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The Transportation problem is a classic Operations Research problem where the 

objective is to determine the schedule for transporting goods from source to destination 

in a way that minimizes the shipping cost while satisfying supply and demand 

constraints. Although it can be solving as a linear programming problem. Linear 

programming makes use of the simplex method, an algorithm invented to solve a linear 

program by progressing from one extreme point of the feasible polyhedron to an 

adjacent one. The algorithm contains tactics like pricing and pivoting. For a 

transportation problem, a simplified version of the regular simplex method can be used, 

known as the transportation simplex method.  

In this paper will discuss the functionality of both of these algorithms, and 

compared their optimized values with non-linear method called the Lagrange Multiplier 

Method. Lagrange Multiplier is an algorithm that uses different mechanisms to choose 

the best optimal solutions. This method based on transforming the linear structure 

transportation problem into the nonlinear structure and solved it directly, by the 

techniques. The objective of the study was to find out how these algorithms behave in 

terms of accuracy and speed when a large-scale problem is being solved. 

 

Transportation Problem 
The transportation problem is classic Operation Research problem. 

Therefore; arises frequently in planning for the distribution of goods and 

services from several supply locations (Sources) to several demand 

locations (Destinations) in a way that minimize the shipping cost, while 

satisfying supply and demand constraints. Typically, the quantity of goods 

available at each supply location is limited, and the quantity of goods 

needed at each of several demand locations is known. Therefore; a typical 

Transportation Problem has the following elements: 

1. Source(s) 

2. Destination(s) 

3. Weighted edge(s) 

     The objective of a Transportation Problem is to determine the Number  
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Supply Points 

of units to be transported from source ( i ) to destination ( j ) so that the total 

transportation cost is minimum (Phillips et al.,1976 ; Gupta & Hira, 2002). 

     A simple transportation network is shown in figure 1. Depots 1, 2, and 3 

are the source nodes, Stations 1,2, …, 5 are the destination nodes, the arcs 

between nodes represent the existence of a path. The supply and demand 

requirements appear beside the nodes. For example, depot 1 is capable of 

producing 89945 cubic-meters (M
3
) of Gasoline and station 1 needs at least 

3489 M
3
 as shown in Figure 1 and 2. 

  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

 

All the information can also be stored in a tableau form. Figure 2 shows the 

tableau form 

 

Figure 2 
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       This problem is simple and can be solved without much effort. 

However, practical transportation networks are much more complicated 

and intelligent techniques are needed to solve them efficiently. One way to 

solve Transportation Problems is through a method called Linear 

Programming. The next section will briefly discuss how this can be done. 

 

Mathematical Form of Linear Programming Problem 
      Linear Programming is the mechanism of maximizing or minimizing a 

linear function over a convex polyhedron. Linear Programming applies to 

optimization problems in which the objective and constraint functions are 

strictly linear. Therefore; the general standard form of the linear primal is 

defined as: 

                   
















imize

or

imize

min

max

  Z= j

n

j j xc 1
 

   Subject to 

                      ij

n

j ij bxa  1
,              i =1, 2, 3, ….., m 

                                   0jx                j=1, 2, 3, ….., n 
 

 

Solving a Transportation Problem as a LP 
       Transportation Problem can be modeled as a Linear Programming 

problem. Such that the amount of supply at source i is iS  and the demand at 

destination j is jD  . The unit transportation cost between source i and 

destination j is ijC . 

    Let ijX  represent the quantities of the goods to be shipped from source 

( i ) to destination ( j ); then the LP model representing the transportation 

problem is given generally as:  

                   

        Minimize: 

Subject to  

                   i

n

j ij SX  1
                ; For mi ,...,3,2,1     

                               j

m

i ij DX  1
               ; For nj ,...,3,2,1  

                              0ijX                  ; For all pairs ( ji, ) 

Simplex method  

The most general technique of LP is called the Simplex Method it uses a 

tableau form of representing the numbers. The algorithm has two basic 

parts: (1) Find an initial basic feasible solution, (2) Obtain an optimal 
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solution by making successive improvements to initial basic feasible 

solution until no further decrease in the transportation cost is possible. The 

Simplex Method is a greedy algorithm. It obtains basic feasible solutions 

by making the most improvement from the previous solution in every 

iteration (Sharrma, 1988). 

Feasible Solution 

A set of non-negative values miX ij ,...,3,2,1,  ; nj ,...,3,2,1 , that satisfies 

the constraints is called a feasible solution to the transportation problem 

(Gupta & Hira, 2002). 

Basic Feasible Solution 

 A feasible solution that contains no more than ( 1 nm ) non-negative 

allocations is called a basic feasible solution to the transportation problem 

(Gupta & Hira, 2002). 

For example, the basic feasible solution for the problem in figure 2 by 

Vogel method is: 
 

Figure 3 
 

Transportation Simplex method 

The Transportation Simplex Method is a special version of the Simplex 

Method used to solve Transportation Problem. Although it has the basic 

steps as Simplex Method, it has a much more compact tableau form. This 

compact form takes less memory, therefore might be faster. For detailed 

steps of the Simplex and Transportation Simplex Method, see  

(Sharrma, 1988; Winston,1987) 

Computational Difficulties 

Any Linear Programming Problem can be solved by using the Simplex 

Algorithm. With the Transportation Simplex method, Transportation 

Problem can be solved accurately. However, it requires too much 

       Stations 

Depots 
Station1 Station2 Station3 Station4 Station5 
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Supply 

Depot 1 
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computation time to solve large-scale problems with these methods. 

Transportation Problems are Integer Linear Programming Problems in 

essence. When the Simplex Method is used, a lot of intermediate points are 

found by the algorithm that eventually gets rejected. Therefore, it takes too 

long for these algorithms to solve TSPs. Since Lagrange Multiplier is a 

mathematical tool for solving constrained optimization of differentiable 

functions. As known, the Lagrange multipliers can be used to solve non-

linear programming in which all the constraints are equality constraints. 

But hence, we try to use it to find optimality solution for linear 

transportation problem.      

In this research project, we shall discuss the Lagrange's multipliers 

method which provides a necessary condition for an optimum when 

constraints are equations.  

 

Lagrange Multipliers  
In this research will cover how to find the maximum and minimum 

points on a function subject to constraint. This technique is called 

Lagrange’s Method. Suppose we wish to find an optimal solution of a 

differentiable function. We consider linear programming of the 

transportation problem: 

  Minimize:     

                                                                                        
 

whose variables are subject to the (        ) constraints                     …(1) 

                                        ; for                                                     

and    

                                          ; for                     

                             

                                          ; for all i   and j                      

Since the transportation problem has ( nm ) equality constraints and 

( mn ) inequality (non-negativity) constraints, then the Lagrange formulation 

must have one Lagrange multiplier for each of these constraints. These will 

now be defined. Let the Lagrange multiplier ( m

i R ) be associated with 

the equality constraint up on the mount ( iS ) of supply at source ( i ). The 

Lagrange will have ( m ) such terms, one for each ( i ) 

                                        ][
1 


n

j iiji SX   ; for mi ,...,3,2,1  

Let the Lagrange multiplier ( n

j R ) be associated with the equality 

constraint up on the requirement ( jD ) at destination ( j ). The Lagrange will 

have ( n ) such terms, one for each ( j ). 

),...,,( 1211 nmXXXfZ 

  


m

i

n

j ijij XC
1 1

i

n

j ij SX  1
mi ,...,3,2,1

j

m

i ij DX  1
nj ,...,3,2,1

0ijX

nm
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                                  ][
1 


m

i jijj DX  ; for nj ,...,3,2,1             

Let the Lagrange multiplier ( nm

ij R  ) be associated with the inequality 

constraint 0ijX ).The Lagrange will have ( mn ) such term                           

                          )0( Xij                    ;for each i  and j  

The Lagrange function, if all constraints are required to hold as equalities, 

is 

 

  

   

  involving the Lagrange multipliers ( nmnm  ,..,,,..,,,,..,, 112121 ). Then 

we attempt to find at least (theoretically) for ( mnmn 2 ) unknowns                                   

),,..,,,,..,,,,,..,,,,,..,,( 112113213211211 mnmnnmmnXXX   , that minimize  

),,,( XF   

If ),..,,,,..,,,..,,,..,,( 1211111211 mnnmmnXXX   minimizes L, then at 

),..,,,,..,,,..,,,..,,( 1211111211 mnnmmnXXX    

                0




ijX

L
                 ;for all ( ji, ) 

                0




i

L


                  ; for mi ,...,3,2,1                                                       

                0




j

F


                  ; for nj ,...,3,2,1                      ….                                        

                        0




ij

F


                  ; for all ( ji, ) 

 

 

Here (3) is the partial derivative of the Lagrange function with respect 

to each variable. This shows that ),..,,( 1211 mnXXX  will satisfy the constraints 

in (1). 

We know that for ),..,,,,..,,,..,,,..,,( 1211111211 mnnmmnXXX   to solve 

the Lagrange function, it is necessary that at 

),..,,,,..,,,..,,,..,,( 1211111211 mnnmmnXXX   

  0............
1211111211



















































nmnmnm

LLLLLLL

X

L

X

L

X

L


   …(4) 

The following theorem gives conditions, which imply that any point 

),..,,,,..,,,..,,,..,,( 1211111211 mnnmmnXXX   that satisfies (4) will yield 

an optimal solution ),..,,( 1211 mnXXX  to (1). 

...(3) 

][),,,(
11 1 i

n

j ij

m

i

n

ij

m

i iijij SXXCXF       
 )2(][

1 111    


m

i

n

j ijijj

m

i ij

n

j j XDX 

),,,(),...,,,,...,,,,...,,,,...,,( 121121211211  XFXXXL mnnmmn 

...(2) 
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Theorem: (Boyd & Vandenberghe, 2004) 

      Suppose that: 

      Minimize:              ),...,,( 21 nXXXfZ   

      Subjected to:        1211 ),...,,( bXXXg n   

                                    : 
                                  mnm bXXXg ),...,,( 21  

If ),...,,( 21 nXXXf  is convex function and each ),...,,( 21 ni XXXg  is a linear 

function then any point ),..,,,..,,( 121 mnXXX   satisfies (4) will yield an 

optimal solution ),..,,( 21 nXXX to above equation Z. 

Theorem: (Dano, 1975) 

In minimization problem, if ( ''

2

'

10 ,...,, nxxxX  ) is an optimal solution of  

                                 ),...,,( 21 nxxxf  

Subject to                 1211 ),...,,( bxxxg n   

                                  : 
                                 mnm bxxxg ),...,,( 21                             

                                 01 x  

                                  : 
                                 0nx  

, then ( ''

2

'

10 ,...,, nxxxX  ) must satisfy the ( m ) constraints, and there must 

exist multipliers nm  ,...,,,,...,, 2121  satisfying 

 

                                0
)()( 0

1

0 








  j

j

m

i i

j x

Xg

x

Xf
     ;( nj ,...,3,2,1 )                       

                                 0)]([ 0  Xgbii                              ;( mi ,...,3,2,1 )                                               

                                 0i                                                  ;( ni ,...,3,2,1 )                  

                                 0j                                                  ;( mj ,...,3,2,1 )                    

 

The Kuhn-Tucker Condition in Transportation Problem  
In Lagrange multiplier method, it becomes difficult to solve the system 

of ( mn ) simultaneous equations. This difficulty can be removed by using 

Kuhn-Tuker Conditions. This research is concerned with developing the 

necessary and sufficient conditions for identifying the basic feasible 

solution of the general inequality constrained optimization transportation 

problems. These conditions are called the Kuhn-Tucker conditions. The 

development is based mainly on Lagrange method.   

The second theorem give conditions that are necessary for a point 

( ''

2

'

10 ,...,, nxxxX  ) to be an optimal solution to function ),,,( 21 nxxxf   which 
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is called the Kuhn tucker conditions (Dano,1975). Now, since the 

transportation problem is minimization problem, the Kuhn-tucker 

conditions are thus given by:  

i. The derivative of ),,,( XF with respect to ( ijX ) is: 

                0



ijjiij

ij

C
X

F
   ; for all ( i ) and ( j )                       

      This given ( mn ) derivative equations, and  

                jiijij C                      ; for all ( i ) and ( j )                               

ii. We have:  

                0][
1

  i

n

j iji SX              ; for mi ,...,3,2,1                                    

                0][
1

  j

m

i ijj DX              ; for nj ,...,3,2,1                                  

                                   0ijij X              ; for all ( i ) and ( j )                         

iii.  Since the objective function is minimum and ( ij ) associated with the 

inequality (non-negative) constraints, then 

                        0ij                                        ; for all ( i ) and ( j ) 

iv.  Lagrange multipliers corresponding to equality constraints must be 

unrestricted in sign. 

It is clear from (ii) that not all non-negativity constraints can hold as 

equalities, not all shipments can be zero. For each ( ijX ) allowed to be 

positive, the corresponding ( ij ) will be set to zero. Therefore; 

                       0 jiijC                       ; for each ( ji, ) pair such that 

0. ijX     

Further, for each zero shipment cell 0ij .   

The method determines the ( ij ) values by determining first ( i ) and 

( j ) values. There are ( m ) sources and thus ( m ) i  values to be 

determined. There are ( n ) destinations and ( n ) j  values to be determined. 

Hence there is a total of ( nm ) unknowns. 

The conditions that determine these unknowns are based upon the 

requirement that 0ij  for all cells of the current solution. Assuming that 

the current solution is not degenerate, there are ( 1 nm ) non-zero 

shipment cells whose 0ij . For those cells the ( 1 nm ) equation 

                         jiijC                           ; for all ( i ) and ( j )                   

must hold.  

Calculate ( ij ) for each cell ( ji, ) by using the formula 

                       jiijij C              ; for all i  and j                                  
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Therefore; if 0ij  (which implies increase in cost) for each zero 

shipment cell, then the basic feasible solution under test must be optimal. 

Otherwise, if 0ij  (because negative difference implies decrease in cost) 

for one or more zero shipment cells, then it would be better to reduce the 

cost more by allocating as much as possible to the cell with the largest 

negative (smallest) value of ij . This way, it is possible to improve the 

basic feasible solution successively for reduced cost till the optimal 

solution is obtained for which 0ij  for each zero shipment (empty cell). 

It is well known that in pure transportation problem, there will be at 

most (m+n-1) positive source-destination flows in an optimal solution to 

the cost-minimizing problem. Thus, the system of Lagrange constraints 

which hold with equality will have (m+n-1) equations in (m+n+mn) 

unknowns. One of the Lagrange multipliers can be normalized to zero, with 

all other Lagrange multipliers calculated relative to this anchor point. This 

result also implies that there will be most (m-1) sources, which supply 

more than one destination. 

We noted that, the method of Lagrange multipliers reproduces 

exactly the same iterations as the multipliers method, but it reduces the 

time in searching the optimal solution. The main difference occurs in the 

manner in which the multipliers method is based on duality theory. The 

development of the Lagrange multipliers method is based on solving the 

problem with non-linear structure. 

 

Solving Transportation Problems Using Lagrange Multiplier 

Algorithm  
       To solve Transportation Problems using this Lagrange method, the 

following steps are needed: 

1. Forming the Fitness Lagrange Function. Forming the Fitness Lagrange 

Function is generated by using the equation 2. For example, the 

objective function for problem in figure 2 is: 

Forming the Lagrange function L, for the Gasoline product, we begin 

with basic feasible solution by using Vogel method in figure 3, then: 

       


m

i

n

j ijij

n

j

m

i jijj

n

j iij

m

i i

m

i

n

j ijij XDXSXXCXL
1 11 1111 1

)()(),,,( 

       


3

1

5

1

5

1

3

1

5

1

3

1

3

1

5

1
)()(

i j ijijj i jijjj iiji ii j ijij XDXSXXC 

          )89945([70203510188511052080 1613533323124  XXXXXX   

)3489()]207775()29591( 3113635333231326242  XXXXXXXX 

)20289()11704()10045()17554( 355244333322  XXXX 

)264230( 3626166  XXX  
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2. The next step; differentiating ),,,( XL  with respect to each variable 

and setting the equal to zero, we obtain 

0



ijjiij

ij

C
X

F
                ; For all i=1, 2, 3 and j =1, 2, 3, 4, 5 

By letting ( 01  ) the values of Lagrange multipliers are 

successively determined, then computing  jiijij C      for each non-

basic variable. Thus the optimal solution for transportation problem is 

finding after 5
th

 iterations. 

 

Conclusions 
In comparison to the existing methods, Lagrange algorithm proves to 

be more efficient as the size of the problem becomes greater for a problem. 

The non-linear method is much faster, easier and shorter than the simplex 

and transportation simplex method. This solution is not computationally 

very fast. We are interested in identifying the conditions under which the 

objective function associated with an optimal solution of the transportation 

problem is equal to the bound given by maximizing (minimizing) the 

expected overlap. 
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النقل مع  -تطبيق مضاعف لاكرانج للبرمجة الخطية الصحيحة في الانتاج
 المرنة كلفة النقل

  
 سوزان صابر حيدر        عبدالرحيم خلف راهي

 كلية الادارة و الاقتصاد ـ جامعة السليمانية
  2008/4/8  تاريخ القبول: ،02/6/0222 تاريخ الاستلام:

 

 الخلاصة
 

المشاكل التقليدية لبحوث العمليات حيث ان الهدف منها نقل السلع من مصادر ) أن مشكلة النقل هي احدى 
تصنيعها او من المخازن الى مراكز متعددة بهدف سد حاجة هذه المراكز بأقل كلفة ممكنة . و كما ان مشكلة 

طة النقل يمكن ان تحل كمشكلة برمجة خطية. والبرمجة الخطية بصورة عامة تستعمل فيها الطريقة المبس
(Simplex Methodلحل المسائل،حيث إستخدمت ) نقطة من بالتقدّم الخطيّة البرمجة لحلّ مسائل الخوارزمية 

الدراسة حل مشكلة النقل من  هذه مجاورة. حيث تم في إلى نقطة السطوح المتعدد الشكل من واحدة متطرّفة
 بطريقةَ اللاخطّيةِ، المتمثلة م البرمجةومقَارنة نتائجها مع نتائج أستخدا خلال صياغتها بشكل نموذج رياضي

 تَحويُل على حيث تستند. المثلى الحلولِ أفضل لإخْتياَر المختلفةَ الآلياتَ تَستعملُ ان الاخيرة. لاكرانج مضاعفات
خطيّة اللا تقنيات البرمجة اللاخطّيِ ومن ثم حلَها باستعمال التركيب إلى الخطيّ التركيب مشكلة النقل ذو

 الدقة ناحية من من البحث هو معرفة الية تحقيق خوارزمية لاكرانج الهدف. مباشرة،بدلا من التقنيات الخطية
 النطاق. واسعة عند حل مشكلة نقل والسرعة

 


