Nearly Exponential Approximation for Neural Networks

Eman Samir BhayaZahraa Mahmoud FadelMathematics Department, College of Education for Pure Sciences,
University of Babylon.emanbhaya@itnet.uobabylon.edu.iq12345mathzahra@gmail.com

Abstract

In this paper we prove that any real function in $L_P(C)$ defined on a compact and convex subset of \mathbb{R}^d can be approximated by a sigmoidal neural network with one hidden layer, that we call nearly exponential.

Key words: Nearly exponent. Best approximation. Modulus of smoothness.

7. A) + 11

Introduction and Basics

Artificial forward neural networks are nonlinear parametric expressions representing multivariate numerical functions. In connection with such paradigms there arise mainly three problems: a *density* problem, a *complexity* problem, and an *algorithmic* problem. The density *problem* deals with the following question: which functions can be approximated and, in particular, can all members of a certain class of functions be approximated in a suitable sense. This problem was satisfactorily solved in the late 1980's (Cybenko,1989; Funahashi,1989; Hornik *et al.*,1989). Any continuous function on any compact subset of \mathbb{R}^d can be uniformly approximated arbitrarily closely by a neural network with one hidden layer. Moreover, the proof given in (Hornik *et al.*,1989) provides an intimate connection forward neural networks and polynomials. (Ratter,1999)

In this paper we improve the works in (Cybenko, 1989; Funahashi, 1989; Hornik *et al.*, 1989) and introduce a direct theorem using neural weights in term of polynomial approximation of functions in L_P spaces.

Let N be the set of nonnegative integer numbers, and let \mathbb{R} be the set of real numbers, \mathbb{R}^+ be the set of nonnegative real numbers, \mathbb{R}^d be the d-dimensional Euclidean space $(d \ge 1)$, and let Λ be a finite space subset of \mathbb{R}^+ , let $x = (x_1, x_2, ..., x_d) \in \mathbb{R}^d$, $y = (y_1, ..., y_d) \in \mathbb{R}^d$, $e^x = (e^{x_1}, e^{x_2}, ..., e^{x_d})$, $x^y = (x_1^{y_1}, x_2^{y_2}, ..., x_d^{y_d})$, $x_j \ge 0, j = 1, 2, 3, ..., d$. and let $\mathbb{P}_n(d)$ be the space of all d_variate algebraic polynomial, also we use the *active* function $\delta: R \to R$ is *nearly exponential*.

Let *f* be a real valued function defined on a convex subset $C \in \mathbb{R}^d$. Define

$$L_P(C) = \left\{ f: C \to \mathbb{R} : \|f\|_{L_P(C)} = \underbrace{\int_C \dots \int_C}_{d \text{ times}} (|f|^p)^{\frac{1}{p}} < \infty \right\}.$$

For any $f \in L_P(C)$ and a real or complex function set *S*, *the distance* from *f* to *S* defined by : $d_P(f, S) = \sup_{g \in S} ||f - g||_{L_P(C)}$. The *rth symmetric difference* of *f* is given by

$$\Delta_{h}^{r}(f,r,C) = \Delta_{h}^{r}(f,x) = \begin{cases} \sum_{i=0}^{r} (-1)^{r-i} {r \choose i} f\left(\left(x_{1} - \frac{rh}{2} + ih \right), \left(x_{2} - \frac{rh}{2} + ih \right), \dots, \left(x_{d} - \frac{rh}{2} + ih \right) \right) & x \pm \frac{rh}{2} \in C \\ 0 & w \end{cases}$$

Than the rth usual modulus of smoothness of $f \in L_P(C)$ is defined by $\omega_r(f, \delta, C)_{L_P(C)} \coloneqq \sup_{|h| \le \delta} \|\Delta_h^r(f, .)\|_{L_P(C)} \delta \ge 0.$ (Bhaya, 2003)

Now let us recall the mathematical expression the neural network, a three-layer of FNN with one hidden layer, d inputs and one output can be mathematically expressed as $N(x) = \sum_{i=1}^{m} c_i \sigma(\sum_{j=1}^{d} w_{ij} x_j + \theta_i), x \in \mathbb{R}^d, d \ge 1$ where $1 \le i \le m, \theta_i \in \mathbb{R}$ are the thresholds, $w_i = (w_{i1}, w_{i2}, ..., w_{id}) \in \mathbb{R}^d$ are connection weights of neuron *i* in the hidden layer with the hidden layer with the input neurons, $c_i \in \mathbb{R}$ are the connection strength of neuron *i* with the output neuron, and σ is the activation function used in the network. (Wang and Zonghen, 2010)

 $f \in L_P(C)$, is called *Lipchitz continuous*. If there exists L > 0, h > 0 Such that $\|\Delta_h^1 f\|_{L_P(C)} \le L(f)h$, than we get $L(f) = \sup \frac{\|\Delta_h^1 f\|_{L_P(C)}}{h}$. an *exponential polynomial* of maximal degree $n \in N$ is of the form $\sum_{\alpha \in \mathbb{Z}(0...n)} a_{\alpha} e^{-\alpha x}$ For some $\alpha > 0$. (Ritter, 1999) the symbol $P_n^E(d)$ stands for the set of all real, d-variate exponential polynomial of maximal degree n and arbitrary α^- . a function $\delta: R \to R$ is said to *nearly exponential* whenever for all $\in > 0$, the exist real numbers $x, \mathbb{Z}, \beta, \rho$ such that.

 $|\mathbb{Z}\delta(\mathbb{Z}t + \mathbb{K}) + \rho - e^t| < \in , \quad \text{for all } t \leq 0$ Given some activation function $\delta: \mathbb{R} \to \mathbb{R}$, $\mathbb{R}_n^{\delta}(d)$ will be denote the set of all sums of the form $\sum_{x \in \Lambda} \pm a \, \delta(-x, x + b_x)$. (Ritter, 1999) With $\Lambda \subseteq \mathbb{Z}(0 \dots n)^d$ for some $\eta > 0$ and with a > 0 independent of x.

From now on we shall use the notation C(p, r, d) for the absolute constant depending on p, r, d only and not the same for all steps in our proofs.

As an auxiliary result we need following theorem from .(Kareem, 2011)

Theorem 1.1 (Kareem, 2011)

If $f \in L_P[a, b]^d$, $0 < P < \infty$ then $E_{n-1}(f)_P \leq C(p, m, d) \omega_m(f, h, [a, b]^d)_{L_P[a, b]^d}$ Where $E_{n-1}(f)$ is the degree of best approximation of $f \in L_P[a, b]^d$ by algebraic polynomial of degree $\leq n - 1$, which is $E_{n-1}(f) = \inf_{f \in \mathbb{P}_{n-1}} ||f - P_{n-1}||_{L_P[a, b]^d}$, \mathbb{P}_n is the space of all algebraic polynomial of degree $\leq n$.

2. The Main Results

In this section we shall introduce our main results.

Theorem 2.1

For any $f \in L_p[0,1]^d$, we have $d_P(f, P_n^E(d)) \leq C(p, r, d) \omega_r(f, \frac{1}{n})_{L_P[0,1]^d}$ Proof

Using Theorem 1.1 to approximate the function $f \in L_p[0,1]^d$ by an algebraic polynomial of the form $P(x) = \sum_{\alpha \in (0...n)^d} a_\alpha \prod_{i=1}^d x_i^{\alpha_i}$ and satisfy

$$||P - f||_{L_P} \le C(p, r, d) \omega_r \left(f, \frac{1}{n}\right)_{L_P[0, 1]^d}$$

The sequence $\langle F_{\mu}(x) \rangle$, $\mu \in IR^+$ converges to the identity function F_0 and choose μ such that for a given $\epsilon > 0$

$$\left\|P\left(F_{\mu}\right) - P\left(F_{0}\right)\right\|_{L_{P}[0,1]^{d}} < \in \tag{1}$$

It is clear $P(F_{\mu})$ is an exponential polynomial $P(F_{\mu}) \in P_n^E(d)$, and

$$d_{P}(f, P_{n}^{E}(d)) \leq \left\| P(F_{\mu}) - f \right\|_{L_{P}[0,1]^{d}} \leq \left\| P(F_{\mu}) - P(F_{0}) + P(F_{0}) - f \right\|_{L_{P}[0,1]^{d}} \\ \leq C(p) \left(\left\| P(F_{\mu}) - P(F_{0}) \right\|_{L_{P}[0,1]^{d}} + \left\| P(F_{0}) - f \right\|_{L_{P}[0,1]^{d}} \right)$$
(2)

Using (1) and (2) we get

$$d_P(f, P_n^E(d)) \leq C(p, r, d) \,\omega_r\left(f, \frac{1}{n}\right)_{L_P[0, 1]^d} + \epsilon$$
(3)

Since (3) is true for any $\in \mathbb{D}0$, we get

$$d_P\left(f, P_n^E(d)\right) \le C(p, r, d) \,\omega_r\left(f, \frac{1}{n}\right)_{L_P[0, 1]^d}$$

Theorem 2.2

For any $f \in L_P(C)$. We have $d_p\left(f, R_n^{\delta}(d)\right) \leq C(p, r, d) \omega_r(f, \frac{1}{n})_{L_P(C)}$, where δ is nearly exponential and C is a compact and convex set in $[0,1]^d$. Proof

Let] denote the Euclidean projection $[0, 1]^d \to C$, the function $f(\mathbb{Z}) \in L_P[0, 1]^d$ Using Theorem 2.1 to approximate the function $f(\mathbb{Z})$ by an exponential polynomial of the from $P(X) = \sum_{\alpha \in \mathbb{Z}(0,...,n)^d} a_{\alpha} e^{-\alpha x}$, such that $\|P - f\|_{L_P(C)} \leq \|P - f\|_{L_P[0,1]^d} \leq C(p,r,d) \omega_r \left(f, \frac{1}{n}\right)_{L_P[0,1]^d} + \epsilon$, let $\Lambda = \{\alpha \in \mathbb{Z}(0,...,n)^d : a_{\alpha} \neq 0\}$. Anther representation of P is $P(X) = \sum_{\alpha \in \Lambda} \pm a e^{-\alpha x + b_{\alpha}}$, where $b_{\alpha} \leq 0$ and a > 0 independent of α . since δ is nearly

 $\sum_{\alpha \in \Lambda} \pm a \ e^{-\alpha x + b_{\alpha}}$, where $b_{\alpha} \leq 0$ and a > 0 independent of α . since δ is nearly exponential function, since e^t is exponential function than we can approximate e^t by an expression $\beta \delta(\text{Tt} + \beta) + \rho$ uniformly on the negative half line up to the error \in The sum

$$S = \sum_{\Lambda \setminus \{0\}} \pm a \mathbb{Z} \delta(-(\propto x + (b_{\alpha} + \beta)) + (\pm a \mathbb{Z} \delta(b_0 + \beta) + \rho \sum_{\alpha \in \Lambda} \pm a) .$$

Then $S \in R_n^{\delta}(d)$, $\|S - f\|_{L_p(C)} \le C(p, r, d) \omega_r \left(f, \frac{1}{n}\right)_{L_p(C)} + 2 \in .$

Similarly if $0 \in \Lambda$. Then we get

$$d_p\left(f, R_n^{\delta}(d)\right) \leq C(p, r, d) \, \omega_r(f, \frac{1}{n})_{L_P(C)} \blacksquare$$

As a direct consequences of the above theorem we have the following corollaries.

Corollary 2.3

For any $f \in L_P(C)$ and any $\in > 0$, there exists a neural network of the form $N(x) = \sum \pm a \, \delta(-x, x + b_x)$ with at most min $\{(n+1)^d / C(p, r, d) \, \omega_r \left(f, \frac{1}{n}\right)_{L_P(C)} < \epsilon\}$ hidden neurons satisfy $||N(x) - f||_{L_P(C)} < \epsilon$, where δ is nearly exponential and C is a compact and convex set in $[0,1]^d$.

Proof

Choose n such that $C(p, r, d) \omega_r(f, \frac{1}{n})_{L_P(C)} \leq \varepsilon$. From Theorem 2.2 there exists $g \in R_n^{\delta}(d)$ Such that $d_P(g, f) \leq \varepsilon$. this g is neural network of hidden neurons $\leq (n+1)^d$.

Corollary 2.4

Let δ be nearly exponential function and let C be compact and convex set in $[0,1]^d$, f is Lipchitz continuous function then max{ $[C(p,r,d) \frac{L(f)}{\epsilon}]^d$, 1} neurons suffice. Proof

We have two cases , the first case $C(p,r,d) \frac{L(f)}{\epsilon} < 1$, then $C(p,r,d)\omega_r\left(f,\frac{1}{n}\right)_{L_P(C)} \le C(p,r,d)\frac{L(f)}{n+2} < \frac{\epsilon}{n+2} < \epsilon$. From Theorem 2.3 the minimum is equal to 1. therefore $C(p,r,d) \frac{L(f)}{\epsilon} \ge 1$, let $\mathfrak{n} = [C(p,r,d) \frac{L(f)}{\epsilon}] - 1$, then using Theorem2.3 the minimum is at most $(\mathfrak{n}+1)^d = [C(p,r,d) \frac{L(f)}{\epsilon}]^d$.

References

- Bhaya E.S., (2003)," on the constrained and unconstrained approximation ",University of Baghdad ,Iraq.
- Cybenko G., (1989), "Approximation by superpositions of a sigmoidal function," *Math. Contr. Signals Syst.*, vol. 2, pp. 303–314.
- Funahashi K.I., (1989), "On the the approximate realization of continuous mappings by neural networks," *Neural Networks*, vol. 2, pp. 183–192.
- Hornik K., Stinchcombe M., and White H., (2011), "Multilayer-feed forward networks are universal approximators," Neural Networks, vol. 2, pp. 359–366, 1989.
- Kareem M.A. ,(2011), "On the multi approximation in suitable spaces ," M. SC. thesis, University of Babylon.
- Ritter G., (1999), "Efficient estimation of neural weights by polynomial approximation," IEEE Transactions on Information Theory, VOL. 45, NO. 5, July , pp.1541-1550..
- Wang J. and Zongben X. ,(2010), "New study on neural networks: the essential order of approximation," science in chin, Neural Networks 23 618_624a.