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Abstract

The Transportation problem is a classic Operations Research problem where the
objective is to determine the schedule for transporting goods from source to destination
in a way that minimizes the shipping cost while satisfying supply and demand
constraints. Although it can be solving as a linear programming problem. Linear
programming makes use of the simplex method, an algorithm invented to solve a linear
program by progressing from one extreme point of the feasible polyhedron to an
adjacent one. The algorithm contains tactics like pricing and pivoting. For a
transportation problem, a simplified version of the regular simplex method can be used,
known as the transportation simplex method.

In this paper will discuss the functionality of both of these algorithms, and
compared their optimized values with non-linear method called the Lagrange Multiplier
Method. Lagrange Multiplier is an algorithm that uses different mechanisms to choose
the best optimal solutions. This method based on transforming the linear structure
transportation problem into the nonlinear structure and solved it directly, by the
techniques. The objective of the study was to find out how these algorithms behave in
terms of accuracy and speed when a large-scale problem is being solved.

Transportation Problem

The transportation problem is classic Operation Research problem.
Therefore; arises frequently in planning for the distribution of goods and
services from several supply locations (Sources) to several demand
locations (Destinations) in a way that minimize the shipping cost, while
satisfying supply and demand constraints. Typically, the quantity of goods
available at each supply location is limited, and the quantity of goods
needed at each of several demand locations is known. Therefore; a typical
Transportation Problem has the following elements:

1. Source(s)

2. Destination(s)

3. Weighted edge(s)

The objective of a Transportation Problem is to determine the Number
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of units to be transported from source (i) to destination ( j) so that the total
transportation cost is minimum (Phillips et al.,1976 ; Gupta & Hira, 2002).

A simple transportation network is shown in figure 1. Depots 1, 2, and 3
are the source nodes, Stations 1,2, ..., 5 are the destination nodes, the arcs
between nodes represent the existence of a path. The supply and demand
requirements appear beside the nodes. For example, depot 1 is capable of
producing 89945 cubic-meters (M%) of Gasoline and station 1 needs at least
3489 M® as shown in Figure 1 and 2.

Supply Points Demand Pints

Supply Demand
89945 3489
Demand
17554
Supply Demand
29591 10045
Demand
11704
Supply
20289

Figure 1

All the information can also be stored in a tableau form. Figure 2 shows the
tableau form

\m{. station. | station2 | station3 | Stations | stations | SUPPY
Depots
Depot 1 89945
| 2340 | 2080 | 2795 | 4875 | 5200
Depot 2 29591
| 1755 | 1365 | 2795 | 2980 | 6175
Depot 3 207775
| 1105 | 1885 | 3510 | 6695 | 7020
Demand 3489 17554 10045 11704 20289

Figure 2
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This problem is simple and can be solved without much effort.
However, practical transportation networks are much more complicated
and intelligent techniques are needed to solve them efficiently. One way to
solve Transportation Problems is through a method called Linear
Programming. The next section will briefly discuss how this can be done.

Mathematical Form of Linear Programming Problem

Linear Programming is the mechanism of maximizing or minimizing a
linear function over a convex polyhedron. Linear Programming applies to
optimization problems in which the objective and constraint functions are
strictly linear. Therefore; the general standard form of the linear primal is
defined as:

max imize
or Z:ZLC]XJ
min imize
Subject to
Z:Llaij.xj =b, i=1,2,3,....m
X; =20 =1,2,3,....,n

Solving a Transportation Problem asa LP
Transportation Problem can be modeled as a Linear Programming
problem. Such that the amount of supply at source i is S, and the demand at

destination j is D; . The unit transportation cost between source i and
destination j is C;.
Let X, represent the quantities of the goods to be shipped from source

(i) to destination (j); then the LP model representing the transportation
problem is given generally as:

Minimize:  z=>" >" cx,

j=1 i N

Subject to
Xy <8, L FOr i=1,23,..m
> X =D  For j=123...n
X 20 ; For all pairs (i, )

Simplex method

The most general technique of LP is called the Simplex Method it uses a
tableau form of representing the numbers. The algorithm has two basic
parts: (1) Find an initial basic feasible solution, (2) Obtain an optimal
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solution by making successive improvements to initial basic feasible
solution until no further decrease in the transportation cost is possible. The
Simplex Method is a greedy algorithm. It obtains basic feasible solutions
by making the most improvement from the previous solution in every
iteration (Sharrma, 1988).

Feasible Solution

A set of non-negative values X, i=123...m; j=123,..,n, that satisfies
the constraints is called a feasible solution to the transportation problem
(Gupta & Hira, 2002).

Basic Feasible Solution

A feasible solution that contains no more than (m+n-1) non-negative
allocations is called a basic feasible solution to the transportation problem
(Gupta & Hira, 2002).

For example, the basic feasible solution for the problem in figure 2 by
Vogel method is:

Dummy
station

Stationl Station2 Station3 Station4 Station5 Supply

ations
Depots

Depot 1

| 2340

| 2080

| 2795

| 4875

| 5200

89945

89945

Depot 2

11704

| 1755

| 1365

| 2795

| 2980

| 6175

17887

29591

Depot 3

3489

17554

10045

20289

| 1105

| 1885

| 3510

| 6695

| 7020

156398

207775

Demand

3489

17554

10045

11704

20289

264230

Figure 3

Transportation Simplex method
The Transportation Simplex Method is a special version of the Simplex

Method used to solve Transportation Problem. Although it has the basic
steps as Simplex Method, it has a much more compact tableau form. This
compact form takes less memory, therefore might be faster. For detailed
steps of the Simplex and Transportation Simplex Method, see

(Sharrma, 1988; Winston,1987)

Computational Difficulties

Any Linear Programming Problem can be solved by using the Simplex
Algorithm. With the Transportation Simplex method, Transportation
Problem can be solved accurately. However, it requires too much
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computation time to solve large-scale problems with these methods.
Transportation Problems are Integer Linear Programming Problems in
essence. When the Simplex Method is used, a lot of intermediate points are
found by the algorithm that eventually gets rejected. Therefore, it takes too
long for these algorithms to solve TSPs. Since Lagrange Multiplier is a
mathematical tool for solving constrained optimization of differentiable
functions. As known, the Lagrange multipliers can be used to solve non-
linear programming in which all the constraints are equality constraints.
But hence, we try to use it to find optimality solution for linear
transportation problem.

In this research project, we shall discuss the Lagrange's multipliers
method which provides a necessary condition for an optimum when
constraints are equations.

Lagrange Multipliers

In this research will cover how to find the maximum and minimum
points on a function subject to constraint. This technique is called
Lagrange’s Method. Suppose we wish to find an optimal solution of a
differentiable function. We consider linear programming of the
transportation problem:

Minimiz& = f (X3, Xi50000 X)) \
Zz:il rjlzlcijxij
whose variables are subject to the (m+n) constraints \ ..(2)
> X =sfor i=123..m
and
" X, =D;for j=123..n

x,>0 ;foralli andj

Since the transportation problem has (m+n) equality constraints and
(mn) inequality (non-negativity) constraints, then the Lagrange formulation
must have one Lagrange multiplier for each of these constraints. These will
now be defined. Let the Lagrange multiplier (o, e R™) be associated with

the equality constraint up on the mount (S;) of supply at source (i). The
Lagrange will have (m) such terms, one for each (i)
al)) Xy =81 ;fori=123..,m
Let the Lagrange multiplier (3, eR") be associated with the equality
constraint up on the requirement (D, ) at destination ( j). The Lagrange will
have (n) such terms, one for each ( j).
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B X;-Dj1;for j=123...n
Let the Lagrange multiplier (;, e R™") be associated with the inequality
constraint X; >0).The Lagrange will have (mn) such term
73 (X =0) ;foreach i and j
The Lagrange function, if all constraints are required to hold as equalities,

L(X11) Xigrees X @y Qgseves Qs Brs Boyees By Vi iz Vi) = F (X @, B, 7)

F(X’a’ﬂ’y):ZL r;:iCiJ'XiJ'_ i=1 '[Z_lx'l ]‘2?:1ﬂj[zzlxu‘Di]‘ZLZLJUXU (2)

involving the Lagrange multipliers (oy,c,,...c., B Bores Bos Vi Vo). 1 NEN
we attempt to find at least (theoretically) for (2mn+n+m) unknowns

(X112, X 12,00y X, @1, 02, @groes @, By B Pavs B Vi V1o Yot Vo) thAt — minimize
F(X,a,p.7)

If (Xa1, X120 X, @1, @, Brvos Bs Vi Vi Vo) MiNIMizes L,  then  at
(Xll,X12,--,Xmn,aly--yam;ﬂlv--vﬂnyylli712"'!7mn)

oL ) .
X, =0 ;forall (i, j) N
aL =0 ;for i=123,..,m
80{
oF _ o
%‘0 ;for j=123,...n > ..(3)
F o ; for all (i, j)
oy
J

Here (3) is the partial derivative of the Lagrange function with respect
to each variable. This shows that (X1, X12,.., Xm) Will satisfy the constraints
in (1).

We know that for (Xii, Xiz,.., Xmn, @1y @m, By Bos Vins Vigs Vo) 1O SOIVE

the Lagrange function, it IS necessary that at
(X11,X12, ,an,Oll, ,(Im’ﬂla ’ﬁm?/n’?/lz’ ’}/mn)
o _o _ _ o o _ o e o e _o_ _a o 4

6X11_8X12 . X aal aam op, B, Ory Oy 0 um

The followmg theorem glves conditions, which imply that any point
(X 11, X120 Xy @1yeey &, Brveer B Vi V1o Vo) that satisfies (4) will yield
an optimal solution (X1, X12,.., Xm) t0 (1).

'Y
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Theorem: (Boyd & Vandenberghe, 2004)
Suppose that:
Minimize: Z=f(X, X, X,)
Subjected to: 9,(X;, X5, X)) =hy

U (X1, X500 X)) =1,
If f(X,X,,...,X,) Isconvex function and each g,(X,, X,,...,X,) is a linear
function then any point (X1, X2,.., Xn,a1,..,an) satisfies (4) will yield an
optimal solution (X1, X>,.., X ) to above equation Z.

Theorem: (Dano, 1975)
In minimization problem, if ( X, = x.,x;,,...,x,) 1S an optimal solution of

f (X, X500 X))
Subject to 0y (X, Xy 00, X ) > b,

gm(xluxz,.-., Xn) >b
X, >0

m

X, =0
, then (X, =x,,%,,...,x,) must satisfy the (m) constraints, and there must
eX|st multipliers a,,a,,...c.,, 7,75, 7, Satisfying

afa(x) 3" a ,ag(x) y;=0 ;(i=123..,n)

a;[b; —9(X,)]=0 (i=123,...,m)

a; >0 (i =1,23,...,n)
7; 20 (j=123,..,m)

The Kuhn-Tucker Condition in Transportation Problem

In Lagrange multiplier method, it becomes difficult to solve the system
of (mn) simultaneous equations. This difficulty can be removed by using
Kuhn-Tuker Conditions. This research is concerned with developing the
necessary and sufficient conditions for identifying the basic feasible
solution of the general inequality constrained optimization transportation
problems. These conditions are called the Kuhn-Tucker conditions. The
development is based mainly on Lagrange method.

The second theorem give conditions that are necessary for a point
(X, =X, X,,..., X, ) to be an optimal solution to function f(x;,x,,---,x,) which

'Y
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is called the Kuhn tucker conditions (Dano,1975). Now, since the
transportation problem is minimization problem, the Kuhn-tucker
conditions are thus given by:

I. The derivative of F(X,a, B, y)with respect to (X)) is:

S =Cy—a,—f, -7, =0 ;forall (i)and (j)
ij
This given (mn) derivative equations, and
7i =Cy —a = B, ; forall (i)and (j)
Ii. We have:
ai[zqﬂxu -S.]=0 for i=123...,m
B> X, -D;1=0 cfor j=123,..,n
7 X; =0 ;forall (i)and (j)

iii. Since the objective function is minimum and () associated with the

inequality (non-negative) constraints, then
7; =0 ;forall (i)and (j)

iv. Lagrange multipliers corresponding to equality constraints must be
unrestricted in sign.

It is clear from (ii) that not all non-negativity constraints can hold as

equalities, not all shipments can be zero. For each (X;) allowed to be

positive, the corresponding () will be set to zero. Therefore;
C;—a—B =0 ; for each (i, j) pair such that
Xi->0
Further, for each zero shipment cell 5, >0.
The method determines the (y;) values by determining first («;) and
(B;) values. There are (m) sources and thus (m) «, values to be
determined. There are (n) destinations and (n) g, values to be determined.

Hence there is a total of (m+n) unknowns.
The conditions that determine these unknowns are based upon the
requirement that », =0 for all cells of the current solution. Assuming that

the current solution is not degenerate, there are (m+n-1) non-zero
shipment cells whose y; = 0. For those cells the (m+n-1) equation

C,=a +p, ;forall (i)and (j)
must hold.
Calculate (y;) for each cell (i, j) by using the formula
7; =Cy —o, = f, ; forall i and j

\YY
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Therefore; if », >0 (which implies increase in cost) for each zero

shipment cell, then the basic feasible solution under test must be optimal.
Otherwise, if y, <0 (because negative difference implies decrease in cost)

for one or more zero shipment cells, then it would be better to reduce the
cost more by allocating as much as possible to the cell with the largest
negative (smallest) value of »,. This way, it is possible to improve the

basic feasible solution successively for reduced cost till the optimal
solution is obtained for which », >0 for each zero shipment (empty cell).

It is well known that in pure transportation problem, there will be at
most (m+n-1) positive source-destination flows in an optimal solution to
the cost-minimizing problem. Thus, the system of Lagrange constraints
which hold with equality will have (m+n-1) equations in (m+n+mn)
unknowns. One of the Lagrange multipliers can be normalized to zero, with
all other Lagrange multipliers calculated relative to this anchor point. This
result also implies that there will be most (m-1) sources, which supply
more than one destination.

We noted that, the method of Lagrange multipliers reproduces
exactly the same iterations as the multipliers method, but it reduces the
time in searching the optimal solution. The main difference occurs in the
manner in which the multipliers method is based on duality theory. The
development of the Lagrange multipliers method is based on solving the
problem with non-linear structure.

Solving Transportation Problems Using Lagrange Multiplier

Algorithm
To solve Transportation Problems using this Lagrange method, the
following steps are needed:

1. Forming the Fitness Lagrange Function. Forming the Fitness Lagrange
Function is generated by using the equation 2. For example, the
objective function for problem in figure 2 is:

Forming the Lagrange function L, for the Gasoline product, we begin
with basic feasible solution by using Vogel method in figure 3, then:

L(X’a’ﬂ'V)zzirn:lZ?:lCijxij‘ :ilai( ?:1Xii_si)_22:lﬂj( ?llxu—Dj)—Z?lELmXu

:ziilz?:lcijxij - ;ai( ?leij _Si)_Z?:lﬂj( ?leij - Dj)_ziS:lezlj/ijxij
=2080X,, +1105X,, +1885X,, + 3510X 4, + 7020 X . —[er, (X ;s —89945)
+t, (X, 4+ Xy —29591) + o5 (X5, + Xy + Xy + Xy + X5 —207775)] - S,(X 5, —3489)
— 5 (X32 —17554) — P (X33 —10045) — B (X 24 —11704) — Ps (X35 —20289)
— B (X + X6 + X3 —264230)

\YY
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2. The next step; differentiating L(X,«, 8,7) with respect to each variable

and setting the equal to zero, we obtain
%:Cij —a,=p;-7; =0 ;Foralli=1,2,3andj=1,2,3,4,5
ij
By letting («,=0) the values of Lagrange multipliers are
successively determined, then computing », =C, -« -8, for each non-

basic variable. Thus the optimal solution for transportation problem is
finding after 5" iterations.

Conclusions

In comparison to the existing methods, Lagrange algorithm proves to
be more efficient as the size of the problem becomes greater for a problem.
The non-linear method is much faster, easier and shorter than the simplex
and transportation simplex method. This solution is not computationally
very fast. We are interested in identifying the conditions under which the
objective function associated with an optimal solution of the transportation
problem is equal to the bound given by maximizing (minimizing) the
expected overlap.
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