

٦٤

 J. Edu. & Sci., Vol. (23), No. (1) 2010

Demosaicing of True Color Images Using Adaptive

Interpolation Algorithms

Nadia Tarik Saleh
Department of Computer Science

College of Computer and Mathematics Sciences
University of Mosul

Accepted Received

16 / 02 / 2009 28 / 08 / 2008

 المستخلص
ستخلاص الألوان في أجهزة التصوير الملون الإلكترونية، كمـا فـي الكـاميرا يتم إ

الرقمية، عن طريق متحسس للإضاءة والذي يقوم بأخذ عينة حسب نمط معـين مـن ألـوان
تسمى عملية استرجاع الألـوان .عناصر الصورة النقطية، وهي الأحمر، الأخضر، والأزرق

إسترجاع الألوان من الحالة الفسيفسائية أو ما يطلق عليه المفقودة و إعادة توليدها من جديد ، ب
 .، وهو أحد أنواع الإستكمالDemosaicingالـ

يتناول البحث الحالي تطبيق ومقارنة عدد مـن خوارزميـات الإسـتكمال التكييفيـة
ق مـع ائالمعروفة على مجموعة من الصور ذات الألون الحقيقية، كما تمت مقارنة هذه الطر

 . طريقة جديدة معتمدة في عملها على النوعيناستحداثبالإضافة إلى . لتقليديةق اائالطر
 نسبة الإشارة إلى ستخدم مقياس اوقد . Bitmapالصور المستخدمة في العمل من نوع

 جميع النتائج تم إدراج. لقياس مدى دقة الصورة الناتجةSignal to noise ratio وهوالخطأ
 لغـة البرمجـة أمـا .افة إلى عينات من الصور المـستخدمة التي تم الحصول عليها بالإض

 .Visual C++ 6.0هي لغة فالمستخدمة

ABSTRACT
In an electronic color-imaging device, such as a digital camera,

using a single CCD (Charge Coupled Device) sensor, the color
information is usually acquired in sub-sampled patterns of Red (R),
Green (G) and Blue (B) pixels. The methodology to recover or interpolate
the missing color components is known as color demosaicing, a type of
image interpolation.

Demosaicing of True Color Images Using Adaptive Interpolation Algorithms.

٦٥

This paper introduces and compares some of the most popularly
demosaicing algorithms of adaptive type applied on true color images.
Another comparison is done between these methods and the non-adaptive
traditional methods. Also, a new method is invented, which depends on
both types.

The used images are of Bitmap type. Signal to noise ratio measure
is used as an objective quality metric. The results of comparison are
presented with some sampled images. Programming has been applied
using Visual C++ 6.0 programming language.

1. Introduction

Due to the cost and packaging consideration, in digital imaging
devices, such as the commercially available Digital Still Cameras (DSC),
the image color is captured in a sub-sampled pattern. Typically each pixel
in the captured raw image contains only one of the three primary color
components, R (Red), G (Green), or B (Blue). This sub-sampled color
image is generated using certain pattern of a Color Filter Array (CFA).

This CFA is realized by coating the surface of the electronic sensor
array or a single CCD array using some optical material that acts as a
band-pass filter. This coating allows the photons corresponding to only
one color component (frequency range) to be transmitted to the sensor
and the other two color components are blocked. A typical and widely
used CFA pattern is called Bayer Pattern. As shown in Figure 1, a Bayer
pattern image of dimension 8*8 [1][2][3].

Figure 1: Bayer Pattern.

Many other implementations of a color-sampling grid have been

incorporated in commercial cameras, most using the principle that the
luminance channel (green) needs to be sampled at a higher rate than the
chrominance channels (red and blue). The choice for green as
representative of the luminance is due to the fact that the luminance
response curve of the eye peaks at around the frequency of green light[3].

Nadia Tarik Saleh

٦٦

Each cell in Bayer pattern represents a pixel with only one color
component as indicated by either R or G or B.

A full-color image needs the information of all the three colors in
each pixel location. As a result, each pixel needs to be represented by 24-
bit colors, assuming 8 bits for each of R, G, and B, as in true color
images. So that, it is essential to interpolate the missing two colors in
each pixel location using the information of the neighboring pixels.

The methodology to recover or interpolate these missing colors is
known as Color Interpolation or Color Demosaicing [1][2][4].

The aim of this paper is to apply commonly adaptive and non-
adaptive demosaicing algorithms on different Bayer images to recover the
original true color images.

A combination of two methods of adaptive and non-adaptive type
is performed to get a new method, which gives better results.

The applied methods are compared together in order to observe the
differences.

2. Principles of Capturing Colors in Digital Camera

The sensors, which are used in most cameras, are either Charge
Coupled Device (CCD) or CMOS (Complimentary Metal Oxide
Semiconductor) sensors. The CCD camera comprises a very large number
of very small photo diodes, called photo-sites. The electric charges,
which are accumulated at each cell in the image are transported and are
recorded after appropriate analog to digital conversion.

In CMOS sensors, on the other hand, a number of transistors are
used for amplification of the signal at each pixel location. The resultant
signal at each pixel location is read individually [1][5][6].

There are several ways in which a digital camera can capture
colors. One approach uses red, green, and blue filters and spins them in
front of each single sensor sequentially one after another and records
three separate images in three colors at a very fast rate. Thus the camera
captures all the three colors components at each pixel location. While
using this strategy an automatic assumption is that during the process of
spinning the three filters, the colors in the image must not change, i.e.,
they must remain stationary. This may not be a very practical solution.

A practical solution is based on the concept of color interpolation
or demosaicing, which is a more economical way to record the three
primary colors of an image. In this method, only one type of filter would
be permanently placed over each individual photo-site. Usually the sensor
placements are carried out in accordance to a specified pattern. The most
popular pattern used is Bayer pattern. It is possible to make very accurate
guesses about the missing color component in each pixel location by a
color interpolation or demosaicing algorithm [1][6].

Demosaicing of True Color Images Using Adaptive Interpolation Algorithms.

٦٧

3. Color Interpolation Algorithms
Color demosaicing algorithms can be broadly classified into two

categories: non-adaptive algorithms and adaptive algorithms, as described
below [1][2]:

• Non-adaptive Algorithms:
In non-adaptive color interpolation algorithms, a fixed pattern of

computation is applied in every pixel location in the sub-sampled color
image to recover the missing two color components. Usually, this type
is easy to implement with low cost in terms of computational
requirements.

• Adaptive Algorithms:
In adaptive color interpolation algorithms, intelligent processing is

applied in every pixel location based on the characteristics of the image
in order to recover the missing color components. This type of
algorithms yield better results in terms of quality as compared with the
non-adaptive algorithms. However, effective algorithms in this
category are usually more computationally intensive

In this paper four algorithms of non-adaptive type with the other
four of adaptive types have been applied at Bayer pattern of images of
different specifications. Also, a new method is invented, which is a
combination of both adaptive and non-adaptive methods.

3.1 Non-adaptive Interpolation Algorithms

Nearest neighbor, bilinear, median, and smooth hue transitions are
the non-adaptive methods used in this paper.

3.1.1 Nearest Neighbor Algorithm

Probably, nearest neighbor is the most basic form of image
interpolation. In this method, each missing color is approximated by
nearest pixel representing that color in the input image. The nearest
neighbor can be any one of the upper, lower, left, and right pixels.

For example, the pixel p at location (m,n) has four horizontal and
vertical neighbors that are given by (m+1,n), (m-1,n), (m, n+1), (m, n-1).
The four diagonal neighbors of p have coordinates (m+1,n+1), (m+1,n-1),
(m-1,n+1), (m-1,n-1). The missing components of these neighbors can
take the component value of p.

The advantage of this approach is that the computational
requirement is very small and suitable for applications where speed is
very crucial. However, the significant color errors make it unacceptable
for a still imaging system, such as high-resolution digital cameras.

With the most basic nearest neighbor interpolation, just copy the
exact same pixel values over to the filler pixel closest to the
pixel [1][2][3][7].

Nadia Tarik Saleh

٦٨

3.1.2 Bilinear Interpolation
A slightly more sophisticated way of accomplishing gray-level

assignments, using the four nearest neighbors of a point. In this
algorithm, a missing color component is interpolated by linear average of
the adjacent pixels representing the missing color.

Consider pixel location (m,n), to estimate Gm,n , given Gm-1,n, Gm,n-1,
Gm,n+1, Gm+1,n, the four horizontal and vertical neighbors. The estimate for
Gm,n is given by:

Gm,n = (Gm-1,n+ Gm,n-1+ Gm,n+1+ Gm+1,n)/4.

To determine Rm,n , given Rm-1,n-1, Rm-1,n+1, Rm+1,n-1, Rm+1,n+1, the four
diagonal neighbors. The estimate for Rm,n is given by:

Rm,n = (Rm-1,n-1+ Rm-1,n+1+ Rm+1,n-1+ Rm+1,n+1)/4.

Blue component is estimated accordingly.
This algorithm is better than nearest neighbor that takes into

account the gradual transition of pixel color values. Some times the
results suffer from pixel artifacts. This may be acceptable in a moderate
quality video application because the artifact may not be immediately
visible by the human eye.

It is possible to use more neighbors for interpolation. Using more
neighbors implies fitting the points with a more complex surface, which
generally gives smoother results [1][2][3][7].

3.1.3 Median Interpolation

Median interpolation allocates the missing color component with
the “median” value of the color components in the adjacent pixels, as
opposed to the linear average used in bilinear interpolation.

The median value is computed for the pixel p at location (m,n)
from the four horizontal and vertical neighbors, for the case of missing
Green component. And from the four diagonal neighbors, for Red and
Blue missing components [1][2].

3.1.4 Smooth Hue Transition Interpolation

The key problem in both bilinear and median interpolation is that
the hue values of adjacent pixels changed suddenly because of the nature
of these algorithms. On the other hand, the Bayer pattern can be
considered as a combination of a luminance channel (green pixels,
because green contains mostly luminous information) and two
chrominance channels (red and blue pixels). The smooth hue transition
interpolation algorithm treats these channels differently. The missing
Green component in every Red and Blue pixel in the Bayer pattern can
first be interpolated using bilinear interpolation. The idea of chrominance
channel interpolation is to impose a smooth transition in hue value from

Demosaicing of True Color Images Using Adaptive Interpolation Algorithms.

٦٩

pixel to pixel. In order to do so, it defines “blue hue” as B/G, and “red
hue” as R/G. To interpolate the missing Blue component Bm,n in pixel
location (m,n) in the Bayer pattern, the following three cases may arise:

1. The pixel at location (m,n) is Green and the adjacent left and right
pixels are Blue color. The missing Blue component in location (m,n)
can be estimated as:
Bm,n = Gm,n/2 * (Bm,n-1/Gm,n-1 + Bm,n+1/Gm,n+1).

2. The pixel at (m,n) is Green and the adjacent top and bottom pixels are
Blue. The missing Blue component can be estimated as:
Bm,n = Gm,n/2 * (Bm-1,n/Gm-1,n + Bm+1,n/Gm+1,n).

3. The pixel at (m,n) is Red and four diagonally neighboring corner
pixels are Blue. The missing Blue component can be estimated as:
Bm,n = Gm,n/4 * (Bm-1,n-1/Gm-1,n-1 + Bm-1,n+1/Gm-1,n+1 +

Bm+1,n-1/Gm+1,n-1 + Bm+1,n+1/Gm+1,n+1).
The missing Red component can be interpolated in each location in

a similar fashion [1][2][3].

3.2 Adaptive Interpolation Algorithms
Pattern matching-based interpolation, block matching, edge

sensing interpolation, and linear interpolation with second order
correction, are the adaptive methods used in this paper. Besides, an
enhanced linear interpolation method is proposed here.

3.2.1 Pattern Matching-Based Interpolation Algorithm

In the Bayer pattern, a Blue or Red pixel has four neighboring
Green pixels. A simple pattern matching technique for reconstructing the
missing color components based on the pixel contexts. It defines a green
pattern for the pixel at location (m,n) containing a non-Green color
component as a four-dimensional integer-valued vector:

gm,n = (Gm-l,n, Gm+l,n, Gm,n-l, Gm.n+l).

The similarity (or difference) between two green patterns g1 and g2 is
defined as the vector norm, in other word, the Euclidean distance between
two vectors.

|| g – g2 || = .||
3

0
21∑

=

−
i

ii gg

When the difference between two green patterns is small, it is
likely that the two pixel’s locations, where the two green patterns are
defined, will have similar Red and Blue color components.

A weighted average proportional to degree of similarity of the
green patterns is used to calculate the missing color component. For
example if the pixel at location (m,n) is Red, the missing Blue component

Nadia Tarik Saleh

٧٠

Bm,n is estimated by comparing the green pattern gm,n with the four
neighboring green patterns gm-1,n-1, gm+l,n-l, gm-1,n+1, and gm+l,n+l. If the
difference between gm,n and each of the four neighboring green patterns
is uniformly small (below a certain threshold), then a simple average is
used to estimated the missing Blue color component:

Bm,n =
4

1,11,11,11,1 BBBB nmnmnmnm ++−++−−−
+++ .

Otherwise, only the top two best-matched green pattern
information items are used. For example, if ||gm,n – gm-1,n-1|| and ||gm,n –
gm+1,n-1|| are the two smallest differences, then the missing Blue color is
estimated as:

Bm,n = (Bm-1,n-1*∆1+Bm+1,n-1*∆2)/(∆1+∆2).
Where ∆1 = ||gm,n – gm+1,n-1|| and ∆2 = ||gm,n – gm-1,n-1||.

The missing Red components can be interpolated in as similar
fashion. While the missing Green component in every Red or Blue pixel
is interpolated using bilinear interpolation [1][2][3].

3.2.2 Block Matching Algorithm

A block matching algorithm based on a concept of Color Block.
The color block of a non-Green pixel is defined as a set x = (x1,x2,x3,x4)
formed by the four neighboring Green pixels, say, x1, x2 ,x3, and x4. A
new Color Gravity is defined as the mean x = (x1+x2+x3+x4)/4.

The similarity between two color blocks is defined as the absolute
difference of their color gravities. The block matching algorithm is
developed based on the selection of a neighboring color block whose
color gravity is closest to the color gravity of the color block under
consideration.

For any non-Green pixel in the Bayer pattern image, as shown in
Figure 1, there are four neighboring Green pixels GN (the North
neighbor), GS (South), GE (East), and GW (the West neighbor), which
form the color block g = (GN, GS, GE, GW). Its color gravity is g = (GN +
GS + GE + GW)/4. The missing Green value is simply computed by the
median of GN, GS, GE, and GW. If the pixel at (m, n) is Blue, it will have
four diagonally Red pixels RNE (the Northeast neighbor), RSE (the
Southeast neighbor), RSW (the Southwest neighbor), and RNW (the
Northwest neighbor), whose color blocks are gNE, gSE, gSW, and gNW and
the corresponding color gravities are NEg , SEg , SWg and NWg respectively.
The missing Red component is assumed to be one of these four diagonal
Red pixels based on best match of their color gravities. The best match
(or minimal difference ∆min) is the minimum of ∆1=| g - NEg |, ∆2=| g -

SEg |, ∆3=| g – SWg | and ∆4=| g – NEg |. The missing Blue component in

Demosaicing of True Color Images Using Adaptive Interpolation Algorithms.

٧١

a Red pixel location could be estimated similarly due to the symmetry of
Red and Blue sampling position in a Bayer pattern image. For the Green
pixel location, only two color blocks (either up-bottom or left-right
positions) are considered for the missing Red or Blue color. The
algorithm can be described as [1][2]:

Begin
 for (each pixel in the Bayer pattern image) do
 { if (the pixel at location (m, n) is not Green) then

{ Gm,n = median (GN, GS, GE, GW);
∆1=| g - NEg |; ∆2=| g- SEg |; ∆3=| g - SWg |; ∆4=| g - NEg |;
∆min = min (∆1, ∆2, ∆3, ∆4);
if (the pixel at location (m, n) is Red) then
{
if (∆min = ∆1) then Bm,n = BNE;
if (∆min = ∆2) then Bm,n = BSE;
if (∆min = ∆3) then Bm,n = BSW;
if (∆min = ∆4) then Bm,n = BNW;
}
if (the pixel at location (m, n) is Blue) then
{
if (∆min = ∆1) then Rm,n = RNE;
if (∆min = ∆2) then Rm,n = RSE;
if (∆min = ∆3) then Rm,n = RSW;
if (∆min = ∆4) then Rm,n = RNW;
}

 }
if (the pixel at location (m, n) is Green) then
{
∆u = |G - ug |; ∆b = |G - bg |; ∆l = |G - lg |; ∆r = |G - rg |;
if (∆u < ∆b) then Bm,n = Bu else Bm,n = Bb;
if (∆t < ∆r) then Rm,n = Rt else Rm,n = Rr;
}

 }
End.

Where u, b, l, and r are the abbreviations for upper, bottom, left, and
right respectively.

3.2.3 Edge Sensing Interpolation Algorithm

In this algorithm, different predictors are used for the missing
Green values depending on the luminance gradients. For each pixel
containing only the Red or the Blue component, two gradients (one in the
horizontal direction, the other in the vertical direction) are defined as:

Nadia Tarik Saleh

٧٢

δH = |Gm,n-1 – Gm,n+1| , δV = |Gm-1,n – Gm+1,n|

Based on these gradients and a certain threshold T, the
interpolation algorithm can be described as follows:

Begin
if (δH<T and δV>T (that is, smoother in horizontal direction)) then

Gm,n = (Gm,n-l + Gm,n+1)/2;
else
if (δH>T and δV<T (that is, smoother in vertical direction)) then

Gm,n = (Gm-l,n + Gm+l,n)/2;
 else

Gm,n = (Gm,n-l + Gm,n+1 + Gm-l,n + Gm+l,n)/4.
End.

To estimate Blue and Red components two diagonal gradients are
defined; one for left diagonal and the other for right diagonal. Also, the
same algorithm described above is implemented, the only difference is
that the diagonal values are used rather than the horizontal and vertical
values [1][2].

3.2.4 Linear Interpolation with Second-Order Corrections

This algorithm was developed with the goal of enhanced visual
quality of the interpolated image when applied on images with sharp
edges. Missing color components are estimated by the following steps:

1- Estimation of Green Component: estimating the missing Green
component Gm,n at a Blue pixel Bm,n at location (m,n), as an example.
Interpolation at a Red pixel location is done in the similar fashion.
Horizontal and vertical gradients are defined in this pixel location as
follows:

δH = |Gm,n-1 – Gm,n+1| + |(Bm,n – Bm,n-2) – (Bm,n+2 – Bm,n)|
δV = |Gm-1,n – Gm+1,n| + |(Bm,n – Bm-2,n) – (Bm+2,n – Bm,n)|

In the expression of δH, the first term |Gm,n-l – Gm,n+l| is the first-
order difference of the neighboring green pixels, considered to be the
gradient and the second term |(Bm,n – Bm,n-2) – (Bm,n+2 – Bm,n)| is the
second-order derivative of the neighboring blue pixels. Using these two
gradients, the missing green component Gm,n at location (m,n) is
estimated as follows:

if (δH < δV) then
Gm,n = (Gm,n-1 + Gm,n+1)/2 + (2*Bm,n – Bm,n-2 – Bm,n+2)/4;

else
if (δH > δV) then

Demosaicing of True Color Images Using Adaptive Interpolation Algorithms.

٧٣

Gm,n = (Gm-1,n + Gm+1,n)/2 + (2*Bm,n – Bm-2,n – Bm+2,n)/4;
else

Gm,n = (Gm,n-1 + Gm,n+1 + Gm-1,n + Gm+1,n)/4 +
(4*Bm,n – Bm,n-2 – Bm,n+2 – Bm-2,n – Bm+2,n)/8.

The second-order correction term based on the neighboring blue or
red components.

2- Estimation of Red (or Blue) component: The missing Red (Blue)
color components are estimated in every pixel location after estimation of
the missing Green components is complete. Depending on the position,
we have three cases:
a) Estimate the missing Red (Blue) component at a Green pixel Gm,n,

where nearest neighbors of Red (Blue) pixels are in the same column,
as:
Rm,n = (Rm-1,n + Rm+1,n)/2 + (2*Gm,n – Gm-1,n – Gm+1,n)/4.

b) Estimate the missing Red (Blue) component at a Green pixel Gm,n,
where nearest neighbors of Red (Blue) pixels are in the same row, as:
Rm,n = (Rm,n-1 + Rm,n+1)/2 + (2*Gm,n – Gm,n-1 – Gm,n+1)/4.

c) Estimate Red (Blue) component at a Blue (Red) pixel. In this case two
diagonal gradients must be defined as:

δD1 = |Rm-1,n-1 – Rm+1,n+1| +|(Gm,n – Gm-1,n-1) + (Gm,n – Gm+1,n+1)|
and

δD2 = |Rm-1,n+1 – Rm+1,n-1| +|(Gm,n – Gm-1,n+1) + (Gm,n – Gm+1,n-1)|

Using these diagonal gradients, the algorithm for estimating the
missing color components is described as:

if (δD1 < δD2) then
Rm,n = (Rm-1,n-1 + Rm+1,n+1)/2 +(2*Gm,n – Gm-1,n-1 – Gm+1,n+1)/2;

else
if (δD1 > δD2) then

Rm,n = (Rm-1,n+1 + Rm+1,n-1)/2 +(2*Gm,n – Gm-1,n+1 – Gm+1,n-1)/2;
else

Rm,n = (Rm-1,n-1 + Rm+1,n+1 + Rm-1,n+1 + Rm+1,n-1)/4 +
(4*Gm,n – Gm-1,n-1 – Gm+1,n+1 – Gm-1,n+1 – Gm+1,n-1)/4.

This algorithm provides much better visual quality of the
reconstructed image containing a lot of sharp edges. In other case, the
second-order calculations of the gradients give some unacceptable
results [1][2][3].

Nadia Tarik Saleh

٧٤

3.2.5 Modified Linear Interpolation with Second-Order Corrections
This new invented method is based on linear interpolation method

discussed above in addition to bilinear algorithm. The idea is to compare
the second-order correction term with a certain threshold value, if this
term is greater than the threshold value then the correction term is
eliminated and only a linear average is computed. Otherwise, the
correction term is added. For example, the missing Green component Gm,n
at location (m,n) is estimated as follows:

if (δH < δV) then
{ Correction term = (2*Bm,n – Bm,n-2 – Bm,n+2)/4;

if (Correction term < Threshold) then
Gm,n = (Gm,n-1 + Gm,n+1)/2 + Correction term;

else Gm,n = (Gm,n-1 + Gm,n+1)/2;
}
else {
if (δH > δV) then
{ Correction term = (2*Bm,n – Bm-2,n – Bm+2,n)/4;

if (Correction term < Threshold) then
 Gm,n = (Gm-1,n + Gm+1,n)/2 + Correction term;

else Gm,n = (Gm-1,n + Gm+1,n)/2;
}
else
{ Correction term = (4*Bm,n – Bm,n-2 – Bm,n+2 – Bm-2,n – Bm+2,n)/8;

if (Correction term < Threshold) then
Gm,n = (Gm,n-1 +Gm,n+1 +Gm-1,n +Gm+1,n)/4 + Correction term;

}
}

4. Program Interface

The program is created using Visual C++ programming language,
as MFC AppWizard (exe) of type Single Document Interface (SDI)
[8][9].

Besides its basic function i.e., image demosaicing, the project has
other properties such as image scrolling, file serialization, and providing
(Signal to Noise Ratio) SNR results.

The base class that is used for viewing is derived from
CScrollView rather than CView class, because the latter doesn’t provide
the utilities for scrolling, which is very important in viewing high-
resolution images [8][9], see appendix A.

File Serialization is the method used by MFC programs to read and
write application data to files, with the aid of CArchive class, which is
used to model a generic storage object. In most cases, a CArchive object

Demosaicing of True Color Images Using Adaptive Interpolation Algorithms.

٧٥

is attached to a disk file[8][9], see appendix A. Figure 2 shows the main
program interface.

Figure 2: Main Program Menu.

5. Creating Bayer Pattern
To show the effectiveness of the demosaicing algorithms, the

Bayer pattern is synthetically generate from a full-color RGB image by
simply dropping two color components in each pixel coordinate (if the
original Bayer pattern image cannot be grabbed from a digital camera
directly) [1][2][4].

6. Experimental Results

More than twenty images have been chosen to work with
depending on their high frequency nature and other interesting image
characteristics to demonstrate performance of different color interpolation
algorithms.

In order to compare between the color intensity of the original
image the resultant image, signal to noise ratio measure is used. The
following formula clarifies the relation between two images [10]:

SNR = −10 × log10 (∑ (Xi – Wi)² ⁄ ∑ Xi²).

Where X refers to the original image and W refers to the image
produced from the selected demosaicing process. The formula is applied

Nadia Tarik Saleh

٧٦

three times for Red, Green, and Blue intensities of each pixel in the true
color bitmap. Table 1 shows the comparison results of interpolation
algorithms depending on Green component, as Green is sampled in Bayer
image at a higher rate than Red and Blue. Table 2 and 3 give the SNR
results.

Figure 3(a) is a full color image of a parrot. Bayer pattern image is
generated from this image, as shown in Figure 3(b). The Figures 3(c), (d),
(e), (f), (g), (h), (i), (j), and (k) show the resultant images produced by
applying the methods: nearest neighbor, bilinear, median, smooth hue
transitions, pattern matching, block matching, edge sensing, linear
interpolation with second order correction, and the new enhanced linear
interpolation, respectively, on Bayer pattern image.

Table 1: Methods Comparison.

Method SNR Average for Green
Color Component Quality Percentage

Nearest Neighbor 21.2005 57.2987
Bilinear 25.5773 69.1279
Median 24.0728 65.0618
Smooth Hue Transition 26.0348 70.3643
Pattern Matching 26.0348 70.3643
Block Matching 26.0348 70.3643
Edge Sensing 25.8151 69.7706
Linear with Second Order 21.3119 57.5997
Enhanced Linear Intr. 26.7709 72.3539

Demosaicing of True Color Images Using Adaptive Interpolation Algorithms.

٧٧

Table 2: SNR Values.

Image
Method Color

Component Butterfly1
(768 * 512)

Parrot
(768 * 512)

Pussy
(800 * 600)

Peacock
(768 * 512)

Red 17.2642 21.5438 24.2019 8.24024
Green 15.4311 26.5922 27.7852 13.9387 Nearest

Neighbor
Blue 12.5823 19.7319 22.6687 8.1647
Red 20.3529 27.5987 33.1196 10.4388

Green 19.2571 33.6041 29.4472 17.1379 Bilinear
Blue 14.4144 21.4710 25.3966 10.1288
Red 17.7912 23.6269 24.5813 8.0758

Green 17.9295 31.1944 30.4355 15.4444 Median
Blue 12.0589 18.2850 22.1538 7.7778
Red 19.6328 14.2431 26.4471 14.0538

Green 19.2571 33.6041 33.1196 17.1379 Smooth Hue
Transition

Blue 17.3365 19.6136 28.8633 13.3238
Red 21.6453 29.3152 27.5663 11.6035

Green 19.2571 33.6041 33.1196 17.1379 Pattern
Matching

Blue 15.5485 22.6358 25.3364 11.2409
Red 20.6620 25.7953 26.2346 10.9742

Green 19.2571 33.6041 33.1196 17.1379 Block
Matching

Blue 14.5794 21.6791 24.1764 10.6060
Red 21.4997 29.9995 29.7173 11.3670

Green 19.1911 33.5922 32.9667 16.9402 Edge Sensing
Blue 15.5158 24.3467 27.0233 11.0573
Red 15.3675 12.6327 12.5763 8.7051

Green 15.2444 19.6021 32.7494 18.2609 Linear with
Second Order

Blue 9.27391 12.0230 25.3256 7.6137

Red 20.5277 25.3514 25.3639 10.5497

Green 19.9202 36.2225 34.5294 18.1374 Enhanced
Linear Intr.

Blue 15.3721 22.9022 25.5705 10.9676

Nadia Tarik Saleh

٧٨

Table 3: SNR Values.

Image
Method Color

Component Eye
(384 * 288)

Calyx
(640 * 427)

Butterfly5
(768 * 512)

Field
(1024 * 768)

Red 20.3526 22.4850 14.8668 14.8262
Green 24.4613 24.0084 18.3724 19.0149 Nearest

Neighbor
Blue 19.5368 17.7169 13.1508 16.5368
Red 22.6645 28.2561 17.6342 17.5685

Green 28.2766 29.5607 23.4976 23.8376 Bilinear
Blue 22.1791 20.1288 15.5018 18.2977
Red 20.4266 24.2902 14.7751 14.8609

Green 26.7556 27.3613 21.2890 22.1733 Median
Blue 19.3490 16.9487 12.8151 15.8505
Red 21.4924 11.5052 21.3284 19.7337

Green 28.2766 29.5479 23.4976 23.8376 Smooth Hue
Transition

Blue 20.1592 21.9343 18.9117 21.1158
Red 20.4796 30.2983 19.4524 18.4214

Green 28.2766 29.5479 23.4976 23.8376 Pattern
Matching

Blue 21.3188 21.7146 17.0740 19.0850
Red 19.0501 27.3461 18.2049 17.6655

Green 28.2766 29.5479 23.4976 23.8376 Block
Matching

Blue 21.2567 19.6617 16.0073 18.3378
Red 23.5193 30.5532 19.0462 18.8273

Green 27.2448 29.5247 23.3417 23.7196 Edge Sensing
Blue 24.0469 21.7802 16.8060 19.5277
Red 9.8191 8.9287 11.2109 11.6121

Green 23.766 15.9485 20.6218 24.3021 Linear with
Second Order

Blue 18.246 4.2126 9.6298 15.9991

Red 17.5466 18.2836 18.2226 17.0685

Green 28.5913 27.3947 24.4639 24.9084 Enhanced
Linear Intr.

Blue 20.3406 21.9026 16.8629 19.1218

Demosaicing of True Color Images Using Adaptive Interpolation Algorithms.

٧٩

(b) (a)

(c)

(d)

(e) (f)

Nadia Tarik Saleh

٨٠

Figure 3: (a) Original 24-bit full color image, (b) Bayer Image (c) Nearest

Neighbor, (d) Bilinear, (e) Median, (f) Smooth Hue Transitions, (g) Pattern
Matching, (h) Block Matching, (i) Edge Sensing, (j) Linear interpolation
with second order correction, (k)The new enhanced linear interpolation.

(g) (h)

(j) (i)

(k)

Demosaicing of True Color Images Using Adaptive Interpolation Algorithms.

٨١

7. Conclusion
The comparison between the different applied demosaicing

algorithms presents the following conclusions:
• Applying nearest neighbor method gives some significant color

errors, which make it unacceptable for all types of images.
• Bilinear algorithm gives better results than other non-adaptive

methods and in some cases adaptive methods, as bilinear takes into
account the gradual transition of pixel color values.

• Median method provides a slightly better result as compared with
nearest neighbor.

• Applying smooth hue transition on images having the characteristic
of hue values changing suddenly of adjacent pixels, gives results
much better than other non-adaptive or adaptive methods.

• Best results are achieved when using pattern matching, block
matching, and the new enhanced linear algorithms. This is because
of the accurate approach to find the best color component match.
Also, they rely on bilinear method, as the latter gives good results.

• Edge sensing gives better results and high quality images depending
on the threshold value and when applying on sharp edges images.

• Linear interpolation with second order correction method gives good
image quality for sharp edges image. However, it has some
unacceptable results and disparate pixels can be obviously noticed.

• The new enhanced linear interpolation method, proposed in this
paper, provides better image quality as compared with the both
types. Also, it gives the best image quality than the original linear
interpolation method for all the used images.

Nadia Tarik Saleh

٨٢

References

1) T. Acharya and A. K. Ray, “Image Processing Principles and
Applications”, John Wiley & Sons, INC., Publication, 2005.

2) P. Tsai, T. Acharya, and A. K. Ray, “Adaptive Fuzzy Color
Interpolation”, Journal of Electronic Imaging, Vol. 11 No. 3, 293-
305, July 2002.

3) Rajeev Ramanath, Wesley E. Snyder, and Griff L. Bilbro,
“Demosiacking Methods for Bayer Color Array”, Journal of
Electronic Imaging, July 26, 2003.

4) Gary L. Embler, “Correlation-based color mosaic interpolation using
connectionist approach”, Society of Photo-Optical Instrumentation
Engineers (SPIE) Vol. 4669, 2002.

5) John C. Russ, “The Image Processing Handbook”, Third Edition,
CRC Press, 1998.

6) Rafael C. Gonzalez and Richard E. Woods, “Digital Image
Processing”, Second Edition, Prentice-Hall, Inc., 2002.

7) L. Guan, S. Kung, and J. Larsen, “Multimedia Image and Video
Processing”, CRC Press, 2001.

8) M. Williams, “Teach Yourself Visual C++ 5 in 24 Hours”,
Macmillan and Sams Publishing, 1999.

9) Davis C. and Jon B., “Teach Yourself Visual C++ 6 in 21 Days”,
Macmillan Publishing, 1999.

10) Pratt, W.K., "Digital Image Processing", John Wiley & Sons, 1978.

Demosaicing of True Color Images Using Adaptive Interpolation Algorithms.

٨٣

Appendix (A)

void CViewerView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal;

sizeTotal.cx = x_res; sizeTotal.cy = y_res;
SetScrollSizes(MM_TEXT, sizeTotal);

}
void CViewerDoc::Serialize(CArchive& ar)
{

if (ar.IsStoring())
{

ar.Write(ImageSave,54+infoHeader.biHeight*infoHeader.biWidth*3);
ar.Close();
}

 else
 {
 CFile* pFile = ar.GetFile();
 pFile->Read(&fileHeader, sizeof(fileHeader));
 pFile->Read(&infoHeader, sizeof(infoHeader));
 pFile->SeekToBegin();
 if(infoHeader.biSize != sizeof(infoHeader))
 AfxMessageBox(_T("Error in BMP file!"));
pFile->Seek(fileHeader.bfOffBits, CFile::begin);
m_pPixels = new BYTE [fileHeader.bfSize - fileHeader.bfOffBits];
pFile->Read(m_pPixels,fileHeader.bfSize - fileHeader.bfOffBits);
 /*covert m_pPixels from 1D array to 2D array*/
for(int y=0;y<infoHeader.biHeight;y++)
 for(int x=0;x<infoHeader.biWidth;x++)
 {
pixels[y][x].red=m_pPixels[(((infoHeader.biHeight-1)-y)*

(infoHeader.biWidth*3)+(x*3))+2];
pixels[y][x].green=m_pPixels[(((infoHeader.biHeight-1)-y)*

(infoHeader.biWidth*3)+(x*3))+1];
pixels[y][x].blue=m_pPixels[(((infoHeader.biHeight-1)-y)*

(infoHeader.biWidth*3)+(x*3))];
 }
}
}

