.2 2350 533 190 0.3 88.356 

 

For the purpose of validation of the extended finite element 

model, experimental test available in literature is utilized. 

3. Experimental analysis of beam 

The beam tested by Kornbak [13] is used to demonstrate 

the applicability of the FE model. The concrete beam was 

simply supported singly reinforced and without transverse 

reinforcement. The longitudinal reinforcement was two 

number 7.5 mm diameter ribbed bars. The cross section of 

beam was 100 × 100 mm as shown in Fig. 2. The figure depicts 

the geometry, loading, and boundary conditions of the beam. 

The properties of the concrete and steel are summarized in 

Table 1. The failure crack was located at 20 mm from the 

support as obtained from the experimental test. The load was 

applied at the midspan on the top surface of the beam by a plate 

of area 50 mm × 100 mm. 

 
All dimension in mm. 

Fig. 2 The details and a cross-section of the reinforced concrete beam. 

4. Finite element modelling 

Finite element simulations of reinforced concrete beams 

are performed using commercial software ABAQUS/Standard 

2017. Materials nonlinearity is taken into account. 

4.1. Materials properties 

Non-linearity in concrete due to its complex composition 

has been given thought in this constitutive modeling to 

faithfully capture the response of concrete [18]. In this paper, 

the concrete damage plasticity CDP model is used to describe 

the concrete beam behavior. The nonlinear stress-strain 

relationship of concrete in compression is presented in Fig. 3. 

 

Fig. 3 The nonlinear stress-strain relationship of concrete in compression, 

Eurocode 2 (2004). 

The elastic properties of the concrete are determined by the 

modulus of elasticity and the Poisson’s ratio (v). The modulus 

of elasticity of concrete (Ecm) is calculated based on the 

prescribed relation in Eurocode 2 (2004) [19], 

Ecm = 22000 (
f
cm

10
)

0.3

   (in MPa)                                              (6) 

f
cm

 = f
ck

 + 8       (in MPa)                                                              (7) 

where, fcm is the cylinder concrete compressive strength 

(mean value) and fck is the characteristic cylinder concrete 

compressive strength at 28 days.  

Using Eurocode 2 (2004) [19], the hardening region was 

found in the uniaxial compression of concrete as, 

σc = f
cm

[
kη − η2

1 + (k − 2) η
]                                                                  (8) 

Where, 

η = 
εc

εc1

                                                                                             (9) 

and  

k = 
1.05 Ecm |εc1|

f
cm

                                                                         (10) 

σc is the concrete compressive strength for 0 < |εc| < εcu1, εc 

is the concrete compressive strain, εc1 is the compressive strain 

of concrete at peak stress fcm and εcu1 is the ultimate 

compressive strain in the concrete. The Eurocode 2 (2004) [19] 

specified that the ultimate strain for characteristic compressive 

strength of concrete between 12-50 MPa, can be taken as 

0.0035. For εc1, Majewski proposed approximating formula to 

calculate εc1 depending on the experimental result as cited in 

Ref. [20], from the following expression: 

ɛc1 = 0.0014 (2 − e − 0.024 fcm − e − 0.14 fcm)                               (11) 

The tensile stress is calculated according to Eurocode 2 

(2004) [19] as: 

σt = f
t
 (

εt

ε
)

0.4

                                                                                (12) 

where εt is the tensile strain in the concrete at the peak 

stress ft, ε is the tensile strain in the concrete and ft is the 

concrete tensile strength, which is expressed by the following 

relationship as in Eurocode 2 (2004) [19]: 

f
t
 = 0.30 (f

ck 
)
2/3                                                                            (13) 
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The stiffness degradations coefficients for the concrete 

damaged plasticity material model for compression (dc) and 

tension (dt) are another important parameter in the damage 

plasticity model available in ABAQUS. They describe the 

evolution of the concrete stresses when the concrete material 

reaches peak stress. Numerous methods are available to 

achieve the damage parameter. Nguyen and Kim (2009) [21] 

presented the following relations for defining prescribed 

parameters, dc = 1 − σc/fcm and dt = 1 − σt/ft for compression 

and tension, respectively. The parameters of CDP model that 

are used in the current study are listed in Table 2. 

Table 2. Parameters of CDP model under compound stress. 

 

In the finite element model, an elastic perfectly plastic 

model was used for the steel longitudinal bars with an equal 

behavior in tension and compression. ABAQUS software 

requires input data of Young modulus (Es) and Poisson’s ratio 

(v) to represent the elastic behavior, yield stress (fy), and the 

inelastic strains for defining the plasticity behavior as shown 

in Fig. 4. 

 

Fig. 4 Behavior of steel. 

4.2. Types of used elements 

The concrete beam is modeled with solid elements 

(C3D8R) from the ABAQUS library. They are eight-node 

elements with three translation degrees of freedom at each 

node, and of reduced integration with hourglass control. To 

simulate reinforcement bars, the truss element (T3D2) is 

adopted. It is 2-noded elements having 3 degrees of freedom 

in each node (translations in X, Y and Z directions). In this 

work, frictional contact between the steel and concrete in 

ABAQUS was achieved by using embedded technology [22].  

4.3. Boundary and loading conditions 

The load is displacement controlled; the displacement is 

applied downwards as pressure. The boundary conditions in 

roller support are U1 = U2 = 0, and in hinge support U1 = U2 

= U3 = 0, where U: 1, 2, 3 are the translations in the X, Y and 

Z directions. 

 

 

4.4. Crack initiation criteria and crack length 

Crack initiation criteria must be specified in the XFEM. In 

this study, the maximum principal stress damage is used with 

a value of the ultimate tensile strength ft as maximum principal 

stress at cracking. The ft is determined by Equation (13) based 

on Eurocode 2 [19]. The fracture energy Gf may be estimated 

from the compressive strength of concrete and maximum 

aggregate size according to CEB-FIP MC 90 [23], as: 

Gf = Gf0
(

f
cm

f
cmo

)

0.7

                                                                        (14) 

Where, Gf is fracture energy (N/mm), Gf0 is the base value 

of fracture energy which depends on maximum aggregate size 

dmax as given in Table 3, fcm is the mean value of concrete 

cylinder compressive strength (MPa) and fcmo equals 10 MPa. 

Fracture energy (Gf) is calculated depending on the maximum 

aggregate size dmax of 10 mm as used in the experimental test 

[13]. The resulting fracture energy from Equation (14) equals 

0.072 N/mm. 

Table 3. The base value of Gf0 

dmax (mm) 8 16 32 

Gfo (N/mm) 0.025 0.030 0.058 

 

To determine the suitable predefined crack length which 

gives results with acceptable accuracy compared with the 

experimental study, three beams with different initial crack 

lengths are studied, which are 5 mm, 10 mm and 15 mm.   

Table 4 summarized the results of different crack lengths. The 

ultimate load of the beam with crack length of 5 mm is very 

close to the ultimate load in the experimental test. Therefore, 

the crack length of 5 mm is used throughout this study. 

Table 4. Variation of ultimate load with different crack lengths. 

Crack Length 

(mm) 

Ultimate Load 

(kN) XFEM 

Load 

Ratio 

Ultimate Load 

(kN) Exp. 

5 27.5 1 

28.6 10 26.4 0.96 

15 25.7 0.94 

 

4.5. Mesh size  

Six models with different mesh sizes are examined to select 

a suitable mesh size which gives results with acceptable 

accuracy compared with the experimental study. The main 

parameters considered for this purpose are the ultimate load 

and the failure mode. The results of the study are presented in 

Table 5. It has been found that model (5) gives acceptable 

results for the ultimate load. The failure mode and crack 

propagation which are obtained experimentally along with 

those given by XFEM for model (5) are shown in Fig. 5. The 

load-deflection relationships, the experimental and numerical, 

are depicted in Fig. 6. Therefore, model (5) is used throughout 

this study. 

 

 

Parameter name Value 

Dilatation angle 38° 

Eccentricity 0.1 

fbo /fco 1.16 

K 0.667 

Viscosity parameter 0.0001 
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Table 5. Results of models with different element sizes and the ultimate load of the experimental beam. 

Model No. No. of Elements No. of Nodes Ultimate Load (kN) XFEM  Ultimate Load (kN) Exp. 

(1) 234 432 24.1 

28.6 

(2) 512 825 25.8 

(3) 1025 1512 26.8 

(4) 2597 3456 27.1 

(5) 8000 9922 27.5 

(6) 64000 71001 27.9 

 
(a) 

 
(b) 

Fig. 5 The crack propagation under loading, (a) shear failure in the 

experimental test, and (b) crack path numerically by XFEM. 

 

Fig. 6 Variation of mid-span deflection with load for model (5). 

5. Results and Discussions 

The main variables considered in the study were beam 

depth and the shear span with a beam length. 

5.1. Influence of change in beam depth 

To investigate the influence of the change of the beam 

depth under the three-point bending test, six beams are studied 

with similar properties and geometry, but with different 

depths. The beams are longitudinally reinforced with two bars 

with a diameter of 7.5 mm as the beam in the experimental test. 

The material properties of the concrete and steel are 

summarized in Table 1. The depths of investigated beams are 

100 mm, 150 mm, 200 mm, 250 mm, 300 mm, and 350 mm. 

The numerical results are compared with the results of 

Bažant and Kim equation (obtained by approximate nonlinear 

fracture mechanics method) [24], which is given as: 

Pu = 2Vu B W                                                                                (15) 

Vu = 
8 ρ 1/3

√1 + W/(25 dmax)
[√ f

cm
 + 3000 √ρ/ (

S

2W
)

5

]              (16) 

In which fcm and Vu are in psi. 

Pu = the shear strength. 

ρ = As /(B W), reinforcement ratio. 

S = effective length of the beam. 

W = the height of the beam. 

B = the width of the beam. 

dmax = maximum aggregate size. 

The numerical results are also compared with the 

provisions of the ACI code (318-19) [25]. The ACI equation 

for nominal concrete shear strength provided by concrete for 

Av < Av min. is: 

 

Vc = [0.66 λ λs (ρw
)
1/3

√f
cm

] bw     (in N)                                 (17) 

Where, 

λ = modification factor (equal 1 for normal concrete). 

λs = factor used to modify shear strength based on the effects 

of member depth and given by: 

 

λs = √
2

1 + 0.004 d
 ≤ 1                                                                 (18) 

ρw = steel ratio = As / bw . d 

bw = the beam width, mm. 

d = the beam depth, mm. 

fcm = cylinder concrete compressive strength (in MPa). 

The results of the six beams are summarized in Table 6, 

including the cracks distances and the load value associated 

with the first crack and the failure crack. The first crack 

distance for all the beams is approximately 290 mm from the 

support, but the load value associated with the first crack is 

different for each beam. The ratios of the first crack load to the 

ultimate load are in the range of 0.25 to 0.46.  
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Table 6. The results of traditional nonlinear FEM, XFEM and ACI code for beams with different depths. 

Beam 

Height 

(mm) 

FEM XFEM 

Bažant & 

Kim  

Eq. (10) 

ACI 

Eq. (12) 

Failure  

Type * First 

Crack 

Distance 

(mm) 

First 

Crack 

Load 

(kN) 

* Failure 

Crack 

Distance 

(mm) 

Ultimate 

Load 

(kN) 

** Load 

Ratio 

* Failure 

Crack 

Distance 

(mm) 

Ultimate 

Load 

(kN) 

Ultimate 

Load 

(kN) 

Ultimate 

Load 

(kN) 

100 290 7.1 20 28.9 0.25 20 27.5 18.6 15.4 Shear 

150 290 15 20 45.8 0.33 20 43.9 28.1 21.4 Shear 

200 290 27.1 30 67.6 0.40 30 65.2 40.6 26.4 Shear 

250 290 37.7 30 87.6 0.43 30 85.2 56.8 31.2 Shear 

300 290 47.7 60 110.5 0.43 60 108.3 77.1 34.4 Shear 

350 290 55 290 119.7 0.46 290 111.3 101.8 36.8 Bending 
 
 

*  The crack distance measured from the support. 

**  Load Ratio = 
First Crack Load

Ultimate Load
 

The failure mechanism of the reinforced concrete beams is 

modelled quite well using XFEM and the failure load predicted 

is close to the failure load obtained by FEM analysis. Fig. 7 

reveals that the load capacity increases with the increase in 

beam depth. This finding is obtained from the results of 

XFEM, Equation (15) and ACI-Equation (17). However, the 

maximum concrete shear stress decreases with the increase in 

beam depth for ACI-Equation (17) as shown in Fig. 8, but no 

clear relation is obtained from the results of XFEM and 

Equation (15). 

 

Fig. 7 Load versus beam depth relations for XFEM, Bažant and Kim Eq. and 

ACI code. 

 

Fig. 8 Concrete strength versus beam depth relations for XFEM, Bažant and 

Kim Eq. and ACI code. 

Depending on the change in the beam depth, different 

modes of failure are observed as shown in Fig. 9. Several 

micro-cracks appeared at the early stages of the loading 

process. These cracks extended and widened as the load is 

increased. Then cracks are developed at the middle region of 

the beam in the tension zone under applied load. After the 

flexural cracks, diagonal cracks appeared, causing the failure 

of the beam. It is observed that all investigated beams failed 

by shear except the last beam with a depth of 350 mm. This 

may be due to this beam acts as a deep beam. Deep beams are 

members that are loaded on one face and supported on the 

opposite face such that struts as compression members and ties 

develop between the load and supports, thus, it prevents shear 

failure. By the comparison of the crack propagation using 

XFEM with the crack pattern of the non-linear finite element 

method, it can be seen that the crack pattern is in good 

agreement for all the beams. 

Figure 10 shows the relations between the loads and 

deflections. The first crack load and the ultimate load can also 

be observed for the beams with different depths.  All beams 

seem to have a similar response, especially in the elastic 

region. The results of nonlinear FEM and XFEM are in 

reasonable agreement. 

5.2. Influence of change in shear span 

Analysis is also conducted to investigate the influence of 

the change in the beam length and the influence of the shear 

span on diagonal crack propagation and the load-carrying 

capacity of the beams. Two different shear spans are 

examined, which are L/3 and L/4, L is beam length. The 

investigated concrete beams are simply supported under two 

symmetrical concentrated loads and reinforced with 

longitudinal reinforcement without shear reinforcement. The 

beams are longitudinally reinforced with four bars with a 

diameter of 20 mm. The details and the cross-section of the 

tested reinforced concrete beams are shown in Fig. 11. The 

distance S is equal to 100 mm for beams with L = 1000 mm to 

3000 mm and 250 mm for beams with L = 4000 mm to 6000 

mm, a = L/3 and L/4. The material properties of the concrete 

and steel are summarized in Table 7. The initial crack is of        

5 mm length. Due to the symmetry, the three-dimensional 

analysis is performed on one-half of the beam length and 

appropriate boundary conditions are applied on the cuts as 

shown in Fig. 12. The symmetry of the beams is in the               

Z-direction therefore U3 = UR1 = UR2 = 0, where U3 is the 

translation in the Z-direction, UR:1, 2 are the rotation about X 

and Y axes respectively. 

0

20

40

60

80

100

120

50 100 150 200 250 300

L
o

ad
 (

k
N

)

Depth (mm)

XFEM Bazant & Kim Eq. ACI



61 H. A. Lateef et al. / Basrah Journal for Engineering Sciences, Vol. 21, No. 3, (2021), 55-65                              

Fig. 9 Crack pattern for beams with different depths using (a) FEM and (b) XFEM.

 
(a) Depth = 150 mm 

 
(b) Depth = 250 mm 

 
(c) Depth = 300 mm 

Fig. 10 Load-deflection relations for beams with different depths. 

 

Fig. 11 Setup of the beam and cross-section details. 

         

Fig. 12 ABAQUS model for half beam. 

The results of the reinforced concrete beams with a shear 

span of L/3 and L/4 are summarized in Tables 8 and 9, 

respectively, including the cracks distances, and the load 

values associated with the first cracks and the failure cracks. 

The load ratios which are defined as first crack load/ultimate 

load for FEM and XFEM are in the range (0.4 - 0.49) and   

(0.38 - 0.47), respectively in beams with a shear span of L/3. 

While the first cracks of all beams appeared when the load 

reached (0.44 - 0.64) of the ultimate load in FEM and           

(0.41 - 0.63) in XFEM in beams with a shear span of L/4. 
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Table 7. The characteristics of concrete and steel. 

Concrete Characteristics Steel Characteristics 

Compressive 

Strength fc
’ 

(MPa) 

Poisson’s ratio 

(ʋ) 

Density 

(kg/m3) 

Fracture energy 

(N/mm) 

Yielding Stress fy 

(MPa) 

  Modulus of elasticity 

Es (GPa) 

Poisson’s ratio 

(ʋ) 

Cross-sectional area 

(mm2) As 

43 0.2 2400 0.072 570 200 0.3 1256.64 

 
Table 8. FEM and XFEM results of RC beams with different lengths under four-point loads and shear span = L/3. 

Beam 

Length 

(mm) 

FEM XFEM 

Failure 

Type 

* First 

Crack 

Distance 

(mm) 

First 

Crack 

Load 

(kN) 

* Failure 

Crack 

Distance 

(mm) 

Ultimate 

Load 

(kN) 

** 

Load 

Ratio 

* First 

Crack 

Distance 

(mm) 

First Crack 

Load 

(kN) 

Ultimate 

Load (kN) 

** 

Load 

Ratio 

 

1000 30 110.2 30 227.2 0.49 30 105.1 224.8 0.47 Shear 

2000 750 103 30 220.5 0.46 750 99.8 210 0.47 Shear 

3000 950 78.6 30 187 0.42 950 72.4 185.7 0.39 Shear 

4000 1550 57.7 30 143.6 0.40 1550 53.2 140.1 0.38 Shear 

5000 1550 41.6 1350 102.6 0.41 1550 39.2 99.3 0.39 Bending 

6000 1900 34.6 1725 76 0.45 1900 31.9 73.4 0.43 Bending 

 

Table 9. FEM and XFEM results of RC beams with different lengths under four-point loads and shear span = L/4. 

Beam 

Length 

(mm) 

FEM XFEM 

Failure 

Type 

* First 

Crack 

Distance 

(mm) 

First 

Crack 

Load 

(kN) 

* Failure 

Crack 

Distance 

(mm) 

Ultimate 

Load 

(kN) 

** 

Load 

Ratio 

* First 

Crack 

Distance 

(mm) 

First Crack 

Load 

(kN) 

Ultimate 

Load (kN) 

** 

Load 

Ratio 

1000 20 165 30 259 0.64 20 162.7 256.8 0.63 Shear 

2000 500 120.8 30 235 0.52 500 116.9 230 0.51 Shear 

3000 750 110 30 212 0.52 750 107 210.8 0.51 Shear 

4000 975 77.5 30 167 0.46 975 72.9 165 0.44 Shear 

5000 1150 56.8 700 130 0.43 1150 52.7 126 0.42 Shear 

6000 1825 42.7 1675 96.5 0.44 1825 39.6 95 0.42 Bending 

 

*  The crack distance measured from the support. 

**  Load Ratio = 
First Crack Load

Ultimate Load
 

The failure mode of the reinforced concrete beams with a 

shear span of L/3 and L/4 for both the FEA and XFEM are 

depicted in Figs. 13 and 14, respectively. There was a good 

agreement between the results of the FEA and the XFEM for 

the concrete crack patterns. 

The variation of the deflection with the load of the 

reinforced concrete beams with a shear span of L/3 and L/4 for 

both the FEA and XFEM are depicted in Figs. 15 and 16, 

respectively. In general, the load-deflection relations obtained 

from the FEM results show an excellent agreement with those 

of the XFEM. 

According to the results above for beams with different 

lengths and different loading conditions, the shear strength of 

simply supported beams is significantly influenced by the 

shear span. The loading condition is the primary parameter that 

significantly influenced the shear failure mechanism in 

concrete beams reinforced longitudinally and without 

transverse reinforcement. In general, with increasing the shear 

span, the failure loads and consequently the shear strength of 

the examined beams decreased as shown in Fig. 17. It can be 

seen that a linear relation exists between the ultimate load and 

beam length for different shear spans. The correlation 

coefficient R2 for the obtained linear equations are (0.9867) 

and (0.9773) for shear spans L/4 and L/3 respectively. 

Considering the results of XFEM, the obtained equations are: 

For shear span L/3:  

P = - 0.0324 L + 269.02     which may be simplified to  

P = - L/31 + 269 

For shear span L/4: 

P = - 0.0333 L + 297.28      which may be simplified to  

P = - L/30 + 297 

where P is the ultimate load in kN (shear) and L is the 

effective span of the beam in mm.  

The two straight lines in Fig. 11 are approximately parallel 

therefore, the increase in shear strength is about 10 %                 

(= 297/269 - 1) when the shear span reduces by 25 %. 
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Fig. 13 Crack pattern for the beams shear span = L/3 using (a) FEM and (b) XFEM. 

 

 

Fig. 14 Crack pattern for the beams shear span = L/4 using (a) FEM and (b) XFEM. 
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6. Conclusions 

Three-dimensional reinforced concrete beam models are 

investigated using XFEM, taking into account materials 

nonlinearities using concrete damage plasticity CDP. From the 

results obtained, the following conclusions may be drawn:  

1. A fracture mechanics approach based on the XFEM can 

capture crack propagation leading to shear failure. 

2. Because of the predefined crack in XFEM, the ultimate 

loads of the beams are less than the load values of nonlinear 

FEM by 1 % to 5 %. 

3. The numerical analysis shows that the first crack distance 

for all the beams with different depths is approximately 

290 mm from the support, but the load value associated 

with the first crack is different for each beam. The ratios of 

the first crack load to the ultimate load are in the range of 

0.25 to 0.46. 

4. The loading condition is the significant parameter that 

affects the shear failure mechanism in reinforced concrete 

beams. The failure loads and consequently the shear 

strength of the examined beams decreased with increasing 

the shear span. The increase in shear strength is about        

10 % when the shear span is reduced by 25 %. 

5. The load ratios which are defined as first crack load/ 

ultimate load for FEM and XFEM are in the range            

(0.4 - 0.49) and (0.38 - 0.47), respectively for reinforced 

concrete beams with shear span L/3. While the load ratios 

for reinforced concrete beams with shear span L/4, are in 

the range (0.44 - 0.64) and (0.41 - 0.63) for FEM and 

XFEM respectively. 
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