

2009 / 04 / 06

2008 / 08 / 04

Abstract:

The properties of the yrast levels of ⁷⁸⁻⁸²Sr even-even isotopes have been studied. The method of gamma energy over spin (E-GOS) has been used to analyze the energy levels of these isotopes which shows that the two isotopes ⁷⁸Sr and ⁸⁰Sr lie in the γ -unstable, O(6), limit, but ⁸²Sr isotope lies in the transition region (SU(5) \rightarrow SU(3)).

The interacting boson model IBM-1 has been used to calculate the energy levels for these three isotopes each for the limit it lies and a comparision with the experimental data is done and shows a good agreement.

The backbending in the energy levels for ⁸⁰Sr and ⁸²Sr are observed but not for ⁷⁸Sr.

⁷⁸⁻⁸²Sr

O(6)

.

SU(3)

SU(5)

.

[1] Regan (E-GOS)

[1,2,3,4]

[5] Palit

(Yrast-band) [6] Yamamoto M~80

[7]

[2,7,8,9,10,11]

.

$$E_{\gamma}(I \rightarrow I - 2) = \hbar \omega$$

$$I \qquad \omega \qquad \hbar$$

$$J \qquad E_{\gamma}(I \rightarrow I - 2) = \frac{\hbar^2}{2J}(4I - 2)$$

$$E_{\gamma} = \frac{E2_1^+}{4}(I + 2)$$

$$E - GOS$$

$$I \qquad R = \frac{E_{\gamma}}{I}$$

$$[1] \qquad R$$

106

•

$$Vibrator: \quad R = \frac{\hbar\omega}{I} \xrightarrow{I \to \infty} 0 \tag{1}$$

Rotor:
$$R = \frac{\hbar^2}{2J} \left(4 - \frac{2}{I}\right) \xrightarrow{I \to \infty} 4 \frac{\hbar^2}{2J}$$
(2)

$$\gamma - unstable \qquad R = \frac{E2_1^+}{4} (1 + \frac{2}{I}) \xrightarrow{I \to \infty} \frac{E2_1^+}{4}$$
(3)

$$R$$

$$R \qquad I \to \infty \qquad I = 2$$

$$R \qquad R = \frac{4\hbar^2}{2J} \qquad I = \infty \qquad R = \frac{3\hbar^2}{2J} \qquad I = 2$$

$$R = \frac{E2_1^+}{2} \qquad I = 2 \qquad \gamma \text{-unstable}$$

$$R = \frac{E2_1^+}{2} \qquad I = 2 \qquad \gamma \text{-unstable}$$

$$R = \frac{E2_1^+}{4} \qquad I \to \infty$$

[17] Arima and Iachello

.

$$.[4] [18,20] H = \varepsilon \stackrel{?}{n_d} + a_0 \stackrel{?}{P} \cdot \stackrel{?}{P} + a_1 \stackrel{?}{L} \cdot \stackrel{?}{L} + a_2 \stackrel{?}{Q} \cdot \stackrel{?}{Q} + a_3 \stackrel{?}{T}_3 \cdot \stackrel{?}{T}_3 + a_4 \stackrel{?}{T}_4 \cdot \stackrel{?}{T}_4$$
(4)

$$P,L,Q,T_3,T_4$$
 d n_d ε

 $a_{0,}a_{1},a_{2},a_{3},a_{4}$

eigen value

:[18,19,20]

.

For Vibrator SU (5)

$$E(n_{d}, v, L) = \varepsilon n_{d} + K_{1}n_{d}(n_{d} + 4) + K_{4}v(v + 3) + K_{5}L(L + 1)$$
 (5)
 K_{1}, K_{4}, K_{5} d v

For Rotor SU (3)

$$E(\lambda, \mu, L) = \frac{a_2}{2}(\lambda^2 + \mu^2 + \lambda\mu + 3\lambda + 3\mu) + (a_1 - 3a_2/8)L(L+1)$$
(6)

μ λ

 a_{2}, a_{1}

For
$$\gamma$$
 - unstable $O(6)$
 $E(\sigma, \tau, L) = A(N - \sigma)(N + \sigma + 4) + B\tau(\tau + 3) + CL(L + 1)$ (7)

N

$$A,B,C$$
 σ τ

 σ

For transition region
$$SU(5) \rightarrow SU(3)$$

 $E(\lambda, \mu, L) = \varepsilon n_d + K_2(\lambda^2 + \mu^2 + \lambda\mu + 3\lambda + 3\mu) + K_5L(L+1)$ (8)

$$K_5 = \frac{a_1 - 3a_2}{8} \qquad K_2 = \frac{a_2}{2}$$

Ι

Yrast levels

$$E_{\gamma} \qquad [5]$$

$$: \qquad I \qquad .$$

$$E_{I} = \frac{\hbar^{2}}{2J}I(I+1) \qquad (9)$$

J

[7,10] I-2 & I

$$E_I - E_{I-2} = \frac{\hbar^2}{2J} (4I - 2) \tag{10}$$

[7,10]

$$(\hbar\omega)^2 = \left(I^2 - I + 1\right) \left(\frac{E_I - E_{I-2}}{2I - 1}\right)^2 \tag{11}$$

$^{78-82}Sr$							
E-GOS							-
) I	$R = \frac{E_{\gamma}}{I}$					
)				[1](
					(1,2,3)		(
		IBM-1					
	(8 7))	⁷⁸⁻⁸² Sr]	Yrast lev	els	
	SU(5)	(5) - SU(3)		⁸⁰ Sr, ⁷⁸	Sr		<i>O</i> (6)
		(B,C)			(7)	. 8	$s^2 Sr$
	(8)			(1)	78, 00	⁸⁰ Sr	
(7)			(2)		Sr ⁶²	\mathcal{E}, K_2, K_5	i
(11) (1	0)	$\langle 2 \rangle$	^{78,80} Sr				
	(4)	(3)					
(11	(8) (10)		• ⁸² Sr				
(1)	(10)		(5)				
			(5)				
			E-GOS		(2)	(1)	
		(2)					
		(3)		()	
$\left(\underline{2J}\right)$							
$\left(\hbar^{2}\right)$	<i>.</i>		<			<i>.</i>	
	(11)		$(\hbar\omega)^2$			(10)	
(ħ	$\omega)^2$	$\left(\frac{2J}{\sqrt{2}}\right)$			(3,	4,5)	
^{80,82} S	۲	(h²)			(5) (4)	
	L			•	⁷⁸ Sr) (')	
			109)			
				/			

E-GOS $^{78-82}Sr$ (2) (1) *SU*(5), *SU*(3), *O*(6) ^{78,80}Sr R *O*(6) (18^+_1) $(139.25)^{78} Sr$ (94.05) ⁷⁸Sr (192.94) ⁸⁰Sr (20^+_1) (77.39) R ⁸²Sr (2) R (18^+_1) (79.21) (286.77) 2_{1}^{+} (24^+_1) (89.66) $\left(20_1^+ \rightarrow 24_1^+\right)$ $(^{78,80}Sr)$ O(6) (IBM-1) (A) (7) (B,C) (ε, K_2, K_5) (SU(5)-SU(3)) (3,4,5) $({}^{82}Sr)$ (3) (IBM - 1) $\left(\frac{2J}{\hbar^2}\right)$ $(\hbar\omega)^2$ ⁷⁸Sr (4) *O*(6) 110

R

R

		⁸⁰ Sr	
R	(20^+_1)		$(18_1^+ \& 20_1^+)$
		(1)	
	$(10^+_1 - 14^+_1)$		⁸² Sr
	(2)	E-GOS	(5)
		(14_{1}^{+})	
		$(10_1^+ \& 12_1^+)$	
)			
			(
	(2)		
	K_2	⁸² Sr	
	$(16^+_1 \rightarrow 24^+_1)$	$(-0.7796 \ keV) (2^+_1 \rightarrow 14^+_1)$) $(-0.112 keV)$

Е

 K_5

^{78,80}Sr

:(1)

.

Isotope	B keV	C keV	
Sr ⁷⁸	64.1650	7.0275	
Sr ⁸⁰	127.0650	-12.4664	

:(2)

Sr⁸²

 $SU(5) \rightarrow SU(3)$

state	ε(keV)	K ₂ (keV)	K ₅ (keV)	
$2^+ \rightarrow 14^+$	499.6225	-0.112	18.2412	
$16^+ \rightarrow 24^+$	499.6225	-0.7769	14.5462	

Sr⁷⁸

:(3)

	(a)	(b)		(c)	(d)	(e)	(f)
Spin I	E(I) _{exp} (keV)	$(1) \\ E_{cal} \\ (keV)$	E _γ (keV)	Δ(%)	R _{exp} (keV/ħ)	$2J/\hbar^2 \times 10^{-3}$ (keV) ⁻¹	$(\hbar\omega)^2 \times 10^4$ $(\text{keV})^2$
2+	278.5	298.8	278.5	-7.29	139.25	21.54	2.5854
4+	782.2	782.19	503.7	0.0013	125.92	27.79	6.7312
6+	1494.5	1450.12	712.3	+2.97	118.78	30.88	12.999
8^+	2390	2302.6	895.5	+3.66	111.92	33.50	20.315
10 ⁺	3447	3339.6	1057	+3.13	105.7	35.95	28.1633
12+	4657	4561.2	1210	+2.06	100.83	38.0	36.81
14 ⁺	6024	5967.3	1367	+0.94	97.64	39.50	46.9094
16 ⁺	7558	7557.8	1534	0.003	95.87	40.41	59.0125
18^{+}	9251	9333.0	1693	-0.886	94.05	41.36	71.8317

$$\Delta(\%) = \left(\frac{E_{\exp} - E_{cal}}{E_{\exp}}\right) \times 100$$
 (c)

- (10) (e)
- (11) (f)

78-82	Sr
	Sr

•

Sr ⁸⁰				:(4)				
Spin I	(a) E(I) _{exp} (keV)	(b) E(I) _{cal} (keV)	E _γ (keV)	(c) Δ(%)	(d) R(I) (keV/ħ)	(e) $2J/\hbar^2 \times 10^{-3}$ $(keV)^{-1}$	(f) $(\hbar\omega)^2 \times 10^4$ $(\text{keV})^2$	
2^{+}	385.88*	433.46	385.88	-12.3	192.94	15.549	4.9634	
4+	**980.68	1021.32	594.8	-4.14	148.7	23.5373	9.3862	
6+	1763.58	1763.58	782.9	0.00	130.52	28.10	15.7073	
8+	2700.4	2660.23	936.84	+1.49	117. 11	32.02	22.2333	
10 ⁺	3765.7	3711.29	1065.3	+1.44	106.32	35.670	28.6074	
12+	4952.0	4916.75	1186.3	+0.71	98.86	38.776	35.3822	
14+	6276.6	6276.75	1324.6	-0.002	94.57	40.767	44.0446	
16 ⁺	7752.5	7790.8	1475.9	-0.49	92.24	42.008	54.627	
18 ⁺	9331.2	9459.51	1578.7	-1.37	87.71	44.340	62.46	
20^+	10879.0	11282.5	1547.8	-3.71	77.39	50.394	60.0102	
22+	12630.3	13260.0	1751.3	-4.98	79.59	49.106	76.8	
24+	14746.8	15391.8	2116.5	- 4.37	88.18	44.413	112.1414	

(f), (e) (d), (c), (b)

(a)

113

(3)

	1	C	,	
4	ſ	٩	í	Z
2			7	

	Sr ⁸²						
Spin I	(a) E _{exp} (I) (keV)	^(b) E _{cal} (keV)	(c) Δ(%)	E _γ (keV)	(d) R(I) (keV/ħ)	(e) $2J/\hbar^2 \times 10^{-3}$ $(keV)^{-1}$	$(\hbar\omega)^2 \times 10^4$ $(\text{keV})^2$
2^{+}	573.54	573.54	0.0	573.54	286.77	10.46	10.9649
4 ⁺	1328.54	1328.54	0.0	755.0	188.75	18.54	15.1231
6+	2229.47	2229.47	0.0	900.93	150.155	24.42	20.7949
8^+	3242.8	3276.33	-1.03	1013.33	126.068	29.60	26.0132
10 ⁺	4350.3	4469	-2.73	1107.4	110.74	34.31	30.9187
12+	5427.1	5807.84	-7.01	1076.76	89.73	42.71	29.1518
14+	6543.6	6315.08	+3.49	1116.5	79.74	48.36	31.2925
16 ⁺	7812.0	7716.57	+1.22	1268.32	79.27	48.88	40.3465
18+	9237.8	9234.43	+0.04	1425.78	79.21	49.09	50.947
20+	10872.4	10868	+0.04	1634.6	81.73	47.71	66.9297
22+	12758.8	12619.26	+1.1	1886.28	85.74	45.58	89.1069
24 ⁺	14910.8	14486.23	+2.8	2151.84	89.66	43.68	115.9348

(23)

(a)

(8) (b)

(f), (e) (d), (c)

114

(3)

.

-

:(1)

 $^{78,80}Sr$ (2)

O(6)

$$\begin{array}{c}
\cdot \frac{78}{80}Sr & (5) \\
\cdot \left(18^{+}_{1} \& 20^{+}_{1}\right) & {}^{80}Sr & (6)
\end{array}$$

$$\left(10_{1}^{+}\right) \qquad \qquad 8^{2}Sr \qquad \qquad (7$$

⁷⁸⁻⁸²Sr

:

- Regan P. H., Beausang C. W., Zamfir R. F., Casten R. F., Zhang Jineye, Yamamoto A. D., Caprio M. A., Phys. Rev. Lettes. 90: 1525021-4 (2003).
- 2) Daniel Seaborne Project Super. P. H. Regan Seaborne (2004) <u>WWW.ph.Surrey.ac.uk./nevsite/uploads</u>
- 3) Regan P. H., Wheldon C., Yamamoto A. D., Valiente-Dobon, Cline D., etal., Acta Physica Polonica B36 :1313-1322 (2005).
- 4) Yu-Xin liu, Liang-Zhu Mu, and Haigng Wei Phys. Lett B 633:49-53 (2006).
- 5) Palit R., Sheikh J. A., Sun Y., Jain H. C., Nucl. Phys. A 686:141-162 (2001).
- 6) Yamamoto A. D., Beausang C. W., Xu F. R., Phys. Rev. C66: 0243021-13 (2002).
- 7) El Kameesy S. U., Alharbi H. H., Alhendi H. A., arxiv:nucl-th/0509015 V1 (2005).
- 8) Burcham W. E., Elements of Nuclear Physics Longman Inc., Newyork (1989).
- 9) Krane K., Introductory Nuclear Physics John Wiely and Sons, Newyork (1987).
- 10) Kelabi Mohamed E., arxiv:nucl-th/2005/050321V1.
- 11) Sirag M. M., Jou. Nucl. Radi. Phys.1:79-91(2006).
- 12) Galeriu D., Bucurescu D., and Ivascu M., J. Phys. G: Nucl. Phys. 12: 329-348 (1986).
- 13) Buchinger F., Ramsay E. B., Arnold E., Neu W., Neugart R., and Wendt K., Phys. Rev. C41:2883-2897 (1990).
- 14) Tripathy K. C., Sahu R., J. Phys. G: Nucl. Phys. 20:911-923 (1994).
- **15)** Döring J., Aprahamian A., and Wiescher M., J. Res. Nati. Inst. Stand. Technol. 105:43-51 (2000).
- 16) Yu C. H., Baktash C., Brinkman M. J., Jin H.-Q, and Rudolph D., etal., Phys. Rev. C57:113-122 (1998).
- 17) Iachello F., Arima A., The Interacting Boson Model, University press Canbridge (1987).
- **18)** Arima A., and Iachello F., Phys. Rev. Lett., 35:1069- (1975).
- **19)** Arima A., and Iachello F., Ann. Phys. 99:253- (1976).
- **20)** Arima A., and Iachello F., Ann. Phys. 123:468-492 (1979).
- 21) Shaheen Rab., Nucl. Data Sheets 63:1- (1991).
- **22)** Balraj Singh Nucl. Data Sheets 105:223- (2005).
- **23)** Tuli J. K., Nucl Data Sheets 98:209- (2003).
- 24) His Tseng Chen Chinese Journal of Physics 29:411-430 (1991).