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Abstract 

This paper presents a new design to implement DFT/IDFT using 

the two components of a sequence, which are even and odd 

component sequences to solve the complexity of complex 

multiplications and reduce the number of multipliers. The 

proposed two implementations reduce the number of real 

multipliers needed to compute the DFT. The first proposed 

design gives good results for N ≤ 512 as compared to 

conventional FFT algorithm, while the second scenario gives 

good results for N ≤ 1024 as compared to conventional FFT 

algorithm. The proposed design is performed directly from real 

and imaginary part equations of the DFT sequence X [k] 

without additional processing. 

© 2020 The Authors. Published by the University of Basrah. Open-access 
article. 
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1. Introduction 

There is a very important role played by Discrete Fourier 

Transform (DFT) and Inverse Discrete Fourier Transform 

(IDFT) in many digital signal-processing applications. The 

DFT and IDFT are widely used in signal processing 

applications such as spectrum analysis of signals, OFDM 

system, power spectrum estimation, and linear filtering. The 

existence of computationally efficient algorithms for 

computing DFT and IDFT, Fast Fourier transform (FFT) 

algorithms increase the importance of using this transform in 

practical applications. The FFT algorithm is generally 

breaking (decomposing) the transform into smaller 

transforms. The complete process is performed by combining 

these smaller transform components to give the total 

transform. By FFT, the number of complex multiplications is 

reduced to 
𝑁

2
𝑙𝑜𝑔

2
𝑁 (rather than 𝑁2 in direct DFT 

computing) and 4 real multiplications are needed to 

implement each complex multiplication (𝑎 + 𝑗𝑏)(𝑐 + 𝑗𝑑) =

(𝑎𝑐 − 𝑏𝑑) + 𝑗(𝑏𝑐 + 𝑎𝑑).  

The facilities of VLSI and FPGA techniques were used in 

last 10 years to improve FFT performance. A 32-point FFT 

were designed and implemented with Canonical Sign Digit 

(CSD) and Dual edge trigged flip-flop to reduce the 

complexity of multiplication. Braun multipliers were 

implemented in FFT design by Anitha [2]. This design has 

disadvantage of binary floating-point multiplications high 

complexity.  

 A pipelined reconfigurable processor is designed by 

Wang [3] for implementing variable-length single-precision 

floating-point FFT/IFFT and DCT/IDCT computations. It is 

compatible with the IEEE754 standard. The number of adders 

is reduced by 75 % by the proposed radix-4 butterfly 

(RR4BF) as compared to the conventional parallel radix-4 

butterfly. 

A mixed-radix FFT algorithm with the single-sided 

binary-tree decomposition is implemented by Wei [4] to 

reduce the complexity of multiplications for 2k – point FFT. 

For this assistance, parallel processing of the twiddle factor is 

generated and the dual addition and rounding floating point 

FP arithmetic units are improved to meet the demand for high 

accuracy calculation and low energy budget in execution. 

Sivanandam and Kumar [5], an FFT butterfly structure is 

implemented utilizing the Vedic multiplier for high-speed 

applications. Urdhava Triyakbhyam algorithm is used to 

improve the Vedic multiplier efficiency. The FPGA 

implementation for Vedic multiplier shows that it reduced   

35 % of the delay compare to the Booth multiplier for          

16 × 16 multiplications. 

Beyond this introductory section, there are five other 

sections. Section II reviews DFT in terms of Circular 

symmetry, The Discrete Fourier Transform principles, and 

the Twiddle Factors. Section III depicts the proposed 

implementation I and II. Section IV gives the IDFT 

implementation. Section V summarizes the obtained results. 

Finally, section VI concludes the paper. 

2. Review of Sequence and DFT 

2.1. Circular Symmetry 

In general, if time-reversal on sequence results in an 

identical sequence, the sequence has even symmetry; the 

sequence has odd symmetry, if time-reversal changes the 

signs of the samples. Thus, the difference between linear and 

circular time-reversal has implications on the definition of 

symmetry for finite-length sequences. For sequences defined 

for all n (time index), symmetry is determined about the point 

n = 0. In the circular framework, symmetry is determined 

with respect to the circle diameter passing through the point  

n = 0. Thus, for a finite-length real-valued sequence x[n], 

circular symmetry is defined by the conditions: 
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𝑥[𝑛] = 𝑥[〈−𝑛〉𝑁], circular even symmetry                          (1) 

𝑥[𝑛] = −𝑥[〈−𝑛〉𝑁], circular odd symmetry                         (2) 

Where: 〈𝑛〉 ≜ 𝑛 modulo 𝑁     

From Fig. 1, the circular time reversal, which is known as 

Circular Folding, is defined by: 

𝑥[〈−𝑛〉] ≜ {
 𝑥[0]                                 𝑛 = 0              

 𝑥[𝑁 − 𝑛]                     1 ≤ 𝑛 ≤ 𝑛 − 1
                (3) 

 

 
 

Fig. 1 Circular wrapping: (a) wrapping the sequence x[n] around a cylinder 

with circumference N and using modulo-N addressing (b) representation of a 

circular buffer with modulo-N indexing. 

Any N-point real sequence x[n] can be decomposed into a 

sum of even xe [n] and odd xo [n]  components as [6]: 

𝑥[𝑛] = 𝑥𝑒[𝑛] + 𝑥𝑜[𝑛]         0 ≤ 𝑛 ≤ 𝑁 − 1                            (4) 

Where, 

𝑥𝑒[𝑛] ≜
𝑥[𝑛] + 𝑥[〈−𝑛〉𝑁]

2
    

= {

𝑥[0]                                                    𝑛 = 0

  
1

2
(𝑥[𝑛]+𝑥[𝑁−𝑛])         1≤𝑛≤𝑛−1

          (5)  

and 

𝑥𝑜[𝑛] ≜
𝑥[𝑛] − 𝑥[〈−𝑛〉𝑁]

2
 

 = {

0                                                            𝑛 = 0

  12(𝑥[𝑛]−𝑥[𝑁−𝑛])            1≤𝑛≤𝑛−1

          (6)  

Figure 2 shows the even and odd sequences of 8 – point 

sequence x[n] using (5) and (6), respectively, and xe [n] can 

be written for even N : 

𝑥𝑒[𝑛] = {𝑥[0], 𝑥𝑒[1], 𝑥𝑒[2], … … , 𝑥𝑒 [
𝑁

2
− 1] , 𝑥 [

𝑁

2
] , 𝑥𝑒 [

𝑁

2

− 1] , … … , 𝑥𝑒[2], 𝑥𝑒[1]}                        (7) 

and 𝑥𝑜[𝑛] can be written for even N : 

  𝑥𝑜[𝑛] = {0 , 𝑥𝑜[1], 𝑥𝑜[2], … … , 𝑥𝑜[𝑁

2
− 1], 0 , −𝑥𝑜[𝑁

2
−

                            1], … … , −𝑥𝑜[2], −𝑥𝑜[1]}                              (8)                           

In order to implement the even component of the 

sequence x[n], need only (
𝑁

2
− 1) adders, and the same 

number of subtracters to generate the odd component of the 

sequence. 

 

Fig. 2 The even component and odd component of the real sequence 

𝑥[𝑛] = {3, 0, −2, 4, 6, −9, 5, 9} 

2.2. The Discrete Fourier Transform (DFT) 

The discrete Fourier transform (DFT) of N – point is 

expressed as follows: 

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘              𝑘 = 0,1, … , 𝑁 − 1 

𝑁−1

𝑛=0

                   (9) 

Where, k is frequency index, and 𝑊𝑁 is called twiddle factor  

𝑊𝑁 = 𝑒−𝑗2𝜋/𝑁                                                                 (10) 

Equation (9) can be computed as 

𝑋[𝑘] = ∑ 𝑥[𝑛] cos
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

− 𝑗 ∑ 𝑥[𝑛] sin
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

 

𝑘 = 0,1, … , 𝑁 − 1            (11) 

Let 

𝑋𝑅[𝑘] = ∑ 𝑥[𝑛] cos
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

        𝑘 = 0,1, … , 𝑁 − 1           (12) 

𝑋𝐼[𝑘] = − ∑ 𝑥[𝑛] sin
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

      𝑘 = 0,1, … , 𝑁 − 1          (13) 

so 

𝑋[𝑘] = 𝑋𝑅[𝑘] + 𝑗 𝑋𝐼[𝑘]                 𝑘 = 0,1, … , 𝑁 − 1         (14) 

Where, 𝑋𝑅[𝑘] is the real part of 𝑋[𝑘] and 𝑋𝐼[𝑘] is the 

imaginary part of  𝑋[𝑘] . 
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Now, if the sequence is real and even 𝑥𝑒[𝑛], then Eq. (13) 

yields 𝑋𝐼[𝑘] = 0, and the DFT reduce to 

𝑋𝑒[𝑘] = 𝑋
𝑅
[𝑘] 

= ∑ 𝑥𝑒[𝑛] cos
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

           𝑘 = 0,1, … , 𝑁 − 1                   (15) 

Which is real valued and with even symmetry too. 

In addition, if the sequence is real and odd 𝑥𝑜[𝑛], then 

Eq.  (12) yields 𝑋𝑅[𝑘] = 0. Hence 

𝑋𝑜[𝑘] = 𝑗𝑋
𝐼
[𝑘] 

= −𝑗 ∑ 𝑥𝑜[𝑛] sin
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

          𝑘 = 0,1, … , 𝑁 − 1              (16) 

Which is odd and purely imaginary. 

In general, for real sequence 𝑥[𝑛] in Eq. (4) and by using 

the linear property of the DFT 
 

𝑋[𝑘] = 𝑋𝑒[𝑘] + 𝑋𝑜[𝑘] 

= ∑ 𝑥𝑒[𝑛] cos
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

− 𝑗 ∑ 𝑥𝑜[𝑛] sin
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

 

𝑘 = 0,1, … , 𝑁 − 1                       (17) 

Equation (17) is the core of our proposed implementation, 

that for computing the DFT of any sequence, we do not need 

to use any complex multiplications, but only determining the 

real part of  𝑋[𝑘] using the even component of 𝑥[𝑛] and the 

imaginary part of 𝑋[𝑘] using the odd component of 

𝑥[𝑛] separately with real multiplications. And for more 

reduction in number of multipliers, we will test the twiddle 

factors 𝑊𝑁
𝑛𝑘. 

2.3. The Twiddle Factors 

The twiddle factors 𝑊𝑁
𝑛𝑘 = 𝑒−𝑗2𝜋𝑛𝑘/𝑁 have Nth primitive 

root of unity and its exponent being evaluated modulo N. To 

compute the DFT in (17) the twiddle factor is separated to 

real part, which is 𝑎𝑚 = cos (−
2𝜋𝑚

𝑁
) ,𝑚 = 0,1, … , 𝑁 − 1, 

and imaginary part 𝑏𝑚 = sin (−
2𝜋𝑚

𝑁
) ,𝑚 = 0,1, … , 𝑁 − 1 , 

as shown in Fig. 3, for N = 8. 

 

Fig. 3 (a) the twiddle factor for N = 8. (b) the real part, and (c) the imaginary part. 

If N is even then the real part of the roots of the twiddle 

factor (a’s) will be symmetric about x-axis and anti-

symmetric about y-axis, while the imaginary part (b’s) will 

be anti-symmetric about x-axis and symmetric about y-axis 

so for 8 – point DFT. The twiddle coefficients can be reduced 

to only one that is a1 for real part and b1 to imaginary part as 

shown if Fig. 4. 

 

Fig. 4 (a) the real part of twiddle factor for N = 8. (b) its imaginary part 

In the same way for N = 16, the number of coefficients 

a’s is 3 and other 3 for b’s as shown in Fig. 5. 

 

Fig. 5 (a) the real part of twiddle factor for N = 16. (b) its imaginary part. 

3. The Proposed Implementation of DFT 

In previous sections, we show 4 facts which are used to 

implement the DFT: 

1. Any sequence has even and odd components. 

2. The DFT of a real sequence is complex values with real 

even part and imaginary odd part. 

3. The real part of DFT can be determined from the even 

component of the sequence, and imaginary part of DFT 

can be determined from the odd component. 

4. The number of coefficients, which is needed in the 

twiddle matrices, is equal to 2 (
𝑁

4
− 1)  for N as a power 

of 2.  
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3.1 The Proposed Implementation I of DFT 

     In order to explain our proposed implementation for 8 – 

point DFT, let rewrite Eqs. (9), (15) and (16) in matrix form 

as 

[𝑋] = [𝑊][𝑥]                                                                               (18) 

[𝑋𝑅] = [𝐴][𝑥𝑒]                                                                            (19) 

[𝑋𝐼] = [𝐵][𝑥𝑜]                                                                             (20) 

Where [W], [A] and [B] are the twiddle matrix, real matrix of 

the twiddle, and imaginary matrix of the twiddle matrix, 

respectively. Thus, [W] for 8 – point is 

[𝑊] =

[
 
 
 
 
 
 
 
 
1 1
1 𝑊8

1
1 1

𝑊8
2 𝑊8

3

1 𝑊8
2

1 𝑊8
3

𝑊8
4 𝑊8

6

𝑊8
6 𝑊8

1

1 1
𝑊8

4 𝑊8
5

1 1
𝑊8

6 𝑊8
7

𝑊8
0 𝑊8

2

𝑊8
4 𝑊8

7

𝑊8
4 𝑊8

6

𝑊8
2 𝑊8

5

1 𝑊8
4

1 𝑊8
5

𝑊8
0 𝑊8

4

𝑊8
2 𝑊8

7

1 𝑊8
6

1 𝑊8
7

𝑊8
4 𝑊8

2

𝑊8
6 𝑊8

5

𝑊8
0 𝑊8

4

𝑊8
4 𝑊8

1

𝑊8
0 𝑊8

4

𝑊8
6 𝑊8

3

𝑊8
0 𝑊8

6

𝑊8
4 𝑊8

3

𝑊8
4 𝑊8

2

𝑊8
2 𝑊8

1]
 
 
 
 
 
 
 
 

      (21) 

To determine [𝑋𝑅] in Eq. (19), we use Eq. (20) and Fig. 4 

to generate the matrix [𝐴] 

[
 
 
 
 
 
 
 
 
𝑋𝑅[0]
𝑋𝑅[1]

𝑋𝑅[2]

𝑋𝑅[3]

𝑋𝑅[4]
𝑋𝑅[5]

𝑋𝑅[6]

𝑋𝑅[7]]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

1 1
1 𝑎1

1 1
0 −𝑎1

1 0
1 −𝑎1

−1 0
0 𝑎1

1 1
−1 −𝑎1

1   1
0    𝑎1

1 0
−1 𝑎1

−1 0
0 −𝑎1

  1 −1
  1 −𝑎1

1 −1
0 𝑎1

1 0
1 𝑎1

−1 0
0 −𝑎1

1 −1
−1 𝑎1

1 −1
0 −𝑎1

1 0
−1 −𝑎1

−1 0
0 𝑎1 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝑥𝑒[0]

𝑥𝑒[1]

𝑥𝑒[2]

𝑥𝑒[3]

𝑥𝑒[4]

𝑥𝑒[3]

𝑥𝑒[2]

𝑥𝑒[1]]
 
 
 
 
 
 
 
 

 

(22) 

Knowing that  𝑋𝑅 is even, i.e. 𝑋𝑅[7] = 𝑋𝑅[1],  𝑋𝑅[6] =
𝑋𝑅[2], and 𝑋𝑅[5] = 𝑋𝑅[3], so we need only 5 – point to 

compute 

[
 
 
 
 
𝑋𝑅[0]

𝑋𝑅[1]

𝑋𝑅[2]

𝑋𝑅[3]

𝑋𝑅[4]]
 
 
 
 

=

[
 
 
 
 
1 1 1
1 𝑎1 0
1 0 −1

1
−𝑎1

0

1
−1
1

1 −𝑎1 0

1 −1 1
𝑎1 −1
−1 1 ]

 
 
 
 

[
 
 
 
 
𝑥𝑒[0]

2𝑥𝑒[1]

2𝑥𝑒[2]

2𝑥𝑒[3]

𝑥𝑒[4] ]
 
 
 
 

                   (23) 

For determining [𝑋𝐼], which is odd, i.e. 𝑋𝐼[0] = 0,
𝑋𝐼[4] = 0, 𝑋𝐼[7] = −𝑋𝐼[1], 𝑋𝐼[6] = −𝑋𝐼[2],  and  𝑋𝐼[5] =
−𝑋𝐼[3], so we need only 3 – point to compute from Eq. (20) 

[
 
 
 
 
 
 
 
 
𝑋𝐼[0]
𝑋𝐼[1]

𝑋𝐼[2]

𝑋𝐼[3]

𝑋𝐼[4]
𝑋𝐼[5]

𝑋𝐼[6]

𝑋𝐼[7]]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

0 0
0 𝑏1

0 0
−1 𝑏1

0 −1
0 𝑏1

0 1
1    𝑏1

0 0
0 −𝑏1

0 0
1 −𝑏1

0 −1
0 −𝑏1

0 1
−1 −𝑏1

    0 0
    0 −𝑏1

0 0
−1 −𝑏1

     
0 1
0 −𝑏1

0 −1
1 −𝑏1

0 0
0 𝑏1

0 0
1 𝑏1

0 1
0 𝑏1

0 −1
−1 𝑏1 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

0
𝑥𝑜[1]

𝑥𝑜[2]

𝑥𝑜[3]
0

−𝑥𝑜[3]

−𝑥𝑜[2]

−𝑥𝑜[1]]
 
 
 
 
 
 
 
 

 

[

𝑋𝐼[1]

𝑋𝐼[2]

𝑋𝐼[3]
] = [

𝑏1 −1 𝑏1

−1 0 1
𝑏1 1 𝑏1

] [

2𝑥𝑜[1]

2𝑥𝑜[2]

2𝑥𝑜[3]
]                                       (24) 

To implement the 8 – point DFT, the Eqs. (23) and (24) 

be written in form; 

𝑋𝑅[0] = (𝑥𝑒[0] + 𝑥𝑒[4]) + (2𝑥𝑒[1] + 2𝑥𝑒[3]) + 2𝑥𝑒[2] 

𝑋𝑅[1] = (𝑥𝑒[0] − 𝑥𝑒[4]) + 𝑎1 (2𝑥𝑒[1] − 2𝑥𝑒[3])                   

𝑋𝑅[2] = (𝑥𝑒[0] + 𝑥𝑒[4]) − 2𝑥𝑒[2] 

𝑋𝑅[3] = (𝑥𝑒[0] − 𝑥𝑒[4]) − 𝑎1(2𝑥𝑒[1] − 2𝑥𝑒[3])                  

𝑋𝑅[4] = (𝑥𝑒[0] + 𝑥𝑒[4]) − (2𝑥𝑒[1] + 2𝑥𝑒[3]) + 2𝑥𝑒[2]                                                                                                                                                        

𝑋𝐼[1] = 𝑏1(2𝑥𝑜[3] + 2𝑥𝑜[1]) −  2𝑥𝑜[2]                                    

𝑋𝐼[2] = (2𝑥𝑜[3] − 2𝑥𝑜[1])                                                        

𝑋𝐼[3] = 𝑏1(2𝑥𝑜[3] + 2𝑥𝑜[1]) +  2𝑥𝑜[2]                                    
                                                                                        (25) 

Figure 6 shows the complete implementation of 8 – point 

DFT, which contains three stages, in stage 1, the even and 

odd components of the input sequence 𝑥[𝑛] compute from 

Eqs. (5) and (6), respectively. The parameter 
1

2
 in these two 

equations is omitted with parameter 2 in Eq. (25) for next 

stage. In stage 2, the Eq. (25) implements using only two real 

multipliers, i.e. 𝑎1(2𝑥𝑒[1] − 2𝑥𝑒[3]) and 𝑏1(2𝑥𝑜[3] +
2𝑥𝑜[1]). In stage 3, the outputs of stage 2 are sorted and 

paired to have complex addition 𝑋[𝑘] = 𝑋𝑅[𝑘] + 𝑗 𝑋𝐼[𝑘], and 

yields the discrete Fourier transform of the 8 – samples input. 

Comparing with radix 2 FFT for N = 8 point, the number 

of complex multipliers ( 
𝑁

2
 log2 𝑁) = 12, i.e. 48 real 

multipliers.  

16 – Point DFT 

The matrix 𝐴 in 16 – point DFT can be generated using 3 

parameters (𝑎1,  𝑎2, and 𝑎3) only, also matrix B by 3 

parameters (𝑏1, 𝑏2, and 𝑏3), as shown in Fig. 5. The real 

part and the imaginary part of DFT in Eqs. (19) and (20) are 

simplified as: 

[
 
 
 
 
 
 
 
 
 
𝑋𝑅[0]
𝑋𝑅[1]
𝑋𝑅[2]

𝑋𝑅[3]
𝑋𝑅[4]
𝑋𝑅[5]

𝑋𝑅[6]
𝑋𝑅[7]
𝑋𝑅[8]]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

1 1 1
1 𝑎1 𝑎2

1 𝑎2 0

1 1 1
𝑎3 0 −𝑎3

−𝑎2 −1 −𝑎2

1 1 1
−𝑎2 −𝑎1 −1
0 𝑎2 1

1 𝑎3 −𝑎2

1 0 −1
1 −𝑎3 −𝑎2

−𝑎1 0 𝑎1

0 1 0
𝑎1 0 −𝑎1

𝑎2 −𝑎3 −1
−1 0 1
𝑎2 𝑎3 −1

1 −𝑎2 0
1 −𝑎1 𝑎2

1 −1 1

𝑎2 −1 𝑎2

−𝑎3 0 𝑎3

−1 1 −1

0 −𝑎2 1
−𝑎2 𝑎1 −1
1 −1 1 ]

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
𝑥𝑒[0]

2𝑥𝑒[1]
2𝑥𝑒[2]

2𝑥𝑒[3]
2𝑥𝑒[4]

2𝑥𝑒[5]
2𝑥𝑒[6]
2𝑥𝑒[7]

𝑥𝑒[8] ]
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
𝑋𝐼[1]

𝑋𝐼[2]

𝑋𝐼[3]

𝑋𝐼[4]

𝑋𝐼[5]

𝑋𝐼[6]

𝑋𝐼[7]]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑏1

𝑏2

𝑏3

𝑏2 𝑏3 −1
−1 𝑏2 0
𝑏2 −𝑏1 1

𝑏3 𝑏2 𝑏1

−𝑏2 1 −𝑏2

−𝑏1 𝑏2 𝑏3

−1
𝑏3

𝑏2

0 1 0
−𝑏2 −𝑏1 −1
1 𝑏2 0

−1 0 1
−𝑏1 −𝑏2 𝑏3

−𝑏2 −1 −𝑏2

𝑏1 −𝑏2 𝑏3 1 𝑏3 −𝑏2 𝑏1 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
2𝑥𝑜[1]

2𝑥𝑜[2]

2𝑥𝑜[3]

2𝑥𝑜[4]

2𝑥𝑜[5]

2𝑥𝑜[6]

2𝑥𝑜[7]]
 
 
 
 
 
 
 

     (26) 
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Fig. 6 the Proposed Implementation I of 8 – Point DFT. 

 

 

Fig. 7 the Proposed Implementation of 16 – Point DFT. 

Figure 7 shows the implementation of 16 – point DFT 

(only at stage2); Equation (26) implements using only 12 real 

multipliers. 

In general for N – point DFT, the real part of 𝑋[𝑘],      

𝑘 = 0,1, … 𝑁 − 1  can be determined using  
𝑁

2
+ 1 points, that 

is 

𝑋𝑅[𝑘] = 𝑥𝑒[0] + (−1)𝑘𝑥𝑒 [
𝑁

2
] + ∑ 𝑥𝑒[𝑛] cos

2𝜋𝑘𝑛

𝑁

𝑁
2−1

𝑛=1

 

𝑘 = 0,1, … ,
𝑁

2
                     (27) 

𝑋𝑅[𝑘] = 𝑥𝑒[0] + 𝑥𝑒 [
𝑁

2
] + 2 ∑ 𝑎〈𝑛𝑘〉𝑁 (𝑥𝑒[𝑛] + 𝑥𝑒 [

𝑁

2
− 𝑛])

𝑁
4−1

𝑛=1

+ (−1)
𝑘
2 2𝑥𝑒 [

𝑁

4
]       for 𝑘  even              (28) 

𝑋𝑅[𝑘] = 𝑥𝑒[0] − 𝑥𝑒 [
𝑁

2
] + 2 ∑ 𝑎〈𝑛𝑘〉𝑁 (𝑥𝑒[𝑛] − 𝑥𝑒 [

𝑁

2
− 𝑛])

𝑁
4−1

𝑛=1

 

for 𝑘  odd               (29) 

 

−   

−   

𝑥[0]   

𝑥[1]   

𝑥[2]   

𝑥[3]   

𝑥[7]   

𝑥[4]   

𝑥[5]   

𝑥[6]   

𝑥𝑒[0]   

2𝑥𝑒[1]   

2𝑥𝑒[2]   

2𝑥𝑒[3]   

2𝑥𝑜[1]   

𝑥𝑒[4]   

2𝑥𝑜[3]   

2𝑥𝑜[2]   

−   
−   

−   

−   

𝑏1   

𝑎1   

−   

−   

−   

𝑋𝑅[0]   

𝑋𝑅[1]   

𝑋𝑅[2]   

𝑋𝑅[3]   

𝑋𝐼[3]   

𝑋𝑅[4]   

𝑋𝐼[1]   

𝑋𝐼[2]   

𝑋[0]   

𝑋[1]   

𝑋[2]   

𝑋[3]   

𝑋[7]   

𝑋[4]   

𝑋[5]   

𝑋[6]   

−𝑗   

−𝑗   

−𝑗   𝑗   

𝑗   

𝑗   

−   

Stage1   Stage2   Stage3   

𝑎2   

𝑎2   

𝑎1   

𝑎3   

2𝑥𝑜[3]   

2𝑥𝑜[4]   

2𝑥𝑜[6]   

2𝑥𝑜[5]   

2𝑥𝑒[4]   

2𝑥𝑜[2]   

2𝑥𝑜[7]   

2𝑥𝑜[1]   

𝑥𝑒[0]   

𝑥𝑒[8]   

2𝑥𝑒[1]   

2𝑥𝑒[7]   

2𝑥𝑒[5]   

2𝑥𝑒[2]   

2𝑥𝑒[6]   

2𝑥𝑒[3]   

−   

−   

−   

𝑋𝑅[8]   

𝑋𝐼[1]   

𝑋𝐼[2]   

𝑋𝐼[3]   

𝑋𝐼[4]   

𝑋𝐼[5]   

𝑋𝐼[6]   

𝑋𝐼[7]   

𝑋𝑅[0]   

𝑋𝑅[1]   

𝑋𝑅[2]   

𝑋𝑅[3]   

𝑋𝑅[7]   

𝑋𝑅[4]   

𝑋𝑅[5]   

𝑋𝑅[6]   
𝑎1   

𝑎3   −   

−   

−   

−   −   

−   

−   
−   

−   
−   

−   

−   
−   

−   

𝑏1   

𝑏3   

𝑏1   

𝑏3   

−   

−   

−   

𝑏2   

−   
−   

−   
−   

−   

−   

−   

𝑏2   
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Where, 𝑎〈𝑛𝑘〉𝑁 = cos 
2𝜋𝑘𝑛

𝑁
, which are reduced to only  

( 
𝑁

4
− 1) coefficients, as we explain in previous section, i.e. 

𝑎1, 𝑎2, … , and 𝑎𝑁
4−1

. Note that 𝑎0 = 1 and 𝑎𝑁

4

= −1.  

To implement the real part of DFT, we need          

(
𝑁

8
(

𝑁

4
− 2) + log2 𝑁 − 2) real multiplications. 

The imaginary part of DFT can be determined using 
𝑁

2
−

1 points, that is 

𝑋𝐼[𝑘] = ∑ 𝑥𝑜[𝑛] sin
2𝜋𝑘𝑛

𝑁

𝑁
2−1

𝑛=1

 ,        𝑘 = 1,2, … ,
𝑁

2
− 1          (30) 

𝑋𝐼[𝑘] = 2 ∑ 𝑏〈𝑛𝑘〉𝑁 (𝑥𝑜[𝑛] − 𝑥𝑜 [
𝑁

2
− 𝑛]) ,

𝑁

4
−1

𝑛=1

 

for 𝑘  even                            (31) 

𝑋𝐼[𝑘] = 2 ∑ 𝑏〈𝑛𝑘〉𝑁 (𝑥𝑜[𝑛] + 𝑥𝑜 [
𝑁

2
− 𝑛])

𝑁

4
−1

𝑛=1

+ (−1)
𝑘+1

2 2𝑥𝑜 [
𝑁

4
] ,    for 𝑘 odd              (32) 

Where, 𝑏〈𝑛𝑘〉𝑁 = sin
2𝜋𝑘𝑛

𝑁
, which are reduced to only  

( 
𝑁

4
− 1) coefficients, i.e.  𝑏1, 𝑏2, … , and 𝑏𝑁

4−1
.  

Also, to implement the imaginary part of DFT, we need 

(
𝑁

8
(

𝑁

4
− 2) + log

2
𝑁 − 2) real multiplications, that means, 

to build the proposed implementation of DFT, the number of 

real multiplications is equal to 2 (
𝑁

8
(

𝑁

4
− 2) + log2 𝑁 − 2). 

3.2 The Proposed Implementation II of DFT 

For more reduction in number of real multipliers, we 

share multipliers of real part DFT (a’s) to compute the 

imaginary part of DFT, which also will reduce an area of 

implementation for efficient processors using VLSI or FPGA. 

If N is a multiple of 4, the twiddle factor 𝑊𝑁
1 and 𝑊𝑁

𝑁
4−1

 

are distributed as shown in Fig. 8. 

 

sin(
2𝜋𝑛

𝑁
) = −cos (

𝜋

2
−

2𝜋𝑛

𝑁
) = −cos (

2𝜋(𝑁
4

−𝑛)

𝑁
), 

𝑛 = 1,2, … ,
𝑁

4
− 1                 (33) 

𝑏1 = sin(
2𝜋

𝑁
) = −cos (

2𝜋(𝑁
4

−1)

𝑁
) = −𝑎𝑁

4
−1

 , 

𝑏2 = −𝑎𝑁
4−2

,    and so on, 𝑏𝑁
4−2

= −𝑎2 , 

𝑏𝑁
4−1

= −𝑎1 ,                                                                                (34) 

That for 𝑁 = 16, 𝑏3 = −𝑎1 , 𝑏2 = −𝑎2 and 𝑏1 = −𝑎3, 

and the imaginary part of the twiddle factors are distributed 

as shown in Fig. 9 (b). 

 

Fig. 9 (a) the real part of twiddle factor for N = 16. (b) Its imaginary part 

with same coefficients of real part. 

Equations (31) and (32) can be written as: 

𝑋𝐼[𝑘] = −2 ∑ 𝑎〈𝑛𝑘〉𝑁 (𝑥𝑜 [
𝑁

4
− 𝑛] − 𝑥𝑜 [

𝑁

2
− (

𝑁

4
− 𝑛)])

𝑁
4−1

𝑛=1

 

for 𝑘  even                            (35) 

𝑋𝐼[𝑘] = −2 ∑ 𝑎〈𝑛𝑘〉𝑁 (𝑥𝑜 [
𝑁

4
− 𝑛] + 𝑥𝑜 [

𝑁

2
− (

𝑁

4
− 𝑛)])

𝑁
4−1

𝑛=1

 

+ (−1)
𝑘+1
2 2𝑥𝑜 [

𝑁

4
]           for 𝑘  odd           (36) 

To compute XI [k] from Equations (28) and (29), and 

comparing them with Equations (35) and (36), the procedure 

is as follow: 

• Let 𝑥𝑜[0] = 𝑥𝑜 [
𝑁

2
] = 0. 

 

• The sequence from 𝑥𝑜[𝑁

4
+ 1] to 𝑥𝑜 [

𝑁

2
− 1] enter to   

stage 2 of implementation as a negative value. 

 

• The odd component sequence 𝑥𝑜[𝑛] is sorted from 

𝑥𝑜[𝑁

4
− 1] to 𝑥𝑜[1] with their pairs. 

 

• The difference among the equations is the midterm 

(𝑥𝑜[𝑁

4
] or 𝑥𝑒[𝑁

4
]), which is added in (28) when k is even, 

while it appears in (35) when k is odd. This problem is 

solved by using de-multiplexer to select where must be 

added as shown in Fig. 10. 

 

 

 

 

 𝑊𝑁
1 

 𝑊𝑁

𝑁
4−1

 

 𝜃 

 𝜃 

              Fig. 8 The twiddle factor for N a multiple of 4 

(a)   (b)   
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−1    1   
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 𝑎2    −𝑎2   

 −𝑎2   
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 𝑎1    −𝑎1   

 −𝑎1   

 −𝑎3   

 −𝑎3   

 𝑎3   

 𝑎3   

 𝑎2   

0    0   

−1   

 −𝑎2    −𝑎2   

 𝑎2   
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Fig. 10 The proposed implementation II for DFT. 
 

The output of the system in Fig. 10 is either 𝑋𝑅[𝑘], 𝑘 =
0,1, … 𝑁

2
 , if its input 𝑥𝑒[𝑛], 𝑛 = 0,1, … , 𝑁

2
 , or −𝑋𝐼[𝑘], 𝑘 =

0,1, … 𝑁

2
 , if its input 𝑥𝑜[𝑛], 𝑛 = 0,1, … , 𝑁

2
. The selection of the 

inputs is done by controlling the multiplexers and de-

multiplexer. To implement the second proposed 

implementation of the DFT, we need only (
𝑁

8
(

𝑁

4
− 2) +

log2 𝑁 − 2) real multiplications. 

4. The Implementation of IDFT 

The inverse DFT is given by Proakis and Manolakis [6]: 

𝑥[𝑛] =
1

𝑁
(𝐷𝐹𝑇(𝑋∗[𝑘]))∗                                                         (37) 

That means, we can compute the IDFT, by using the same 

proposed implementation of DFT with input sequence 

complex conjugate of  𝑋[𝑘], which is already containing real 

part even component 𝑋𝑅[𝑘] and odd component 𝑋𝐼[𝑘], so the 

first stage in Fig. 6  is not needed in computing IDFT. The 

stage 3 will be changed from complex additions to real 

additions, while stage 2 remains as it is. 

5. Results and Discussion 

The proposed implementation I of DFT can be used for 

any N even, and proposed II is used for N a power of 4, 

without any zero padding, which is needed in FFT. The 

proposed design is sufficient for N ≤ 1024. As compared to 

FFT algorithm, the number of real multiplication is 

significantly reduced as shown in Table 1. 

Table 1 Number of Real Multiplications to Compute an N-point DFT. 

N 

Complex 

Multiplications 

FFT 

Real 

Multiplications 

FFT 

Real 

Multiplications 

Proposed I 

Real 

Multiplications 

Proposed II 

8 12 48 2 1 

16 32 128 12 6 

32 80 320 54 27 

64 192 768 232 116 

128 448 1792 970 485 

256 1024 4096 3980 1990 

512 2304 9216 16124 8071 

1024 5120 20480 65040 32520 

−2𝑥𝑜[7]   

2𝑥𝑜[4]   

2𝑥𝑒[5]   

2𝑥𝑒[4]   

2𝑥𝑒[6]   

2𝑥𝑜[1]   

2𝑥𝑒[3]   

−2𝑥𝑜[6]   

𝑥𝑒[8]   

2𝑥𝑒[1]   

2𝑥𝑜[3]   

2𝑥𝑜[2]   

2𝑥𝑒[7]   

−2𝑥𝑜[5]   

2𝑥𝑒[2]   

𝑥𝑒[0]   

0   

0   

𝑎1   

𝑎3   

𝑎1   

𝑎3   

0   

−   

𝑎2   

𝑎2   

DM   

−   

−   

−   

−   

−   

−   

−   

−   

0   

0   

DM   DeMultiplexer   

even/odd 

Controller 

Multiplexer   

even/odd 

Controller 
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6. Conclusions 

This paper proposed two implementation to reduce the 

number of real multipliers, which are needed to compute the 

DFT. The new designs are sufficient for N ≤ 512 or N ≤ 1024 

comparing with FFT algorithm as shown in Table 1. Our idea 

in this paper is implemented directly from real and imaginary 

part equations of X [k] without processing to have cascaded, 

tree, or radix structure, which may be reduced further. 
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