

Copyright © 2020 Authors. This is an open-access article distributed under the creative commons attribution License, which permits

unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

New Design of Low Complexity Multipliers in DFT/IDFT

Majid A. Alwan 1

1Department of Electrical Engineering, College of Engineering, University of Basrah, Basrah, Iraq

E-mail address: altimimee174@gmail.com

Received: 21 January 2020; Revised: 20 February 2020; Accepted: 26 February 2020; Published: 2 March 2020

Abstract

This paper presents a new design to implement DFT/IDFT using

the two components of a sequence, which are even and odd

component sequences to solve the complexity of complex

multiplications and reduce the number of multipliers. The

proposed two implementations reduce the number of real

multipliers needed to compute the DFT. The first proposed

design gives good results for N ≤ 512 as compared to

conventional FFT algorithm, while the second scenario gives

good results for N ≤ 1024 as compared to conventional FFT

algorithm. The proposed design is performed directly from real

and imaginary part equations of the DFT sequence X [k]

without additional processing.

© 2020 The Authors. Published by the University of Basrah. Open-access
article.

Keywords: Discrete Fourier Transform (DFT), Fast Fourier

Transform (FFT), Complex Multiplier, Even and Odd Sequences.

1. Introduction

There is a very important role played by Discrete Fourier

Transform (DFT) and Inverse Discrete Fourier Transform

(IDFT) in many digital signal-processing applications. The

DFT and IDFT are widely used in signal processing

applications such as spectrum analysis of signals, OFDM

system, power spectrum estimation, and linear filtering. The

existence of computationally efficient algorithms for

computing DFT and IDFT, Fast Fourier transform (FFT)

algorithms increase the importance of using this transform in

practical applications. The FFT algorithm is generally

breaking (decomposing) the transform into smaller

transforms. The complete process is performed by combining

these smaller transform components to give the total

transform. By FFT, the number of complex multiplications is

reduced to
𝑁

2
𝑙𝑜𝑔

2
𝑁 (rather than 𝑁2 in direct DFT

computing) and 4 real multiplications are needed to

implement each complex multiplication (𝑎 + 𝑗𝑏)(𝑐 + 𝑗𝑑) =

(𝑎𝑐 − 𝑏𝑑) + 𝑗(𝑏𝑐 + 𝑎𝑑).

The facilities of VLSI and FPGA techniques were used in

last 10 years to improve FFT performance. A 32-point FFT

were designed and implemented with Canonical Sign Digit

(CSD) and Dual edge trigged flip-flop to reduce the

complexity of multiplication. Braun multipliers were

implemented in FFT design by Anitha [2]. This design has

disadvantage of binary floating-point multiplications high

complexity.

 A pipelined reconfigurable processor is designed by

Wang [3] for implementing variable-length single-precision

floating-point FFT/IFFT and DCT/IDCT computations. It is

compatible with the IEEE754 standard. The number of adders

is reduced by 75 % by the proposed radix-4 butterfly

(RR4BF) as compared to the conventional parallel radix-4

butterfly.

A mixed-radix FFT algorithm with the single-sided

binary-tree decomposition is implemented by Wei [4] to

reduce the complexity of multiplications for 2k – point FFT.

For this assistance, parallel processing of the twiddle factor is

generated and the dual addition and rounding floating point

FP arithmetic units are improved to meet the demand for high

accuracy calculation and low energy budget in execution.

Sivanandam and Kumar [5], an FFT butterfly structure is

implemented utilizing the Vedic multiplier for high-speed

applications. Urdhava Triyakbhyam algorithm is used to

improve the Vedic multiplier efficiency. The FPGA

implementation for Vedic multiplier shows that it reduced

35 % of the delay compare to the Booth multiplier for

16 × 16 multiplications.

Beyond this introductory section, there are five other

sections. Section II reviews DFT in terms of Circular

symmetry, The Discrete Fourier Transform principles, and

the Twiddle Factors. Section III depicts the proposed

implementation I and II. Section IV gives the IDFT

implementation. Section V summarizes the obtained results.

Finally, section VI concludes the paper.

2. Review of Sequence and DFT

2.1. Circular Symmetry

In general, if time-reversal on sequence results in an

identical sequence, the sequence has even symmetry; the

sequence has odd symmetry, if time-reversal changes the

signs of the samples. Thus, the difference between linear and

circular time-reversal has implications on the definition of

symmetry for finite-length sequences. For sequences defined

for all n (time index), symmetry is determined about the point

n = 0. In the circular framework, symmetry is determined

with respect to the circle diameter passing through the point

n = 0. Thus, for a finite-length real-valued sequence x[n],

circular symmetry is defined by the conditions:

ISSN (Online): 23118385, ISSN (Print): 18146120

Basrah Journal for Engineering Sciences
Journal homepage: www.bjes.edu.iq

Basrah Journal for Engineering Sciences, Vol. 20, No. 2, (2020), 66-73

mailto:qahtan.jawad@yahoo.com
mailto:qahtan.jawad@yahoo.com

 M. A. Alwan / Basrah Journal for Engineering Sciences, Vol. 20, No. 2, (2020), 66-73 67

𝑥[𝑛] = 𝑥[〈−𝑛〉𝑁], circular even symmetry (1)

𝑥[𝑛] = −𝑥[〈−𝑛〉𝑁], circular odd symmetry (2)

Where: 〈𝑛〉 ≜ 𝑛 modulo 𝑁

From Fig. 1, the circular time reversal, which is known as

Circular Folding, is defined by:

𝑥[〈−𝑛〉] ≜ {
 𝑥[0] 𝑛 = 0

 𝑥[𝑁 − 𝑛] 1 ≤ 𝑛 ≤ 𝑛 − 1
 (3)

Fig. 1 Circular wrapping: (a) wrapping the sequence x[n] around a cylinder

with circumference N and using modulo-N addressing (b) representation of a

circular buffer with modulo-N indexing.

Any N-point real sequence x[n] can be decomposed into a

sum of even xe [n] and odd xo [n] components as [6]:

𝑥[𝑛] = 𝑥𝑒[𝑛] + 𝑥𝑜[𝑛] 0 ≤ 𝑛 ≤ 𝑁 − 1 (4)

Where,

𝑥𝑒[𝑛] ≜
𝑥[𝑛] + 𝑥[〈−𝑛〉𝑁]

2

= {

𝑥[0] 𝑛 = 0

1

2
(𝑥[𝑛]+𝑥[𝑁−𝑛]) 1≤𝑛≤𝑛−1

 (5)

and

𝑥𝑜[𝑛] ≜
𝑥[𝑛] − 𝑥[〈−𝑛〉𝑁]

2

 = {

0 𝑛 = 0

 12(𝑥[𝑛]−𝑥[𝑁−𝑛]) 1≤𝑛≤𝑛−1

 (6)

Figure 2 shows the even and odd sequences of 8 – point

sequence x[n] using (5) and (6), respectively, and xe [n] can

be written for even N :

𝑥𝑒[𝑛] = {𝑥[0], 𝑥𝑒[1], 𝑥𝑒[2], … … , 𝑥𝑒 [
𝑁

2
− 1] , 𝑥 [

𝑁

2
] , 𝑥𝑒 [

𝑁

2

− 1] , … … , 𝑥𝑒[2], 𝑥𝑒[1]} (7)

and 𝑥𝑜[𝑛] can be written for even N :

 𝑥𝑜[𝑛] = {0 , 𝑥𝑜[1], 𝑥𝑜[2], … … , 𝑥𝑜[𝑁

2
− 1], 0 , −𝑥𝑜[𝑁

2
−

 1], … … , −𝑥𝑜[2], −𝑥𝑜[1]} (8)

In order to implement the even component of the

sequence x[n], need only (
𝑁

2
− 1) adders, and the same

number of subtracters to generate the odd component of the

sequence.

Fig. 2 The even component and odd component of the real sequence

𝑥[𝑛] = {3, 0, −2, 4, 6, −9, 5, 9}

2.2. The Discrete Fourier Transform (DFT)

The discrete Fourier transform (DFT) of N – point is

expressed as follows:

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘 𝑘 = 0,1, … , 𝑁 − 1

𝑁−1

𝑛=0

 (9)

Where, k is frequency index, and 𝑊𝑁 is called twiddle factor

𝑊𝑁 = 𝑒−𝑗2𝜋/𝑁 (10)

Equation (9) can be computed as

𝑋[𝑘] = ∑ 𝑥[𝑛] cos
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

− 𝑗 ∑ 𝑥[𝑛] sin
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

𝑘 = 0,1, … , 𝑁 − 1 (11)

Let

𝑋𝑅[𝑘] = ∑ 𝑥[𝑛] cos
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

 𝑘 = 0,1, … , 𝑁 − 1 (12)

𝑋𝐼[𝑘] = − ∑ 𝑥[𝑛] sin
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

 𝑘 = 0,1, … , 𝑁 − 1 (13)

so

𝑋[𝑘] = 𝑋𝑅[𝑘] + 𝑗 𝑋𝐼[𝑘] 𝑘 = 0,1, … , 𝑁 − 1 (14)

Where, 𝑋𝑅[𝑘] is the real part of 𝑋[𝑘] and 𝑋𝐼[𝑘] is the

imaginary part of 𝑋[𝑘] .

0 1 2 3 4 5 6 7
-10

0

10

x
[n

]

n

0 1 2 3 4 5 6 7
-10

0

10

x
e
[n

]

n

0 1 2 3 4 5 6 7
-10

0

10

x
o
[n

]

n

(a) (b)

 M. A. Alwan / Basrah Journal for Engineering Sciences, Vol. 20, No. 2, (2020), 66-73 68

Now, if the sequence is real and even 𝑥𝑒[𝑛], then Eq. (13)

yields 𝑋𝐼[𝑘] = 0, and the DFT reduce to

𝑋𝑒[𝑘] = 𝑋
𝑅
[𝑘]

= ∑ 𝑥𝑒[𝑛] cos
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

 𝑘 = 0,1, … , 𝑁 − 1 (15)

Which is real valued and with even symmetry too.

In addition, if the sequence is real and odd 𝑥𝑜[𝑛], then

Eq. (12) yields 𝑋𝑅[𝑘] = 0. Hence

𝑋𝑜[𝑘] = 𝑗𝑋
𝐼
[𝑘]

= −𝑗 ∑ 𝑥𝑜[𝑛] sin
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

 𝑘 = 0,1, … , 𝑁 − 1 (16)

Which is odd and purely imaginary.

In general, for real sequence 𝑥[𝑛] in Eq. (4) and by using

the linear property of the DFT

𝑋[𝑘] = 𝑋𝑒[𝑘] + 𝑋𝑜[𝑘]

= ∑ 𝑥𝑒[𝑛] cos
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

− 𝑗 ∑ 𝑥𝑜[𝑛] sin
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

𝑘 = 0,1, … , 𝑁 − 1 (17)

Equation (17) is the core of our proposed implementation,

that for computing the DFT of any sequence, we do not need

to use any complex multiplications, but only determining the

real part of 𝑋[𝑘] using the even component of 𝑥[𝑛] and the

imaginary part of 𝑋[𝑘] using the odd component of

𝑥[𝑛] separately with real multiplications. And for more

reduction in number of multipliers, we will test the twiddle

factors 𝑊𝑁
𝑛𝑘.

2.3. The Twiddle Factors

The twiddle factors 𝑊𝑁
𝑛𝑘 = 𝑒−𝑗2𝜋𝑛𝑘/𝑁 have Nth primitive

root of unity and its exponent being evaluated modulo N. To

compute the DFT in (17) the twiddle factor is separated to

real part, which is 𝑎𝑚 = cos (−
2𝜋𝑚

𝑁
) ,𝑚 = 0,1, … , 𝑁 − 1,

and imaginary part 𝑏𝑚 = sin (−
2𝜋𝑚

𝑁
) ,𝑚 = 0,1, … , 𝑁 − 1 ,

as shown in Fig. 3, for N = 8.

Fig. 3 (a) the twiddle factor for N = 8. (b) the real part, and (c) the imaginary part.

If N is even then the real part of the roots of the twiddle

factor (a’s) will be symmetric about x-axis and anti-

symmetric about y-axis, while the imaginary part (b’s) will

be anti-symmetric about x-axis and symmetric about y-axis

so for 8 – point DFT. The twiddle coefficients can be reduced

to only one that is a1 for real part and b1 to imaginary part as

shown if Fig. 4.

Fig. 4 (a) the real part of twiddle factor for N = 8. (b) its imaginary part

In the same way for N = 16, the number of coefficients

a’s is 3 and other 3 for b’s as shown in Fig. 5.

Fig. 5 (a) the real part of twiddle factor for N = 16. (b) its imaginary part.

3. The Proposed Implementation of DFT

In previous sections, we show 4 facts which are used to

implement the DFT:

1. Any sequence has even and odd components.

2. The DFT of a real sequence is complex values with real

even part and imaginary odd part.

3. The real part of DFT can be determined from the even

component of the sequence, and imaginary part of DFT

can be determined from the odd component.

4. The number of coefficients, which is needed in the

twiddle matrices, is equal to 2 (
𝑁

4
− 1) for N as a power

of 2.

 𝑊8
1

 𝑊8
0

 𝑊8
2

 𝑊8
3

 𝑊8
4

 𝑊8
5

 𝑊8
6

 𝑊8
7

 𝑎1

 𝑎0

𝑎2
 𝑎3

 𝑎4

 𝑎5

 𝑎6

 𝑎7

 𝑏1

 𝑏0

𝑏2
 𝑏3

 𝑏4

 𝑏5

 𝑏6

 𝑏7

(a) (b) (c)

 𝑎1

 1

0
 −𝑎1

−1

 −𝑎1

 0

 𝑎1

 𝑏1

 0

−1
 𝑏1

0

 −𝑏1

 1

 −𝑏1

(a) (b)

(a) (b)

 𝑎2

−1 1

0
 𝑎2 −𝑎2

 −𝑎2

 0

 𝑎1

 𝑎1 −𝑎1

 −𝑎1

 −𝑎3

 −𝑎3

 𝑎3

 𝑎3

 −𝑏2

0 0

−1

 𝑏2 𝑏2

 −𝑏2

 1

 𝑏1

 −𝑏1 −𝑏1

 𝑏1

 −𝑏3

 𝑏3

 −𝑏3

 𝑏3

 M. A. Alwan / Basrah Journal for Engineering Sciences, Vol. 20, No. 2, (2020), 66-73 69

3.1 The Proposed Implementation I of DFT

 In order to explain our proposed implementation for 8 –

point DFT, let rewrite Eqs. (9), (15) and (16) in matrix form

as

[𝑋] = [𝑊][𝑥] (18)

[𝑋𝑅] = [𝐴][𝑥𝑒] (19)

[𝑋𝐼] = [𝐵][𝑥𝑜] (20)

Where [W], [A] and [B] are the twiddle matrix, real matrix of

the twiddle, and imaginary matrix of the twiddle matrix,

respectively. Thus, [W] for 8 – point is

[𝑊] =

[

1 1
1 𝑊8

1
1 1

𝑊8
2 𝑊8

3

1 𝑊8
2

1 𝑊8
3

𝑊8
4 𝑊8

6

𝑊8
6 𝑊8

1

1 1
𝑊8

4 𝑊8
5

1 1
𝑊8

6 𝑊8
7

𝑊8
0 𝑊8

2

𝑊8
4 𝑊8

7

𝑊8
4 𝑊8

6

𝑊8
2 𝑊8

5

1 𝑊8
4

1 𝑊8
5

𝑊8
0 𝑊8

4

𝑊8
2 𝑊8

7

1 𝑊8
6

1 𝑊8
7

𝑊8
4 𝑊8

2

𝑊8
6 𝑊8

5

𝑊8
0 𝑊8

4

𝑊8
4 𝑊8

1

𝑊8
0 𝑊8

4

𝑊8
6 𝑊8

3

𝑊8
0 𝑊8

6

𝑊8
4 𝑊8

3

𝑊8
4 𝑊8

2

𝑊8
2 𝑊8

1]

 (21)

To determine [𝑋𝑅] in Eq. (19), we use Eq. (20) and Fig. 4

to generate the matrix [𝐴]

[

𝑋𝑅[0]
𝑋𝑅[1]

𝑋𝑅[2]

𝑋𝑅[3]

𝑋𝑅[4]
𝑋𝑅[5]

𝑋𝑅[6]

𝑋𝑅[7]]

=

[

1 1
1 𝑎1

1 1
0 −𝑎1

1 0
1 −𝑎1

−1 0
0 𝑎1

1 1
−1 −𝑎1

1 1
0 𝑎1

1 0
−1 𝑎1

−1 0
0 −𝑎1

 1 −1
 1 −𝑎1

1 −1
0 𝑎1

1 0
1 𝑎1

−1 0
0 −𝑎1

1 −1
−1 𝑎1

1 −1
0 −𝑎1

1 0
−1 −𝑎1

−1 0
0 𝑎1]

[

𝑥𝑒[0]

𝑥𝑒[1]

𝑥𝑒[2]

𝑥𝑒[3]

𝑥𝑒[4]

𝑥𝑒[3]

𝑥𝑒[2]

𝑥𝑒[1]]

(22)

Knowing that 𝑋𝑅 is even, i.e. 𝑋𝑅[7] = 𝑋𝑅[1], 𝑋𝑅[6] =
𝑋𝑅[2], and 𝑋𝑅[5] = 𝑋𝑅[3], so we need only 5 – point to

compute

[

𝑋𝑅[0]

𝑋𝑅[1]

𝑋𝑅[2]

𝑋𝑅[3]

𝑋𝑅[4]]

=

[

1 1 1
1 𝑎1 0
1 0 −1

1
−𝑎1

0

1
−1
1

1 −𝑎1 0

1 −1 1
𝑎1 −1
−1 1]

[

𝑥𝑒[0]

2𝑥𝑒[1]

2𝑥𝑒[2]

2𝑥𝑒[3]

𝑥𝑒[4]]

 (23)

For determining [𝑋𝐼], which is odd, i.e. 𝑋𝐼[0] = 0,
𝑋𝐼[4] = 0, 𝑋𝐼[7] = −𝑋𝐼[1], 𝑋𝐼[6] = −𝑋𝐼[2], and 𝑋𝐼[5] =
−𝑋𝐼[3], so we need only 3 – point to compute from Eq. (20)

[

𝑋𝐼[0]
𝑋𝐼[1]

𝑋𝐼[2]

𝑋𝐼[3]

𝑋𝐼[4]
𝑋𝐼[5]

𝑋𝐼[6]

𝑋𝐼[7]]

=

[

0 0
0 𝑏1

0 0
−1 𝑏1

0 −1
0 𝑏1

0 1
1 𝑏1

0 0
0 −𝑏1

0 0
1 −𝑏1

0 −1
0 −𝑏1

0 1
−1 −𝑏1

 0 0
 0 −𝑏1

0 0
−1 −𝑏1

0 1
0 −𝑏1

0 −1
1 −𝑏1

0 0
0 𝑏1

0 0
1 𝑏1

0 1
0 𝑏1

0 −1
−1 𝑏1]

[

0
𝑥𝑜[1]

𝑥𝑜[2]

𝑥𝑜[3]
0

−𝑥𝑜[3]

−𝑥𝑜[2]

−𝑥𝑜[1]]

[

𝑋𝐼[1]

𝑋𝐼[2]

𝑋𝐼[3]
] = [

𝑏1 −1 𝑏1

−1 0 1
𝑏1 1 𝑏1

] [

2𝑥𝑜[1]

2𝑥𝑜[2]

2𝑥𝑜[3]
] (24)

To implement the 8 – point DFT, the Eqs. (23) and (24)

be written in form;

𝑋𝑅[0] = (𝑥𝑒[0] + 𝑥𝑒[4]) + (2𝑥𝑒[1] + 2𝑥𝑒[3]) + 2𝑥𝑒[2]

𝑋𝑅[1] = (𝑥𝑒[0] − 𝑥𝑒[4]) + 𝑎1 (2𝑥𝑒[1] − 2𝑥𝑒[3])

𝑋𝑅[2] = (𝑥𝑒[0] + 𝑥𝑒[4]) − 2𝑥𝑒[2]

𝑋𝑅[3] = (𝑥𝑒[0] − 𝑥𝑒[4]) − 𝑎1(2𝑥𝑒[1] − 2𝑥𝑒[3])

𝑋𝑅[4] = (𝑥𝑒[0] + 𝑥𝑒[4]) − (2𝑥𝑒[1] + 2𝑥𝑒[3]) + 2𝑥𝑒[2]

𝑋𝐼[1] = 𝑏1(2𝑥𝑜[3] + 2𝑥𝑜[1]) − 2𝑥𝑜[2]

𝑋𝐼[2] = (2𝑥𝑜[3] − 2𝑥𝑜[1])

𝑋𝐼[3] = 𝑏1(2𝑥𝑜[3] + 2𝑥𝑜[1]) + 2𝑥𝑜[2]
 (25)

Figure 6 shows the complete implementation of 8 – point

DFT, which contains three stages, in stage 1, the even and

odd components of the input sequence 𝑥[𝑛] compute from

Eqs. (5) and (6), respectively. The parameter
1

2
 in these two

equations is omitted with parameter 2 in Eq. (25) for next

stage. In stage 2, the Eq. (25) implements using only two real

multipliers, i.e. 𝑎1(2𝑥𝑒[1] − 2𝑥𝑒[3]) and 𝑏1(2𝑥𝑜[3] +
2𝑥𝑜[1]). In stage 3, the outputs of stage 2 are sorted and

paired to have complex addition 𝑋[𝑘] = 𝑋𝑅[𝑘] + 𝑗 𝑋𝐼[𝑘], and

yields the discrete Fourier transform of the 8 – samples input.

Comparing with radix 2 FFT for N = 8 point, the number

of complex multipliers (
𝑁

2
 log2 𝑁) = 12, i.e. 48 real

multipliers.

16 – Point DFT

The matrix 𝐴 in 16 – point DFT can be generated using 3

parameters (𝑎1, 𝑎2, and 𝑎3) only, also matrix B by 3

parameters (𝑏1, 𝑏2, and 𝑏3), as shown in Fig. 5. The real

part and the imaginary part of DFT in Eqs. (19) and (20) are

simplified as:

[

𝑋𝑅[0]
𝑋𝑅[1]
𝑋𝑅[2]

𝑋𝑅[3]
𝑋𝑅[4]
𝑋𝑅[5]

𝑋𝑅[6]
𝑋𝑅[7]
𝑋𝑅[8]]

=

[

1 1 1
1 𝑎1 𝑎2

1 𝑎2 0

1 1 1
𝑎3 0 −𝑎3

−𝑎2 −1 −𝑎2

1 1 1
−𝑎2 −𝑎1 −1
0 𝑎2 1

1 𝑎3 −𝑎2

1 0 −1
1 −𝑎3 −𝑎2

−𝑎1 0 𝑎1

0 1 0
𝑎1 0 −𝑎1

𝑎2 −𝑎3 −1
−1 0 1
𝑎2 𝑎3 −1

1 −𝑎2 0
1 −𝑎1 𝑎2

1 −1 1

𝑎2 −1 𝑎2

−𝑎3 0 𝑎3

−1 1 −1

0 −𝑎2 1
−𝑎2 𝑎1 −1
1 −1 1]

[

𝑥𝑒[0]

2𝑥𝑒[1]
2𝑥𝑒[2]

2𝑥𝑒[3]
2𝑥𝑒[4]

2𝑥𝑒[5]
2𝑥𝑒[6]
2𝑥𝑒[7]

𝑥𝑒[8]]

[

𝑋𝐼[1]

𝑋𝐼[2]

𝑋𝐼[3]

𝑋𝐼[4]

𝑋𝐼[5]

𝑋𝐼[6]

𝑋𝐼[7]]

=

[

𝑏1

𝑏2

𝑏3

𝑏2 𝑏3 −1
−1 𝑏2 0
𝑏2 −𝑏1 1

𝑏3 𝑏2 𝑏1

−𝑏2 1 −𝑏2

−𝑏1 𝑏2 𝑏3

−1
𝑏3

𝑏2

0 1 0
−𝑏2 −𝑏1 −1
1 𝑏2 0

−1 0 1
−𝑏1 −𝑏2 𝑏3

−𝑏2 −1 −𝑏2

𝑏1 −𝑏2 𝑏3 1 𝑏3 −𝑏2 𝑏1]

[

2𝑥𝑜[1]

2𝑥𝑜[2]

2𝑥𝑜[3]

2𝑥𝑜[4]

2𝑥𝑜[5]

2𝑥𝑜[6]

2𝑥𝑜[7]]

 (26)

 M. A. Alwan / Basrah Journal for Engineering Sciences, Vol. 20, No. 2, (2020), 66-73 70

Fig. 6 the Proposed Implementation I of 8 – Point DFT.

Fig. 7 the Proposed Implementation of 16 – Point DFT.

Figure 7 shows the implementation of 16 – point DFT

(only at stage2); Equation (26) implements using only 12 real

multipliers.

In general for N – point DFT, the real part of 𝑋[𝑘],

𝑘 = 0,1, … 𝑁 − 1 can be determined using
𝑁

2
+ 1 points, that

is

𝑋𝑅[𝑘] = 𝑥𝑒[0] + (−1)𝑘𝑥𝑒 [
𝑁

2
] + ∑ 𝑥𝑒[𝑛] cos

2𝜋𝑘𝑛

𝑁

𝑁
2−1

𝑛=1

𝑘 = 0,1, … ,
𝑁

2
 (27)

𝑋𝑅[𝑘] = 𝑥𝑒[0] + 𝑥𝑒 [
𝑁

2
] + 2 ∑ 𝑎〈𝑛𝑘〉𝑁 (𝑥𝑒[𝑛] + 𝑥𝑒 [

𝑁

2
− 𝑛])

𝑁
4−1

𝑛=1

+ (−1)
𝑘
2 2𝑥𝑒 [

𝑁

4
] for 𝑘 even (28)

𝑋𝑅[𝑘] = 𝑥𝑒[0] − 𝑥𝑒 [
𝑁

2
] + 2 ∑ 𝑎〈𝑛𝑘〉𝑁 (𝑥𝑒[𝑛] − 𝑥𝑒 [

𝑁

2
− 𝑛])

𝑁
4−1

𝑛=1

for 𝑘 odd (29)

−

−

𝑥[0]

𝑥[1]

𝑥[2]

𝑥[3]

𝑥[7]

𝑥[4]

𝑥[5]

𝑥[6]

𝑥𝑒[0]

2𝑥𝑒[1]

2𝑥𝑒[2]

2𝑥𝑒[3]

2𝑥𝑜[1]

𝑥𝑒[4]

2𝑥𝑜[3]

2𝑥𝑜[2]

−
−

−

−

𝑏1

𝑎1

−

−

−

𝑋𝑅[0]

𝑋𝑅[1]

𝑋𝑅[2]

𝑋𝑅[3]

𝑋𝐼[3]

𝑋𝑅[4]

𝑋𝐼[1]

𝑋𝐼[2]

𝑋[0]

𝑋[1]

𝑋[2]

𝑋[3]

𝑋[7]

𝑋[4]

𝑋[5]

𝑋[6]

−𝑗

−𝑗

−𝑗 𝑗

𝑗

𝑗

−

Stage1 Stage2 Stage3

𝑎2

𝑎2

𝑎1

𝑎3

2𝑥𝑜[3]

2𝑥𝑜[4]

2𝑥𝑜[6]

2𝑥𝑜[5]

2𝑥𝑒[4]

2𝑥𝑜[2]

2𝑥𝑜[7]

2𝑥𝑜[1]

𝑥𝑒[0]

𝑥𝑒[8]

2𝑥𝑒[1]

2𝑥𝑒[7]

2𝑥𝑒[5]

2𝑥𝑒[2]

2𝑥𝑒[6]

2𝑥𝑒[3]

−

−

−

𝑋𝑅[8]

𝑋𝐼[1]

𝑋𝐼[2]

𝑋𝐼[3]

𝑋𝐼[4]

𝑋𝐼[5]

𝑋𝐼[6]

𝑋𝐼[7]

𝑋𝑅[0]

𝑋𝑅[1]

𝑋𝑅[2]

𝑋𝑅[3]

𝑋𝑅[7]

𝑋𝑅[4]

𝑋𝑅[5]

𝑋𝑅[6]
𝑎1

𝑎3 −

−

−

− −

−

−
−

−
−

−

−
−

−

𝑏1

𝑏3

𝑏1

𝑏3

−

−

−

𝑏2

−
−

−
−

−

−

−

𝑏2

 M. A. Alwan / Basrah Journal for Engineering Sciences, Vol. 20, No. 2, (2020), 66-73 71

Where, 𝑎〈𝑛𝑘〉𝑁 = cos
2𝜋𝑘𝑛

𝑁
, which are reduced to only

(
𝑁

4
− 1) coefficients, as we explain in previous section, i.e.

𝑎1, 𝑎2, … , and 𝑎𝑁
4−1

. Note that 𝑎0 = 1 and 𝑎𝑁

4

= −1.

To implement the real part of DFT, we need

(
𝑁

8
(

𝑁

4
− 2) + log2 𝑁 − 2) real multiplications.

The imaginary part of DFT can be determined using
𝑁

2
−

1 points, that is

𝑋𝐼[𝑘] = ∑ 𝑥𝑜[𝑛] sin
2𝜋𝑘𝑛

𝑁

𝑁
2−1

𝑛=1

 , 𝑘 = 1,2, … ,
𝑁

2
− 1 (30)

𝑋𝐼[𝑘] = 2 ∑ 𝑏〈𝑛𝑘〉𝑁 (𝑥𝑜[𝑛] − 𝑥𝑜 [
𝑁

2
− 𝑛]) ,

𝑁

4
−1

𝑛=1

for 𝑘 even (31)

𝑋𝐼[𝑘] = 2 ∑ 𝑏〈𝑛𝑘〉𝑁 (𝑥𝑜[𝑛] + 𝑥𝑜 [
𝑁

2
− 𝑛])

𝑁

4
−1

𝑛=1

+ (−1)
𝑘+1

2 2𝑥𝑜 [
𝑁

4
] , for 𝑘 odd (32)

Where, 𝑏〈𝑛𝑘〉𝑁 = sin
2𝜋𝑘𝑛

𝑁
, which are reduced to only

(
𝑁

4
− 1) coefficients, i.e. 𝑏1, 𝑏2, … , and 𝑏𝑁

4−1
.

Also, to implement the imaginary part of DFT, we need

(
𝑁

8
(

𝑁

4
− 2) + log

2
𝑁 − 2) real multiplications, that means,

to build the proposed implementation of DFT, the number of

real multiplications is equal to 2 (
𝑁

8
(

𝑁

4
− 2) + log2 𝑁 − 2).

3.2 The Proposed Implementation II of DFT

For more reduction in number of real multipliers, we

share multipliers of real part DFT (a’s) to compute the

imaginary part of DFT, which also will reduce an area of

implementation for efficient processors using VLSI or FPGA.

If N is a multiple of 4, the twiddle factor 𝑊𝑁
1 and 𝑊𝑁

𝑁
4−1

are distributed as shown in Fig. 8.

sin(
2𝜋𝑛

𝑁
) = −cos (

𝜋

2
−

2𝜋𝑛

𝑁
) = −cos (

2𝜋(𝑁
4

−𝑛)

𝑁
),

𝑛 = 1,2, … ,
𝑁

4
− 1 (33)

𝑏1 = sin(
2𝜋

𝑁
) = −cos (

2𝜋(𝑁
4

−1)

𝑁
) = −𝑎𝑁

4
−1

 ,

𝑏2 = −𝑎𝑁
4−2

, and so on, 𝑏𝑁
4−2

= −𝑎2 ,

𝑏𝑁
4−1

= −𝑎1 , (34)

That for 𝑁 = 16, 𝑏3 = −𝑎1 , 𝑏2 = −𝑎2 and 𝑏1 = −𝑎3,

and the imaginary part of the twiddle factors are distributed

as shown in Fig. 9 (b).

Fig. 9 (a) the real part of twiddle factor for N = 16. (b) Its imaginary part

with same coefficients of real part.

Equations (31) and (32) can be written as:

𝑋𝐼[𝑘] = −2 ∑ 𝑎〈𝑛𝑘〉𝑁 (𝑥𝑜 [
𝑁

4
− 𝑛] − 𝑥𝑜 [

𝑁

2
− (

𝑁

4
− 𝑛)])

𝑁
4−1

𝑛=1

for 𝑘 even (35)

𝑋𝐼[𝑘] = −2 ∑ 𝑎〈𝑛𝑘〉𝑁 (𝑥𝑜 [
𝑁

4
− 𝑛] + 𝑥𝑜 [

𝑁

2
− (

𝑁

4
− 𝑛)])

𝑁
4−1

𝑛=1

+ (−1)
𝑘+1
2 2𝑥𝑜 [

𝑁

4
] for 𝑘 odd (36)

To compute XI [k] from Equations (28) and (29), and

comparing them with Equations (35) and (36), the procedure

is as follow:

• Let 𝑥𝑜[0] = 𝑥𝑜 [
𝑁

2
] = 0.

• The sequence from 𝑥𝑜[𝑁

4
+ 1] to 𝑥𝑜 [

𝑁

2
− 1] enter to

stage 2 of implementation as a negative value.

• The odd component sequence 𝑥𝑜[𝑛] is sorted from

𝑥𝑜[𝑁

4
− 1] to 𝑥𝑜[1] with their pairs.

• The difference among the equations is the midterm

(𝑥𝑜[𝑁

4
] or 𝑥𝑒[𝑁

4
]), which is added in (28) when k is even,

while it appears in (35) when k is odd. This problem is

solved by using de-multiplexer to select where must be

added as shown in Fig. 10.

 𝑊𝑁
1

 𝑊𝑁

𝑁
4−1

 𝜃

 𝜃

 Fig. 8 The twiddle factor for N a multiple of 4

(a) (b)

 𝑎2

−1 1

0
 𝑎2 −𝑎2

 −𝑎2

 0

 𝑎1

 𝑎1 −𝑎1

 −𝑎1

 −𝑎3

 −𝑎3

 𝑎3

 𝑎3

 𝑎2

0 0

−1

 −𝑎2 −𝑎2

 𝑎2
 1

 −𝑎3

 𝑎3 𝑎3

 −𝑎3

 𝑎1

 −𝑎1

 𝑎1

 −𝑎1

 M. A. Alwan / Basrah Journal for Engineering Sciences, Vol. 20, No. 2, (2020), 66-73 72

Fig. 10 The proposed implementation II for DFT.

The output of the system in Fig. 10 is either 𝑋𝑅[𝑘], 𝑘 =
0,1, … 𝑁

2
 , if its input 𝑥𝑒[𝑛], 𝑛 = 0,1, … , 𝑁

2
 , or −𝑋𝐼[𝑘], 𝑘 =

0,1, … 𝑁

2
 , if its input 𝑥𝑜[𝑛], 𝑛 = 0,1, … , 𝑁

2
. The selection of the

inputs is done by controlling the multiplexers and de-

multiplexer. To implement the second proposed

implementation of the DFT, we need only (
𝑁

8
(

𝑁

4
− 2) +

log2 𝑁 − 2) real multiplications.

4. The Implementation of IDFT

The inverse DFT is given by Proakis and Manolakis [6]:

𝑥[𝑛] =
1

𝑁
(𝐷𝐹𝑇(𝑋∗[𝑘]))∗ (37)

That means, we can compute the IDFT, by using the same

proposed implementation of DFT with input sequence

complex conjugate of 𝑋[𝑘], which is already containing real

part even component 𝑋𝑅[𝑘] and odd component 𝑋𝐼[𝑘], so the

first stage in Fig. 6 is not needed in computing IDFT. The

stage 3 will be changed from complex additions to real

additions, while stage 2 remains as it is.

5. Results and Discussion

The proposed implementation I of DFT can be used for

any N even, and proposed II is used for N a power of 4,

without any zero padding, which is needed in FFT. The

proposed design is sufficient for N ≤ 1024. As compared to

FFT algorithm, the number of real multiplication is

significantly reduced as shown in Table 1.

Table 1 Number of Real Multiplications to Compute an N-point DFT.

N

Complex

Multiplications

FFT

Real

Multiplications

FFT

Real

Multiplications

Proposed I

Real

Multiplications

Proposed II

8 12 48 2 1

16 32 128 12 6

32 80 320 54 27

64 192 768 232 116

128 448 1792 970 485

256 1024 4096 3980 1990

512 2304 9216 16124 8071

1024 5120 20480 65040 32520

−2𝑥𝑜[7]

2𝑥𝑜[4]

2𝑥𝑒[5]

2𝑥𝑒[4]

2𝑥𝑒[6]

2𝑥𝑜[1]

2𝑥𝑒[3]

−2𝑥𝑜[6]

𝑥𝑒[8]

2𝑥𝑒[1]

2𝑥𝑜[3]

2𝑥𝑜[2]

2𝑥𝑒[7]

−2𝑥𝑜[5]

2𝑥𝑒[2]

𝑥𝑒[0]

0

0

𝑎1

𝑎3

𝑎1

𝑎3

0

−

𝑎2

𝑎2

DM

−

−

−

−

−

−

−

−

0

0

DM DeMultiplexer

even/odd

Controller

Multiplexer

even/odd

Controller

 M. A. Alwan / Basrah Journal for Engineering Sciences, Vol. 20, No. 2, (2020), 66-73 73

6. Conclusions

This paper proposed two implementation to reduce the

number of real multipliers, which are needed to compute the

DFT. The new designs are sufficient for N ≤ 512 or N ≤ 1024

comparing with FFT algorithm as shown in Table 1. Our idea

in this paper is implemented directly from real and imaginary

part equations of X [k] without processing to have cascaded,

tree, or radix structure, which may be reduced further.

References

[1] R. Preyadharan, A. Tamilselvan, and M. Nithiyaa,

"Modified Architecture of FFT Module using CSD

Multiplier and Dual Edge Triggered Flip Flop", IEEE,

2015 International Conference on Innovations in

Information, Embedded and Communication systems

(ICIIECS), Coimbatore, pp. 1-4, 2015.

[2] R. Anitha, and V. Bagyaveereswaran, "Bruan’s Multiplier

Implementation using FPGA with Bypassing

Techniques", International Journal of VLSI design and

Communication Systems (VLSICS), Vol. 2, No. 3,

September 2011.

[3] Mingyu Wang, Fang Wang, Shaojun Wei, and Zhaolin

Li, "A pipelined area-efficient and high-speed

reconfigurable processor for floating-point FFT/IFFT and

DCT/IDCT computations", Elsevier, Microelectronics

Journal, Vol. 47, pp. 16-30, 2016.

[4] Xing Wei, Haigang Yang, Wei Li, Zhihong Huang, Tao

Yina, and Le Yub, "A reconfigurable 4-GS/s power-

efficient floating-point FFT processor design and

implementation based on single-sided binary-tree

decomposition", Elsevier, Integration, Vol. 66, pp. 164-

172, 2019.

[5] K. Sivanandam, and P. Kumar, "Design and performance

analysis of reconfigurable modified Vedic multiplier with

3-1-1-2 compressor", Microprocessors and Microsystems,

Vol. 65, pp. 97-106, 2019.

[6] John G. Proakis, and Dimitris G. Manolakis, "Digital

Signal Processing, Principles, Algorithms, and

Applications", Fourth Edition, Prentice-Hall, Inc., ISBN-

13: 978-0131873742, 2007.

Biographies

Majid Abdulnabi Alwan received the B. Sc.

degree in Electrical Engineering from

Department of Electrical Engineering, College

of Engineering, University of Basrah, Basrah,

Iraq in 1981. He received the M. Sc. degree in

"Control and Computer Engineering" from

University of Basrah, Iraq in 1990. He also

received the Ph. D. degree in "Electrical and

Electronic Engineering" from University of

Basrah, Iraq in 2002. He worked as a teaching assistant and an

instructor in the Department of Electrical Engineering, College of

Engineering, University of Basrah, Basrah, Iraq from 1985 to 1987.

He rejoined the same department as an Assistant lecturer in 1990,

then as a lecturer. He had held several times the post of Head of the

Department of Computer Engineering, and Dean Assistant, at the

College of Engineering, University of Basrah.

