

١٣٠

 J. Edu. & Sci., Vol. (23), No. (3) 2010

Survey of Parallel Block Methods

Bashir M. Khalaf Mohammed A. Al-Taee
Department of Computers Sciences / College of Education

University of Mosul

Abdulhabib Abdullah

Accepted Received
06 / 04 / 2009 16 / 12 / 2008

 الملخص

 العددية المتوازية بلوك تطوير خوارزميات دراسة الرئيسي من هذا البحث هو الغرض
 ذات لحل المعادلات التفاضلية الاعتيادية الصلبة والتي هي مناسـبة للتنفيـذ علـى حاسـبات

 .عمليات متعددة في آن واحد

Abstract
 The main purpose of this research is the survey of the development
Block parallel numerical algorithms for solute stiff ordinary differential
equations which are suitable for running on MIMD (Multiple instruction
streams with multiple data streams) computers.

1: Itroduction

The novel property of these methods which we shall discuss here is
that of simultaneously production approximations to the solution of the
initial value problem at a block of points Nnnn xxx +++ ,....,, 21 . Although these
methods will be formulated in term of linear multi step methods and shall
see that they are equivalent to certain Runge-Kutta methods and preserve
the traditional Runge-Kutta advantages of being setf-stavting and of
permitting easy change of step-length. Their advautage over conventional
Runge-Kutta methods lies in the fact that they are les, expensive in terms
of function evaluations for given order.

A block is the set of all new function values which are evaluated
during each application of the iteration formula. For a k-points block k
new values of the solution are produced simultaneously in each
computational step. Thus, a block method generates a set, or block, of
new values in a single integration step.

Survey of Parallel Block Methods.

١٣١

 Block methods appear to have been first proposed by Milne (1953)
who advanced their use only as a means of obtaining starting values for
predicator-corrector algorithms for general use.
 Several authors (see, for example, [1,2,3,5,6,7,8,9,12,15]) have
considered block methods for the parallel solution of the initial value
problem (IVP).

00)(),,(yxyyxfy ==′ (1)
 By means of a single application of a calculation unit, a block
method yields a sequence of new estimates for y. If k ≥1 is the block size,
then in simple cases the values of x at which solution are computed will
be evenly separated [14]. In other words, each basic cycle of the
calculation has the potential to advance the solution by k new points in
the x direction. Each such block can, therefore, be considered as a unit of
calculation. Let ny denotes the approximation to the exact solution)(nxy

at nxx = . Also, nf denotes the value of f)(nn yx , the approximation for
)(nxy′ . For n=m k, a block of solution can be represented by the vector

T
knnnm yyyY),,,(21 +++ −−−= with jny + (1 ≤ j ≤ k), the generated solution at

jhxx njn +=+ , where nx is the right-hand end point of the preceding
block and is the uniform spacing between solution values.

 Such procedures can be formulated either as implicit predictor-
corrector methods [12]. In addition the underlying formulae may only rfer
to the end point of the previous block, so called one-step methods. In
order words, by one-step methods, we mean methods that compute the

block of values iny + , i=1, …,k, from the value of ny only. Otherwise,
some or all of the points in the previous block could be used (multi-step
methods) or a number of previous blocks in which case the methods are
referred to as multi-block methods.

2: Cash's Block Method For Nonstiff ODEs and stiff ODEs:
 Each has the following form for Nonstiff case:
 }4/34/1{ 311 kkhyy nn +=−+
 }32/2732/732/2132/9{ 54312 kkkkhyy nn +++=−+
 }126/3948/69112/117504/105{ 64313 kkkkhyy nn +++=−+
 The formula is obtained by using the standard RK formalism for
block methods with the coefficients of the Butcher array for a

thp order
formula given for the stepsize H= ph, and the weights for solution at
internal points in the block are given under the dotted lines.
 And has the following form stiff case to compute

)2(
3

)2(
2

)2(
1

)1(
2

)1(
1 ,,,, +++++ nnnnn yyyyy respectively:

Bashir M. Khalaf & Mohammed A. Al-Taee & Abdulhabib Abdullah

١٣٢

1
11

 11
112

11

 12/12/1
12/12/11

112
11

−
−

 1111
11112

12/12/11
112

11

−
−
−

 and (2)

We note that five stage block formula (2) provides 5 separate solution.

3.1: Parallel Block Implicit Methods:
 Block implicit methods as described by Shampine and Watts [12]
and Rosser [11] have been shown to be competitive with standard
methods for integrating ODEs. Worland [15] showed that block methods
are good candidates for parallel processor implementation and are easily
adapted to a parallel mode with little apparent degradation in the solution.
 In block implicit methods, time is divided into a series of blocks
with each block containing a number of steps at which solutions to
system equations are to be found [5]. Block values are all obtained
together in a single block advance and the block may be considered as
unit calculation. The accuracy of the method can be changed by changing
the number of steps in a block or the size of the steps. These changes can
be made dynamically at the start of each block calculation on the basis of
error condition occurring in the previous block.
 In a k-point block method each pass through the algorithm
simultaneously produces k new equally spaces solution values.
 Block implicit methods can be applied in a one- step mode, in
which only the last point in the block is used to compute the first
approximation to the k values of the next block. Then, implicit formulas
are applied iteratively until convergence is achieved to the maximum
order of accuracy obtainable [12].
 An example of a parallel 4- point one – step implicit block scheme,
based upon integration formulas which are basically of the Newton-
Cotes type, is (see Worland (1976)[15]):

nnrn rhfyy +=+
)0(

 , r = 1, 2, 3, 4

)19106264646251(
720

)(
4

)(
3

)(
2

)(
1

)1(
1

s
n

s
n

s
n

s
nnn

s
n fffffhyy ++++
+
+ −+−++=

Survey of Parallel Block Methods.

١٣٣

)42412429(
90

)(
4

)(
3

)(
2

)(
1

)1(
2

s
n

s
n

s
n

s
nnn

s
n fffffhyy ++++

+
+ −+−++=

)1424349(

80
3)(

4
)(
3

)(
2

)(
1

)1(
3

s
n

s
n

s
n

s
nnn

s
n fffffhyy ++++

+
+ −+−++=

)73212327(

45
2)(

4
)(
3

)(
2

)(
1

)1(
4

s
n

s
n

s
n

s
nnn

s
n fffffhyy ++++

+
+ −+−++=

Where s = 0, 1, …, S is the iterations number, r indicates a node in a

block,).,(),(,)()()1()1(s
ii

s
i

s
iii

s
ii yxfandfyxffyy === ++

 However, on a parallel machine rnrn andfy ++ are computed on
processor r, and thus they are calculated simultaneously for different r.
 Block implicit methods can also be adapted to a predictor –
corrector mode, as we shall see later; in this case the solution values of a
block may be used to predict a solution at each node of the next block.

3.2: Parallel Block Predictor- Corrector (PBPC) Methods:-

As an example consider the two point case block PC method. This
is a process of two parallel prediction following by two parallel
correction:
(1) first, the initial values of the solution have to be computed or

known.
(2) Predictor formulae are used to calculate new values (in this case

two values).
(3) Corrector formulae are used iteratively.
This procedure can be easy applied using two processors, where each
processor is allocated to doing both predictor and corrector calculations
for one point of the block.
 To make it clear consider a fourth order block PC for the numerical
integration of a system of a set of ODEs, presented by Shampine and
Watts [12] is as follow:
 The predictor equations are:

),1343(
6

)(
3
1

12121
c

n
c

n
c

n
c

n
c

n
c

n
p

n FFFhYYYY +−+++= −−−−+ (3)
),797229(

12
)(

3
1

12122
c

n
c

n
c

n
c

n
c

n
c

n
p

n FFFhYYYY +−+++= −−−−+ (4)

The corrector equations are:
)85(

12 211
p

n
p

n
c

n
c

n
c

n FFFhYY +++ −++=
 (5)

)4(
3 212

p
n

p
n

c
n

c
n

c
n FFFhYY +++ +++=

 (6)

 In this case, each block consist of two steps, n+1 and n+2. the
predictor equations are dependent on values taken from the previous
block (n, n-1, n-2). The corrector equations depend on a single value from

Bashir M. Khalaf & Mohammed A. Al-Taee & Abdulhabib Abdullah

١٣٤

the previous block (n) and the predicted values of the current block (n+1,
n+2). The first predictor is used to set up the first corrector; then the
second predictor can be computed to set up the second corrector. The
equations within each part are independent of each other even though
they refer to successive time steps. Thus the equation can be easily
mapped onto a two-processor system where one processor is devoted to
point n+1 and the other to pint n+2. the processors have to exchange
information twice per block, once after the predictor equations and
corresponding function evaluations have been evaluated, and once after
the corrector equation and corresponding function evaluation have been
evaluated. Solution of each block, however, provides two Y values,
where the function evaluation and the Y variable calculation for these two
are performed in parallel. This effectively halves the time required for
function evaluation and Y variable calculations [5].
 A timing diagram for a single block which corresponds to a two
processors implementation of (3) through (6) is given in the following
figure:

Processor P1

Processor P2

Fig. (1): timing for PBPC integration algorithm Data
are being exchanged[4].

 Each processor in the figure performs both the predictor and
corrector evaluations associated with a single point, processor 1 point n+1
and processor2 point n+2.
 Franklin [5] says that if more processors are available, then it is
possible to increase the number of steps per block and change the block
size such that each processor is allocated to one or more points per block.
In general, the method's parallelism guarantees that the function
evaluation times will effectively decrease directly as the number of
processors used increases. The following figure (2) shows the timing
diagram for the case k = 4.

p
nY 1+

p
nF 1+ c

nY 1+
c

nF 1+

p
nY 2+

p
nF 2+ c

nY 2+
p

nF 2+

Survey of Parallel Block Methods.

١٣٥

py1),(11

pyxf cy1),(11
cyxf

py2),(22
pyxf cy2),(22

cyxf

py3),(33
pyxf cy3),(33

cyxf

py4),(44
pyxf cy4),(44

cyxf
←A→ ←B→ ←C→ ←D→ ←E→ ←F→

 time
 A: evaluate the predictor formulas.
 B: evaluate the derivative function.
 C: exchange derivative values.
 D: evaluate the corrector formulas.
 E: evaluate the derivative function.
 F: exchange derivative values.
 Fig.(2): Timing diagram for four processor case[4].

 We note that with PCBC algorithm in the two processor system,
processors are assigned doing to both predictor and corrector calculations,
but on successive step, with PPC algorithm, processors are assigned to
doing only predictor or corrector calculations but on a single step.

3.3: Parallel Block Methods – Fixed Order and Fixed Length:
 Adopting the notation used by Birta and Abou-Rabia [2], the
formula of the block method can be expressed as:

)(mnnm YhBFhdfeyY ++= (7)
Where e and k-vectors, B is a k× k matrix, and F is a k=factor whose

thj

entry is),,(jnjnjn yxff +++ = 1 ≤ j ≤ k. As (7) is implicit in my it has to be
solved iteratively using, in the first instance, predicted solution values. A
predictor equation for Y can be expressed in the form:

 ,~)0(
nnm fdheyY += (8)

Where is k-vector. Substitution of into the right-hand side of (7) yields
the block predictor-corrector (BPC) method:

)~(nnnnm fdheyhBFhdfeyY +++= (9)
We can write (9) in the form:

 nmnnm hBfAYhdfeyY +++=)0(
 (10)

Processor
P1

Processor
P2

Processor
P3

Processor
P4

Bashir M. Khalaf & Mohammed A. Al-Taee & Abdulhabib Abdullah

١٣٦

Where A is k× k matrix.
 In accordance with the terminology used in the linear multistep
case, this application is called PEC mode. Of course, one can continue
this process by substituting the result of (9) into the right-hand side of
(7) arriving at

yv EECP −1)(mode, in which γ=0 indicates that a final
evaluation is done before proceeding to the next block. Abbas and Devles
[14] considered this approach using an explicit Euler predictor and then
corrected twice by a trapezoidal corrector applied in the composition
case. This method can be computed in three steps for each equidistant
step point r = 1, …, k as:

),,()0(
nnnrn yxrhfyY +=+

),,(2/),(),,(2/)0()0(
1

1

)1(
rnrnin

r

i
innnnrn yxfhyxfhyxfhyY +++

−

=
++ ++= ∑

 (11)

).,(2/),(),,(2/)1()1(
1

1

)2(
rnrnin

r

i
innnnrn yxfhyxfhyxfhyY +++

−

=
++ ++= ∑

With

)0(
mY by (8), method (11) has

2)(ECP from
,~)0(

nnm fdheyY +=
),()()1(s

mnn
s

m YhBFhdfeyY ++=+

 s = 0, 1
Where

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

2/1111
02/111

02/11
002/1

,

2/1

2/1
2/1

,
2
1

,

1

1
1

~

K

K

MMM

K

K

MMM
Bd

k

de

 As we have seen that the simplest initial estimate for elements of

mY is obtained by the one step Euler formula as in equation (8). following
an application of equation (10) or (8), equation (7) may be applied
iteratively through:

)()1(i
mnn

i
m hBFhdfeyY ++=+

 (12)
Where mm YY =)0(

 and
)(i

mF is a k-vector holds the derivatives
.,...,2,1),,(kjyjhxf p

jn =+
Inspection of equations (7), (10) and (12) shows the potential for
parallelism in the calculation of my (equation (10)),

)(i
mF (equation (12)),

and also in the calculation of the right-hand side of equation (7). the
granularity of the parallelism is variable and depends upon both the block
size and the computation effort to calculate the derivative function
f(x , y).

Survey of Parallel Block Methods.

١٣٧

3.4: Parallel Block Methods – Fixed Order and Varying Length:
 This method uses equation (8) to predict solutions to the problem
then applies the equation (13) iteratively:

p
m

i
m hAFeyY +=+

0
)1(

 (13)
Where

)1(+i
mY is as in (12), e is a unit k-vector, A is a k × k matrix and

p
mF

is a (k+1)-vector whose
thj entry is),,)1((101

p
jj yhjxff −− −+=

With
p
jy 1− the latest estimate for jy .

Lets us consider an implementation of the method with A define by:
,2/1)1(1 == +rrr aa where r=1, …, k (14)

And 1=rja where r=2, …, k and j=2, …,r (15)
It can be seen that there is a potential for parallelism in the calculation of
the predicted y values i.e

p
mY (equation (8)) and hence the predicted

derivative values
P

mF . The right – hand side of (13) can be split up into
sub-block work packets and farmed out to processors, allowing a high
degree of parallelism to be accomplished.
For example with 2 processors, equation (13) can be manipulated thus:
First with A in its complete form:

(16)p
m

i
m Fhyey

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+=+

2/11111112/1
2/1111112/1

2/111112/1
2/11112/1

2/1112/1
2/112/1

2/12/1

0
)1(

K

L

MMMM

K

K

MMMM

The calculation of A

p
mF is readily parallelized using a splitting of A.

If we write A as:

(17),

2/111
2/11

0
2/1

00

11112/1
11112/1

0
11112/1

2/11112/1

02/1112/1
2/112/1

2/12/1

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

K

K

M

K

K

MKMMMM

K

K

MMMM

A

And further split A up to:

Bashir M. Khalaf & Mohammed A. Al-Taee & Abdulhabib Abdullah

١٣٨

()18

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

2/111
2/11

00
2/1

000

1111
1111

00
111

2/1111
0

2/1110
2/11

2/1

2/1
2/1

00
2/1
2/1

2/1
002/1

2/1

L

L

M

K

MKMM

MK

K

MM

M

M

A

Or 210 AAA ++ (19)
Then (16) could be represented by:

p
m

i
m FAAAheyY }{ 2100

)1(+++=+

 (20)
Or

P
m

P
m

P
m

i
m FAFhAFhAeyY 2211000

)1(+++=+

 (21)
Where

T
k

P
m

TP
m fffFfF]0,...,0,,...,,,0[,]0,....,0,0,0,[2/21100 == and

T
kkk

P
m fffF],...,,,0,....,0,0[22/12/2 ++= are (k+1)-vectors.

Thus by splitting up the
P

mF vector and matrix A over 2 processors with
both processors knowing h/2 0f and processor 2 knowing estimate of

,∑ rf r=1, …, k/2 then estimates for
)(i

rY , r=1 ,… , k/2 and
,)(i

sY s=k/2+1 ,… , k can be obtained in parallel.
It should now be apparent that A can be split across any number of
processors. In general for a P processors where k/P = q we follow the
procedure of splitting up as in equation (21)[4], i.e

P
m

P
m

P
m

i
m GhBFhAFhAeyY 2211000

)1(+++=+

 (22)
Where

T
q

P
m

TP
m fffFfF]0,...,0,,...,,,0[,]0,....,0,0,[21100 == and

T
kqq

P
m fffG],...,,,0,....,0,0[212 ++= are (k+1) – vectors.

Survey of Parallel Block Methods.

١٣٩

The splitting up continue with 2B :

()23

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

2/111
2/11

00
2/1

000

000

1111
1111

00
1111

2/1111
00

2/111
2/11

2/1
000

2

L

K

M

L

MKM

K

K

MMM
B

Or 322 BAB += (24)

Then ,]0,...,0,,...,,,0,....,0[2212
T

qqq
P

m fffF ++=

And
T

kqq
P
m fffG],,...,,,0,....,0[22122 ++=

Similarly we split 3B , into 3A and 4B , and continue until finally:

()25

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=−

2/111
2/11

00
2/1

000

000

1111
1111

00
1111

2/1111
00

2/111
1

2/1
000

1

L

L

M

L

L

MLMMM

L

L

MMM
pB

Or ppp AAB += −− 11 (26)
Giving us:

P
m

P
mr

P

r
r

P
m

i
m GFAhFhAeyY 2

1
000

)1(∑
=

+ ++=
 (27)

Where
T

rqqr
P

me ffF]0,....,0,,....,,0,...,0[1)1(+−= and the rA matrices are defined as
above.
Thus the work of calculating k y-values may be farmed out by splitting
up

p
mF and A into P+1 sub-vectors and matrices. As each processor

knows the value of 0y and 0f , processor P needs only to receive an

estimate of ∑ rf , r= 1, …, (p-1)q, to calculate its sub – block of y-
values,

)(i
ry , r = (p-1)q+1, pq[4].

On inspection of the method it was found that increased accuracy could
be achieved in the corrector by updating the estimate of 1−jf in the

Bashir M. Khalaf & Mohammed A. Al-Taee & Abdulhabib Abdullah

١٤٠

calculation of
)(i

jY through the sub-block. E.g. consider the first point in a

sub-block
)(i

jY . The equation to calculate this point can be written:
p

j

j

r

p
r

i
j fhfhfhyy 2/2/

1

0
00

)(+++= ∑
−

= (28)
Where 00 , fy , and

p
jf are known locally and the sum of

p
jf 's are

communicated.
The next point in the block is calculated by:

∑
−

=
++ ++++=

1

0
1001 2/2/

j

r

p
j

p
j

p
r

p
j fhhffhfhyy

 (29)
Or)(2/ 1

)()(
1

p
j

p
j

i
j

i
j ffhyy ++ ++= (30)

But as we have calculated
)(i

jy before we start to calculate
)(
1

i
jy + we could

find
p

jf and use this equation (30) to find an update solution for 1+jy .
Then for all points of a sub-block except the first one, the equation for

)(i
ry (r ≠ 1) is:

)(2/ 1
)(
1

)(p
r

i
r

i
r

i
r ffhyy ++= −− (31)

3.5: Methods of Miranker and Liniger:

The methods of Miranker and Liniger [10] can be represented as
explicit, one-stage BRK methods. For example, their second-order
method can be represented by the array

2/12/110
)1,2(0210

10
01

(32)Tc =

And their fourth – order method by

24
19

24
9

24
5

24
11000

3
5

3
8

3
4

3
11000

00001000
)1,2,0,1(00000010

1000
0100
0010
0001

−

−−

−= (33)Tc

 Both methods require only two processors and respectively two and
four starting values when implemented in BRK form.

Survey of Parallel Block Methods.

١٤١

3.6: Predictor-Corrector Method of Shampine and Watts:
The PC method of Shampine and Watts [13] is based on the block

method of Clippirige and Dimsdale (1958), which can be presented in the
form (44) as:

()

6
1

3
2

6
1010

)1,2/1(
24

1
3
1

24
5010

10
01

34Tc =−

And on the predictor defined by

()

24
793

24
290

3
1

3
1

3
10

12
13

3
1

4
10

3
1

3
1

3
10

00001000
)1,2/1,0,2/1(00000100

1000
0100
0010
0001

−

−−

−= 35Tc

Method (34) is one of the oldest block methods proposed in the

literature. Sham pine and Watts proved that this corrector method is
fourth-order accurate at the step points. They also proved that the
predictor method is third-order accurate and possesses favorable stability
properties. This predictor can also be applied as a method on its own and
requires four starting values and one processor.

In order to apply the PC pair (35) - (34) using the BRK format, we
rewrite the corrector in the form:

6
1

3
200

6
10001000

24
1

3
100

24
50001000

000000001000
)1,2/1,0,2/1(000000000100

1000
0100
0010
0001

−

−= (36)Tc

The PC method of Sham pine and Watts was implemented by

Worland [15]On two processors.

Bashir M. Khalaf & Mohammed A. Al-Taee & Abdulhabib Abdullah

١٤٢

4: Parallel Block Runge-Kutta Method:-
Lets us take a block which consists of k equidistant points

,rhxx nrn +=+ r=1, …, k where h is the step size, and kh represents the
block length. And let ny represents the approximate solution of a given
first order differential equation at nx the initial point of the current block,
and y(nx) is the exact solution at nx .
 The formulas for sequential two- point block scheme are:-

nnn hfyy +=+
)0(
1 (37)

)(
2

)0(
1

)1(
1 ++ ++= nnnn ffhyy

 (38)
)1(
1

)1(
2 2 ++ += nnn hfyy (39)

)85(
3

)1(
2

)1(
1

)2(
1 +++ −++= nnnnn fffhyy

 (40)
)2(,1),4(3

)(
2

)(
1

)1(
2 =−++= ++
+
+ sfffhyy s

n
s

nnn
s

n (41)
 The sequence (28) – (41) is used minimize the number of
derivative evaluation required.
 The corresponding formulas for the parallel are:

)4(
3

)85(
12

2,1,

)(
2

)(
1

)1(
1

)(
2

)(
1

)1(
1

)0(

s
n

s
nnn

s
n

s
n

s
nnn

s
n

nnrn

fffhyy

fffhyy

rrhfyy

++
+
+

++
+
+

+

−++=

−++=

=+=

Where s = 0, 1, 2, (3). On parallel machine

)1(
1
+
+
s

ny and
)1(

2
+
+
s

ny are obtained
simultaneously for each s.
Second processor calculates:

()nnnnn fffhyy ++=− +++ 122 4
3

We can reduce the sequence (28) – (41) to following Runge-Kutta form:
()

()
()

()

⎟
⎠
⎞

⎜
⎝
⎛ ++++=

⎟
⎠
⎞

⎜
⎝
⎛ −+++=

++=

⎟
⎠
⎞

⎜
⎝
⎛ +++=

++=
=

++=−+

)4(
3

,2

)85(
12

,

2,2

)42(
22

,

,
,

4
3

5416

4315

34

213

12

1

6512

kkkhyhxfk

kkkhyhxfk

kyhxfk

khkhyhxfk

hkyhxfk
yxfk

kkkhyy

nn

nn

nn

nn

nn

nn

nn

Survey of Parallel Block Methods.

١٤٣

 This form can be converted to Parallel form as follows:
1- we produce the value 21 yandy sequentially or in parallel by using one

or two sequential forms of Runge-kutta type methods, then the
parallel calculation continues as follow:

()

() ,...6,4,2,4
3

,...5,3,1,)4(
3

6512

6512

=++=−

=++=−

+

+

rLLLhyy

nkkkhyy

rr

nn

43

Where 654321 ,,,, kandkkkkk are as given (42) and r erplace each n in the
form of L's.
Form (43) is a parallel form suitable for two Processor and (43) can be
easily modified for forms suitable for 3,4,5 and more processors.

5: Future work:-
We suggest driving and developing parallel block methods of

higher order for solving stiff IVPs.

References
1) O. Abou-Rabia and L. G. Birta, "Some Variations on the BPC

parallel integration method", in R. Crosbie and P. Luker (eds.)
Proceeding of the "1986 Summer computer Simulation
conference" (1986), 37-42.

2) L. G. Birta and O. Abou-Rabia, "Parallel block Predictor – corrector
methods for ODEs", IEEE Trans. On Computers, Vol. c- 36, No. 3
(1987), 299-311.

3) ______, "Block Runge-Kutta methods for the numerical integration
of initial value problems in ordinary differential equations, Part I:
The non stiff case" Mathematics of Computation, Vol. 40, No.161
(1983), 193-206.

4) Murshed, A. A. A: "An Investigation Of Numerical Algorithms for
solving stiff ODEs Suitable for parallel computers", Ph.D. thesis,
University of Mosul, (2000).

5) M. A. Franklin, "Parallel solution of ordinary equations", IEEE
Trans. On Computers Vol.C-27, No. %(1978), 413-420.

6) S. K. Ghoshal, M. Gupta and V. Rajaraman, "A parallel multi step
predictor-corrector algorithm for solving ordinary differential
equations" J. of Parallel and Distriuted Computing, Vol.6 (1989),
636-648.

Bashir M. Khalaf & Mohammed A. Al-Taee & Abdulhabib Abdullah

١٤٤

7) P. J. van Der Houwen and B. P. Sommeijer, "Block Runge-kutta
methods on parallel computers" Z. Angew, Math. Mech. 72 (1992),
3-18.

8) E. J. Kerckhoffs, "Parallel algorithms for ordinary differential
equations: An introductory review", in: R. Crosbie and P. Luker
(eds.), Proceeding of the "1986 Summer Computer Simulation
Conference", (1986), 947-952.

9) B. M. S. Khalaf, "Parallel numerical algorithms for solving ordinary
differential equations" Ph.D. Thesis, University of Leeds, U.K.,
1990.

10) W. L. Miranker , " A survey of parallelism in numerical analysis" ,
SIAM Review , Vol.13 , No. 4 (1971), 524-5247.

11) J.B. Rosser, "A Runge-Kutta for all seasons", SIAM Review, Vol. 9
(1967), 417-452.

12) L. F. Sham pine and H. A. Watts, "Block implicit one – step
methods" , Mathematics of Computation, Vol.23 (1969), 731-740.

13) T. E. Shoup, "Applied numerical methods for the micro –
computers" Prentice- Hall, New Jersey, 1984.

14) D. A. Voss and S. Abbas, "Block predictor – corrector schemes for
the parallel solution of ODEs", Computers Mathematics
Application, Vol. 6 , (1997), 65-72.

15) P. B. Worland, "Parallel methods for the numerical soluation of
ordinary differential equations" IEEE Trans. On Computers,
(1976), 1045-1048.

