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Abstract: An investigation was conducted to study the effect of 

loading level with respect to shear center and span length on 

lateral torsional buckling of steel I-section beams using linear 

and nonlinear finite element analysis available in ANSYS 

(version 12.0) computer program. The steel beams which have 

been studied included prismatic beams and linearly web-

tapered beams with web tapering ratio of (0.5). The maximum 

height of all beams was 300 mm with span length of 4, 6 and 8 

m. The critical buckling loads for prismatic and linearly 

tapered cantilever and simply supported beams subjected to 

point load and uniformly distributed load were determined. 

The results showed that, the bottom flange loading gives a 

buckling loads higher than that of the top flange loading with 

percentage increases of 148% and 155% for the linear and 

nonlinear analysis respectively for the prismatic beams. While 

for the tapered beams, these percentages increases were 61% 

and 67% respectively.          

 

I. INTRODUCTION 

If the flexural rigidity of the beam in the plane of the web 

is many times greater than it’s lateral rigidity, the beam 

may buckle and collapse long before the bending stresses 

due to the transverse load reach the yield point [1].  In case 

of slender beams, which having narrow sections with 

narrow flanges and long spans, these beams lack both 

lateral flexural rigidity and torsional rigidity, and if left 

unrestrained, they may buckle by combined twist and 

lateral bending of the cross-section. This phenomenon is 

known as lateral torsional buckling of beams. The lowest 

load at which this critical condition occurs represents the 

critical load for the beam [2]. 

Yuen [3], in 1998, presented a study consists of an 

experimental and analytical investigation of the lateral 

buckling behavior of steel I-section girders braced by 

continuous or discrete U-frames. Twin I-section girders 

have been used in the test and the lateral deflection of the 

compression flanges and final buckling modes were 

recorded and the coupling effect of U-frame action is 

clearly demonstrated. Using a large displacement elasto-

plastic finite elements package, ABAQUS (version 4.7), 

finite elements idealizations of the tests were established 

and analyzed. Good correlation between the experiments 

and the numerical analyses was reached.  

Simpson [4], in 2000, presented an analytical 

investigation of the behavior of curved steel girders. He 

studied a popular type of curved bridge consists of steel I-

girders interconnected by cross-frames and a composite 

concrete deck slab. Prior to hardening of the concrete deck 

each I-girder is susceptible to a lateral torsional buckling-

type failure. Unlike a straight I-girder, a curved I-girder 

resists major components of stress resulting from strong 

axis bending, weak axis bending, and warping. The 

combination of these stresses reduces the available strength 

of a curved girder versus that of an equivalent straight 

girder. This study included a nonlinear modeling of curved 

steel girders. This is accomplished by incorporating large 

deflection and nonlinear material behavior into three 

dimensional finite elements models generated using the 

program ANSYS (version 5.0, 5.2, and 5.3).  

 

II. MODELING AND IDEALIZATION OF STEEL BEAMS 

Stress-strain diagrams present valuable information 

necessary to understand how steel will behave in a given 

situation [3]. Thus, this relation between stresses and 

strains of a structure is of an importance in modeling any 

structural problem so that this modeling will be able to 

represent realistically the response of the material and the 

behavior of the structure according to. In this study, the 

steel material has been modeled as Von Mises material 

with isotropic hardening.  

The stress-strain curve [5] of steel is idealized as a 

bilinear curve, representing elastic-plastic behavior with 

strain hardening. This curve is assumed to be identical in 

tension and compression as shown in figure (1). Material 

properties for steel beams as follows: 

Elastic modulus ES1 = 210000 N/mm2 . 

Poisson’s  ratio v = 0.3 . 

Yield stress ƒy =350 N/mm2 . 

Strain hardening modulus ES2 is assumed to be 0.1 ES1. 

In this study shell element, (SHELL63) [6], was used 

to model the steel beam. This element is defined by four 

nodes having six degrees of freedom at each node: 

translations in x, y, and z directions and rotations about the 

nodal x, y, and z axes. The geometry, node locations, and 

the coordinate system for this element are shown in figure 

(2). 

Effect of Loading Level and Span Length on Critical 

Buckling Load 
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Figure 1 Typical Stress-Strain Curve for Steel[5] 

 

 
Figure 2  SHELL63 Geometry[6] 

 

III. BUCKLING ANALYSIS 

Buckling analysis is a technique used to determine 

buckling loads; the critical loads at which a structure 

becomes unstable, and the different ways that the structural 

member can deform which known as  buckling mode 

shapes. Two techniques are available in ANSYS program 

for predicting the buckling load and buckling mode shapes: 

eigenvalue (linear) buckling analysis and nonlinear 

buckling analysis. Because the two methods can yield 

different results, it is necessary first to understand the 

differences between them. 

 

A. Eigenvalue (Linear) Buckling Analysis 

Eigenvalue buckling analysis predicts the theoretical 

buckling strength of an ideal linear elastic structure. This 

method corresponds to the textbook approach to elastic 

buckling analysis. However, imperfections and 

nonlinearities prevent most real-world structures from 

achieving their theoretical elastic buckling strength. Thus, 

eigenvalue buckling analysis often yields un-conservative 

results, and should generally not be used in actual day-to-

day engineering analysis. 

 

B. Nonlinear Buckling Analysis 

Nonlinear buckling analysis is usually the more 

accurate approach and is therefore recommended for design 

or evaluation of actual structures. This technique employs a 

nonlinear static analysis with gradually increasing loads to 

seek the load level at which the structure becomes unstable. 

Using the nonlinear technique, the model can include 

features such as initial imperfections, plastic behavior, 

gaps, and large-deflection response. 

IV. NONLINEAR SOLUTION TECHNIQUES IN ANSYS 

In the nonlinear analysis, solving the governing 

equations may be achieved by using three basic solution 

techniques. These are the incremental, iterative, and 

combined incremental-iterative approaches. 

 

A. Incremental-Iterative Technique 

This technique, as shown in figure (3-a), is usually 

carried out by applying the external loads as a sequence of 

sufficiently small increments, and within each increment of 

loading, iterations are performed until equilibrium is 

satisfied according to some selected convergence criterion. 

The incremental-iterative procedures comprise the 

following procedures: 

 

B. Full Newton-Raphson Procedure 

In this procedure, the stiffness matrix is updated at 

every equilibrium iteration, thus a large amount of 

computation may be required to form and solve the 

stiffness matrix, figure (3-b). 

 

(a)  
 

 (b) 

Figure 3 a) Incremental-Iterative Technique,  

              b) Full Newton-Raphson Method 

 

V. CONVERGENCE CRITERION 

A convergence criterion is required in order to 

terminate the iterative process required for solving the 

governing nonlinear equation, i.e., a termination criterion 

for iterative process should be used to stop the iteration 

when sufficient accuracy is achieved or when no further 

iterations are necessary. The ANSYS program gives a 

number of choices when designating a convergence 

criterion. The convergence criterion for the nonlinear 

analysis of structural problems can be classified as: Force 
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criterion, Displacement criterion and Stress criterion. The 

force criterion has been used in this study.  

VI. DETAILS OF  STUDIED BEAMS 

In this study, the critical buckling loads for different 

types of prismatic and linearly web-tapered I-section 

beams were considered. Investigated beams having lengths 

of 4, 6, and 8m. The web-tapering ratio was considered to 

be 0.5, that is; h min = 0.5 h max. Table (1)  gives the details 

for all beams which are considered in this study, and figure 

(4) shows the configuration of the considered beams. 

 

VII. RESULTS OF BUCKLING ANALYSIS 

A. Cantilever Beams  under  Point Load  

The critical buckling loads Qcr were determined for the 

two types of beams, the prismatic and linearly web-tapered 

cantilever beams given in table (1), and the results are 

listed in tables (2) to (5). The numerical results obtained by 

Andrade[7], which were calculated for the same beams by 

using the finite elements package ABAQUS (version 6.3), 

were also listed in these tables. A comparison between the 

results was made to verify the accuracy of the results of the 

used finite elements models in the present study. The 

comparison showed a good agreement, and that proved the 

ability and accuracy of the used models to predict the 

critical buckling loads in two different techniques (linear 

and nonlinear) and for complex cases such as linearly web-

tapered steel beams. Tables (6) and (7) show a comparison 

between the obtained eigenvalue (linear) buckling loads 

Qcrlin and nonlinear buckling loads Qcr nlin. 

 

TABLE 1  DETAILS OF BEAMS 

Beam 

item 

L 

M 

bf 

mm 

hmax 

mm 

h min 

mm 

t f 

mm 

t w 

mm 
Description 

PC4 4 150 300 300 10 6 
Prismatic 

Cantilever 

PC6 6 150 300 300 10 6 
Prismatic 

Cantilever 

PC8 8 150 300 300 10 6 
Prismatic 

Cantilever 

TC4 4 150 300 150 10 6 
Web-Tapered 

Cantilever 

TC6 6 150 300 150 10 6 
Web-Tapered 

Cantilever 

TC8 8 150 300 150 10 6 
Web-Tapered 

Cantilever 

TS4 4 150 300 150 10 6 
Web-Tapered 

Simple beam 

TS6 6 150 300 150 10 6 
Web-Tapered 

Simple beam 

TS8 8 150 300 150 10 6 
Web-Tapered 

Simple beam 

 

 

 

 
Figure 4  a) Prismatic Cantilever with Point Load, b) Web-Tapered 

Cantilever with Point Load, c) Web-Tapered Cantilever with UDL,  

d) Web-Tapered Simply Supported with Point Load, e) Web-Tapered 

Simply Supported with UDL[7] 

 

 TABLE 2  LINEAR CRITICAL BUCKLING LOADS OF PRISMATIC 

BEAMS UNDER POINT LOAD 

Beam 

Item 

Qcr 

ANSYS 

kN 

Qcr 

ABAQUS 

kN 

 

QcrANS 

QcrABA 

Loading 

level 

PC4 24.86 22.80 1.09 Top 

flange 

loading 

PC6 11.95 11.40 1.05 

PC8 7.06 6.90 1.02 

PC4 58.11 47.40 1.23 
Centroidal 

loading 
PC6 21.20 20.20 1.05 

PC8 10.53 10.40 1.01 

PC4 83.08 83.40 0.97 Bottom 

flange 

loading 

PC6 27.32 27.40 0.98 

PC8 12.79 12.80 0.99 
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TABLE 3 NONLINEAR CRITICAL BUCKLING LOADS OF 

PRISMATIC CANTILEVER BEAMS UNDER POINT LOAD 

Beam 

Item 

Qcr 

ANSYS 

kN 

Qcr 

ABAQUS 

kN 

 

QcrANS 

QcrABA 

Loading 

level 

PC4 25.08 23.00 1.09 Top 

flange 

loading 

PC6 12.11 11.50 1.05 

PC8 7.19 7.00 1.03 

PC4 60.28 48.60 1.24 
Centroidal 

loading 
PC6 21.98 20.90 1.05 

PC8 10.92 10.70 1.02 

PC4 86.82 87.20 0.99 Bottom 

flange 

loading 

PC6 28.50 28.60 0.99 

PC8 13.33 13.40 0.99 

 

TABLE 4 LINEAR CRITICAL BUCKLING LOADS OF LINEARLY 

WEB-TAPERED CANTILEVER BEAMS UNDER POINT LOAD 

Beam 

Item 

Qcr 

ANSYS 

kN 

Qcr 

ABAQUS 

kN 

 

QcrANS 

QcrABA 

Loading 

level 

TC4 35.19 31.60 1.11 Top 

flange 

loading 

TC6 15.64 15.20 1.03 

TC8 8.53 8.40 1.01 

TC4 56.50 53.50 1.06 
Centroidal 

loading 
TC6 20.47 20.30 1.01 

TC8 10.29 10.20 1.01 

TC4 70.00 70.00 1.00 Bottom 

flange 

loading 

TC6 23.70 23.70 1.00 

TC8 11.39 11.40 0.99 

 

TABLE 5 NONLINEAR CRITICAL BUCKLING LOADS OF LINEARLY WEB-

TAPERED CANTILEVER BEAMS UNDER POINT LOAD 

Beam 

Item 

Qcr 

ANSYS 

kN 

Qcr 

ABAQUS 

kN 

 

QcrANS 

QcrABA 

Loading 

level 

TC4 36.47 32.70 1.11 Top 

flange 

loading 

TC6 16.45 15.90 1.03 

TC8 9.04 9.00 1.01 

TC4 60.09 57.60 1.04 
Centroidal 

loading 
TC6 22.02 21.80 1.01 

TC8 11.33 10.90 1.04 

TC4 75.90 76.10 0.99 Bottom 

flange 

loading 

TC6 25.64 25.70 0.99 

TC8 12.49 12.30 0.99 

 

TABLE 6 LINEAR AND NONLINEAR CRITICAL BUCKLING LOADS OF 

PRISMATIC CANTILEVER BEAMS UNDER POINT LOAD 

Beam 

Item 

Qcr lin 

(Linear) 

kN 

Qcr nlin 

(Nonlinear) 

kN 

Qcr lin 

 

Qcr nlin 

Loading 

level 

PC4 24.86 25.08 0.99 
Top flange 

loading 
PC6 11.95 12.11 0.99 

PC8 7.06 7.19 0.98 

PC4 58.11 60.28 0.96 
Centroidal 

loading 
PC6 21.20 21.98 0.97 

PC8 10.53 10.92 0.96 

PC4 83.08 86.82 0.96 Bottom 

flange 
loading 

PC6 27.32 28.50 0.96 

PC8 12.79 13.33 0.96 
 

TABLE 7  LINEAR AND NONLINEAR CRITICAL BUCKLING LOADS OF 

WEB-TAPERED CANTILEVER BEAMS UNDER POINT LOAD 

Beam 

Item 

Qcr lin 

(Linear) 

kN 

Qcr nlin 

(Nonlinear) 

kN 

Qcr lin 

 

Qcr nlin 

Loading 

level 

TC4 35.19 36.47 0.97 Top 

flange 

loading 

TC6 15.64 16.45 0.95 

TC8 8.53 9.04 0.94 

TC4 56.50 60.09 0.94 
Centroidal 

loading 
TC6 20.47 22.02 0.93 

TC8 10.19 11.33 0.90 

TC4 70.00 75.90 0.92 Bottom 

flange 

loading 

TC6 23.70 25.64 0.92 

TC8 11.39 12.49 0.91 
 

Figures (5) to (8) show the effect of the variation in 

length of the beams and level of the applied loads on the 

critical buckling loads. The load was applied at three 

different places of the cross-section; top flange, centroid, 

and bottom flange. From these figures, it can be seen that, 

for the same beam, the bottom flange loading case gives a 

buckling load greater than the other two cases. Also the top 

flange loading case gives a buckling load lesser than the 

other two cases. The results showed that, the bottom flange 

loading gives a buckling loads higher than that of the top 

flange loading with percentage increases of 148 and 155% 

from the linear and nonlinear analysis respectively, for the 

prismatic beams. While for the tapered beams, these 

percentages increases were 61 % and 67% respectively. 

The reason of this variation  is related to the  position of 

the applied load with respect to the shear centre. Double 

symmetric I-section, considered in this study, having a 

shear centre coincides with the centroid, and when the load 

applied at the centroid, its resultant will pass through the 

shear centre and any twisting of the cross-section will 

prevented. As the load applied above or below the shear 

centre, an additional torque, which equals the applied load 

multiplied by its arm from the shear centre, will 

introduced. The load applied above the shear centre 

increases the twisting of the beam and decreases the 

resistance to buckling, and conversely when the load 

applied below the shear centre. It is clear that, as the length 

of the beams increases, the critical buckling load decreases. 

This is due to the increase of slenderness ratio.  Figures (9) 

to (11) shows the first buckling mode shapes for cantilever 

beams under end point load.  

 
Figure 5  Effect of level of loading and length of beam on linear critical 

buckling loads for prismatic beams PC4, PC6 and PC8 
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Figure 6 Effect of level of loading and length of beam on nonlinear 

critical buckling loads for prismatic beams PC4, PC6 and PC8 

 

 
Figure 7  Effect of level of loading and length of beam on linear critical 

buckling loads of web-tapered beams TC4, TC6 and TC8 

 

 
Figure 8 Effect of level of loading and length of beam on nonlinear 

critical buckling loads of web-tapered beams TC4, TC6 and TC8 

 

 
Figure 9 First Buckling Mode Shape for Beam PC4 under End Point Load  

(Top Flange Loading) 

 
Figure 10 First Buckling Mode Shape for Beam PC6 under End Point 

Load (Centroidal Loading) 

 

 
Figure 11 First Buckling Mode Shape for Beam PC8 under End Point 

Load (Bottom Flange Loading) 

 

B. Cantilever Beams under Uniformly Distributed Load 

(UDL) 

 The critical buckling loads Qcr , from the two analyses, 

were determined for linearly web-tapered cantilever beams 

with UDL, and listed in table (8). The resulted buckling 

loads from the two analyses with the effect of length 

variation are shown in figure (12). Approximately, the 

same values for the buckling loads were obtained. It is 

obvious that the critical buckling load, from the two 

analyses, decreases as the length of the beam increases. 

The percentage decrease in buckling loads with length 

varying from 4m to 8m is 88% from linear buckling 

analysis and 87.7% from nonlinear buckling analysis. 

Figure (13) shows the first buckling mode shape for  beam TC4 

under UDL. 

 

TABLE 8 LINEAR AND NONLINEAR CRITICAL BUCKLING 

LOADS FOR LINEARLY WEB-TAPERED CANTILEVER BEAMS 

UNDER UDL  

Beam 

item 

Length 

m 

Qcr lin 

kN/m 

Qcr nlin 

kN/m 

Qcr lin 

Qcr nlin 

TC4 4 28.26 28.95 0.98 

TC6 6 8.32 8.61 0.97 

TC8 8 3.40 3.55 0.95 
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Figure 12  Critical buckling loads for web-tapered cantilever beams 

under UDL 

 

 
Figure 13 First Buckling Mode Shape for  Beam TC4 under UDL 

 

C. Simply Supported Beams under Point Load  

The critical buckling loads Qcr for linearly web-tapered 

simply supported beams subjected to point load at mid 

span were obtained. The critical buckling loads from the 

two analyses are listed in table (9), and the resulted 

buckling loads obtained with respect to the variation in 

length of the beam, are shown in figure (14). From this 

figure, it’s apparent that the buckling capacity of the 

simply supported beam decreases as the length of this 

beam increases from 4m to 8m and the percentages 

decreases corresponding are 73.5% from linear buckling 

analysis and 74% from nonlinear buckling analysis. Also, a 

great proximity in the results of linear and nonlinear 

buckling analyses can be noticed. Figure (15) shows the first 

buckling mode shape for half Sspan of beam TS4 under point 

load.  

 

TABLE 9 LINEAR AND NONLINEAR CRITICAL BUCKLING 

LOADS FOR LINEARLY WEB-TAPERED SIMPLY SUPPORTED 

BEAMS UNDER POINT LOAD 

Beam 

item 

Length 

m 

Qcr lin 

kN 

Qcr nlin 

kN 

Qcr lin 

Qcr nlin 

TS4 4 88.08 89.94 0.98 

TS6 6 39.42 39.86 0.99 

TS8 8 23.32 23.36 0.99 

 

 
Figure 14  critical buckling loads for linearly web-tapered simply 

supported beams under point load 

 

 
Figure 15 First Buckling Mode Shape for Half Span of Beam TS4 under 

Point Load 

 

 

D. Simply Supported Beams under Uniformly Distributed 

Load  

The linear and nonlinear critical buckling loads Qcr for 

linearly web-tapered simply supported beams loaded by 

UDL were determined, and the obtained results are listed in 

table (10). The resulted buckling loads from the two 

analyses are shown in figure (16) which shows a great 

proximity in the results of linear and nonlinear buckling 

analyses. Also it shows that, as it was noticed in the 

previous cases, the effect of the increasing the span length 

is against the buckling strength, and the percentage 

decreases are 93.5% and 86% from linear and nonlinear 

buckling analysis, respectively.  

 

 

TABLE 10 LINEAR AND NONLINEAR CRITICAL BUCKLING 

LOADS FOR LINEARLY WEB-TAPERED  SIMPLY SUPPORTED 

BEAMS UNDER UDL 

Beam 

item 

Length 

m 

Qcr lin 

kN/m 

Qcr nlin 

kN/m 

Qcr lin 

Qcr nlin 

TS4 4 38.53 39.11 0.98 

TS6 6 11.86 11.90 0.99 

TS8 8 5.30 5.48 0.97 
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Figure 16 Critical buckling loads for linearly web-tapered simply 

supported beams under UDL 

 

VIII. CONCLUSIONS 

1- The results proved the ability and accuracy of the 

used models to predict the critical buckling loads in 

two different techniques (linear and nonlinear) and for 

complex cases such as linearly web-tapered steel 

beams.  

2- The nonlinear analysis yielded buckling load values 

slightly greater than those resulted from the linear 

analysis. The ratio between the linear and nonlinear 

buckling loads was ranged from 0.95 to 0.99 for all 

loading cases.   

3- As the length of the beams increases, the critical 

buckling load decreases due to the increase of 

slenderness ratio. 

4- One of the most important factors that effecting the 

critical buckling loads for I-section beams is the load 

level relative to the shear centre. When the load is 

applied at the bottom flange the buckling resistance 

will increase and inversely when the load is applied at 

the top flange. 

5- For cantilever beams loaded by a point load, the 

bottom flange loading gave a nonlinear buckling load 

greater than that of the top flange loading by (38% - 

108%) and (85% - 246%) for the linearly web-tapered 

and prismatic beams, respectively. The smallest 

percentage is corresponding to the shortest span length.  
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