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ABSTRACT

Conjugate gradient methods constitute excellent neural network training methods
characterized by their simplicity efficiency and their very low memory requirements. In this
paper, we propose a new scaled conjugate gradient neural network training algorithm
which guarantees descent property with standard Wolfe condition. Encouraging numerical
experiments verify that the proposed algorithm provides fast and stable convergence.
Keywords: Feed-forward Neural networks, training algorithms.
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1.INTRODUCTION

Learning systems, such as multilayer feed-forward neural networks (FNN) are parallel
computational models comprised of densely interconnected, adaptive processing units,
characterized by an inherent propensity for learning from experience and also discovering
new knowledge. Due to their excellent capability of self-learning and self-adapting, they have
been successfully applied in many areas of artificial intelligence [1,2,3]and are often found to
be more efficient and accurate than other classification techniques [4]. The operation of a
FNN is usually based on the following equations:

Ny 1

net; = Z_l“wi"‘j“ Xit+b, O =f(net)) ()

where net'j is the sum of the weight inputs for the j-th node in the | -th layer (j=1,2,...,N,),

W: .is the weights from the i-th neuron to the j-th neuron at thel —1, | —th layer,

0]
respectively, b} is the bias of the j-th neuron at the I-th layer and x} is the output of the j-th

neuron which belongs to the | -th layer, f(-) is the activation function and O is the output

of the nod j at the output layer.

Recently many learning algorithms for feed-forward neural networks has been discovered
[4,5,6]. Several of these algorithms are based on a known method in optimization theory
known as the gradient descent algorithm. They usually have a poor convergence rate and
depend on parameters which have to be specified by the user, since there is no theoretical
basis for choosing them exists. The values of these parameters are often crucial for the
success of the algorithm. For example the Standard Back Propagation(SBP) algorithm [7]
which often behaves very badly on large-scale problems and which success depends of the
user dependent parameters learning rate.

The problem of training a neural network is iteratively adjusting its weights, in order to
minimize the difference between the actual output of the network and the desired output of
the training set. Actually finding such minimum is equivalent to minimization of the error
function which defined by:

EW=1 3O T @

j=li=1

P,
Web Site: www.kujss.com Email: kirkukjoursci@yahoo.com,

kirkukjoursci@gmail.com

231




I

7 E Kirkuk University Journal /Scientific Studies (KUJSS)

W/ Volume 10, Issue 3, March 2015 , p.p(230-241)

%"*"w*"J ISSN 1992 - 0849

The variables T; and O; are the desired (target) and the actual output of the i-th neuron,
respectively. The index j denotes the particular learning pattern. The vector W is composed

of all weights in the net[4].

From an optimization point of view learning in a neural network is equivalent to
minimizing a global error function, which is a multivariate function that depends on the
weights in the network. This perspective gives some advantages in the development of
effective learning algorithms because the problem of minimizing a function is well known in
other fields of science, such as conventional numerical analysis [8]. Since learning in realistic
neural network applications often involves adjustment of several thousand weights only
optimization methods that are applicable to large-scale problems, are relevant as alternative
learning algorithms. The general opinion in the numerical analysis community is that only one
class of optimization methods exists that are able to handle large-scale problems in an
effective way. These methods are often referred to as the Conjugate Gradient(CG)
Methods[8]. Several conjugate gradient algorithms have recently been introduced as learning

algorithms in neural networks [5,9,10].

2.CONJUGATE GRADIENT METHDS
Conjugate gradient methods are probably the most famous iterative methods for efficiently
training neural networks due to their simplicity, numerical efficiency and their very low
memory requirements. These methods generate a sequence of weights {w} using the iterative
formula.
W, =W, +a,d, 3)
where Kk is the current iteration usually called epoch, w; € R" is a given initial point, ¢z, >0
is the learning rate and dy is a descent search direction (by Descent, we mean g, d, <0 Vk)
defined by
Ay ==0u + B dy, d;=-0, (4)
Conjugate gradient methods differ in their way of defining the multiplier £, . The most
famous approaches were proposed by Fletcher—Reeves (FR) and Polak—Ribere (PR) :

T T
B — 95+T1 3k+1 BR = i’k;lg)’k (5)
k 9k k i
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The conjugate gradient methods using /3 FR update were shown to be globally convergent

[8]. However the corresponding methods using /3 PR or p HS update are generally more

efficient ever without satisfying the global convergence property. In the convergence analysis
and implementations of CG methods, one often requires the inexact line search such as the

Wolfe line search. The standard Wolfe line search requires ¢ satisfying:
E W, +a.d,)<E(W,)+pe0,d, (6)
gw, +ayd) d, = ogy d, (")

or strong Wolfe line search:
Ewy,+a.d)<EW,)+po gldk (8)
9540, |> o gy d, ©)

where 0< p <o <1. Moreover, an important issue of CG algorithms is that when the

search direction (4) fails to be descent directions we restart the algorithm using the negative
gradient direction to grantee convergence . A more sophisticated and popular restarting is the
Powell restart [11].

2 (10)

‘ng gk‘Z O'2Hgk+l

where | | denotes to the Euclidean norm. Other important issue for the CG methods is that

the search directions generated from equation (4) are conjugate if the objective function is

convex and line search is exact i.e:

df Gd; =0,V i#] (11)

where, G is the Hessian matrix for the objective function . the conjugacy condition given in

(11) can be replaced [12] to the following equation:
T

A1 V=0 (12)

which is called pure conjugacy. [13] show that if ¢, is not exact the condition in (12) can be
written as

dkT+1 Yk =—1 ng Sk t>0, Sk = Wi — W (13)
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for general objective function with inexact line search.

Recently Abbo and Mohammed in [6] suggested a new CG algorithm £ NA for training the
FFNN defined as:

'BNA: 79: gy + g:+1yk

, O<y<<1
Vi dy

(14)

3.SCALED CONJUGATE GRADIENT ALGORITHMS (SCG)

This type of algorithms assumes more general form of CG search direction. It generates a
sequence W, of approximations to minimum W' of E ., in which
W, =W, +¢, d, (15)
d.,.=-6. 9.+8d (16)
where, g, = VE(W, ), , is selected to minimize E(W) along the search direction d, and
By isascalar. The iterative process is initialized with an initial point w; and d; =—0; .
Observe that if 6,1 =1, we get the classical CG algorithm according to the value of g, .
On the other hand, if S, =0, then we get another class of algorithms according to the
selection of the parameter 6, ;. There are two possibilities for 6 _,: a positive scalar or

positive definite matrix. If 6, ., =1, then we have the steepest descent algorithm. If

O41 =Hy 4, or an approximation of it, then we get Newton or quasi-Newton (QN)
algorithms, respectively [14]. Therefore, we see that in the general case, when 6,4 # 0 is

selected in a quasi-Newton manner, and S, # 0, (16) represents a combination between the

QN and CG methods.
Different scaled CG methods introduced [14], for example scaled Fletcher—Reeves (SFR)
and scaled Polak—Ribere (SPR) :

T T
SFR _ 9k+1g k+1 gk+1 ﬂSFR _ 9k+1yk gk+1 (17)
k - T ! k - T
&9k 9k A9k 9k
T
Sk Sk
Chsr=—— (18)
S Yk
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The main object of this work is to find a new and efficient scaled conjugate gradient

method with search direction d, , having the simple form (16). For this purpose, we use the

pure conjugacy condition (11) and g™

3.1.New Scaled CG Method(Say N1SCG)

Abbo and Mohammed in [6] suggested a new CG algorithm [ NAbased on the Aitken's

process, in this section we try to generalize the method to more general form known as scaled

conjugate gradient methods. Consider the search direction of the form :

Oy =—610cn + ﬂsAdk (19)
If we multiply both sides of the equation (19) by Y, we get:
d7 YV, =01 0L, Vi + ]y, (20)
By using the pure cojugacy condition (12) we get:
0n 9. Vi + B2 de Y, =0 1)
then

0 7gk gk + 9k+1Yk
k+1 —
Yk Ox11

to avoid division to zero we can define 6, ., as

1 7/gk gk
Ok = ‘Yk Ox11
1 :otherwise

if Vi Gk #0 (22)

Then the search direction for the new scaled conjugate gradient (N1SCG) algorithm can be
written as:

Qios =61 G + B d (23)

We summarize our scaled conjugate gradient (N1SCG ) algorithm as;

Algorithm (N1SCG)
Stepl. Initialization: Select W, e R" , 0< y <<1,gol=E; , £>0 and

Kiax (Maximum number of epochs) and the parameters
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g ?
0<p<o<l Compute E(w,) and g, = VE(w,). Consider
d, =—y 0, and set o; =1.

Step2. Test for continuation of iterations. IF (E, < EG)OI’Hng< £ ,set
w*=w, and E*=E, , then stop. Else go to Step 3.

Step3. Line search. Compute ¢, satisfying the Wolfe line search

conditions (6) and (7) and update the variables
W, =W, +¢, d, . Compute E, 1, G5, S =W, — W, and
Yk = Oks1 — Gk -

Step4. Hk parameter computation. Compute Hk from equation(22).

Step5. ﬂkNA conjugate gradient parameter computation. Compute

ﬂkNA from equation(14)

Step6. Direction computation. Compute d,,, =—6,, d,.,+ /4" d, .
Step7. k =k +1, go to step( 2).
3.2. The Descent Property Of The Suggested Algorithm

In this section, we shall show our new conjugate gradient (N1SCG) algorithm satisfies the
descent property with standard Wolfe conditions as stated in the following theorem:

Theorem(3.1)

Consider the N1SCG method where the learning rate «, satisfies the standard Wolfe
conditions equation (6) and (7) and if ¥ g; d, >d,,, Y, then
d; g, <0 (24)
Proof :
For k =1 we have d, = —g,, then d, g, =—|g, [ <0. Now, from

equations (14), (19) and (22) we have :

7 O Ok + 95, Vi d
k

T
dk+l:_(1+M)gk+l+ T
de Yi

‘YI Ok+1
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notice that, by Wolfe condition (6) and (7), yldk >0 therefore:

YI dy :glﬂdk—gl dy ZGQI dk_g-kr dy :(0—1)9Id

1
hence < then

yI dy (0_1)91 d

79 O + 9 Vi

7 9y 0,
d’
(O__l)gk ) kgk+1

k gk+l

dk+1 Oy S— (1'*" )g;—+l Ok t+

again by the second Wolfe condition (7) with (o0—-1)=—(1-0o) and
— i1 O < -0 gy d then,

7/9k Ok

Yr Ok41

7 9 9k + Geaa Vi (~o)g! d,

)gk+l gk+1 (1_0_)91 d k

dk+1 gk+1 = (1+ ‘

(r g; O +9I+1 Y)o
(1-0)

7/9k O

Yk Ox1

‘.'dk+l gk+l_ (1+‘ )gI+l gk+l_

(790 9+ Vo
1-o)

(1+7/gkgk

‘ k k+1

)gk+l

glu Gk
‘ggﬂ yk‘ " l-o

_(‘ggﬂ yk‘+ 7 9k 9i)
therefore, d, , g,,, <Om.

4 EXPERIMENTAL RESULTS

In this section, we will present experimental results in order to evaluate the performance
of our proposed N1SCG in two problems the iris problem and continuous function
approximation problem. The implementation code was written in Matlab 7.9 based on the
SCG code of Birgin and Martinez [15]. All methods are implemented with the line search
proposed in CONMIN [16] which employs various polynomial interpolation schemes and
safeguards in satisfying the strong Wolfe line search conditions. The heuristic parameters
were set as p= 10™ and o= 0.5 as in [10]. All networks have received the same sequence of
input patterns and the initial weights were generated using the Nguyen-Widrow method

[17].The results have been averaged over 500 simulations.
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4.1.Training Performance

The cumulative total for a performance metric over all simulations does not seem to be too
informative, since a small number of simulations can tend to dominate these results. For this
reason, we use the performance profiles proposed by Dolan and More [18] to present perhaps
the most complete information in terms of robustness, efficiency and solution quality. The
performance profile plots the fraction P of simulations for which any given method is within a
factor x of the best training method. The horizontal axis (x) of each plot shows the percentage
of the simulations for which a method is the fastest (efficiency), while the vertical axis(p)
gives the percentage of the simulations that the neural networks were successfully trained by
each method (robustness). The reported performance profiles have been created using the
Libopt environment [19] for measuring the efficiency and the robustness of our method in
terms of computational time (CPU time) and epochs. The curves in the following figures have

the following meaning:
* “SPR” stands for the Scaled Polak-Ribiere CG method.
* “SFR” stands for the Scaled Fletcher-Reever CG method.
* “N1SCG” New Scaled proposed algorithm.

4.1.1. Iris Classification Problem

This benchmark is perhaps the most best known to be found in the pattern recognition
literature [20]. The data set contains 3 classes of 50 instances each, where each class refers to
a type of iris plant. The network architectures constitute of 1 hidden layer with 7 neurons and
an output layer of 3 neurons. The training goal was set to Eg < 0.01 within the limit of 1000
epochs and all networks were tested using 10-fold cross-validation [10].

Figure (1) presents the performance profiles for the iris classification problem, regarding
both performance metrics. N1SCG illustrates the best performance in terms of efficiency and
robustness, significantly out-performing the scaled training methods SPR and SFR.
Furthermore, the performance profiles show that N1SCG is the only method reporting

excellent (100%) probability of being the optimal training method.
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Figure (1): Log10 scaled performance profiles for the iris classification problem.

4.1.2.Continuous Function Approximation
The second test problem is the approximation of the continuous
trigonometric function f(x)=sin(2nx)+0.1*rand([-1,1]) where x € [-1,1].
The network architecture for this problem is 1-15-1 FNN, the network is trained until the
sum of the squares of the errors becomes less than the error goal 0.001. The network is based
on hidden neurons of logistic activations with biases and on a linear output neuron with bias.
Figure (2) shows the performance profiles for the continuous function approximation
problem, investigating the efficiency and robustness of each training method. Clearly, our
proposed method N1SCG significantly out-performs the scaled conjugate gradient methods
SPR and SFR since the curves of the former lie above the curves of the latter, regarding both
performance metrics. More analytically, the performance profiles show that the probability of
N1SCG to successfully train a neural network within a factor 3.41 of the best solver is 94%,

in contrast with SPR and SFR which have probability 84.3% and 85%, respectively.
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(c): Performance based on CPU time (d): Performance based on epoch

Figure (2): Log10 scaled performance profiles for the function approximation problem.
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5. CONCLUSIONS

It can be seen that if the scaling parameter 0 contains two positive Terms a void the small
multiplier for the gradient vector and hence Maintain the descent property and performance

better than with scaling parameter with only one.
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