

١١٦

 J. Edu. & Sci., Vol. (23), No. (3) 2010

Monitoring Windows Kernel's Services

Rawaa Putros Polos

Department of Computers Sciences
College of Computers and Mathematics Sciences

University of Mosul

Accepted Received
06 / 04 / 2009 04 / 11 / 2008

 الخلاصة

بوظائف ذات مستوى منخفض العالية المستوى لتطبيقاتويندوز ا تجهز نواة نظام التشغيل
 الخـدمات فالتحكم بهذه . ذه الوظائف بخدمات النظام شار له ي و .المطلوبة منها النظام هام لانجاز م

 .يمنح إمكانية المراقبة والتحكم بفعاليات مهمة لنظام التشغيل
جاز مراقبة خـدمات يقدم هذا البحث تقنية خطف النواة كونها الأكفأ والأكثر استخداما لان

 .النظام
على مستوى النظام ومراقبة نظام التشغيل برمجيا بالإمكان التحكمهو كيفهدف البحث

 . النواة خطفتقنيةباستخدام
أنجزت هذه التقنية ضمن سواقة جهاز عن طريق الوصول إلى جدول مـوزع خـدمات

 من خـدمات النـواة الفعالـة للحصول على إمكانية التعامل و التغيير في عدد (SSDT)النظام
 .البرامج وعمليات الحذف وإيقاف المعالجات في النظام لغرض السيطرة ومراقبة تنفيذ

 سـواقة نفيـذ لتDDKباستخدام وطور XP SP2تنفيذ هذا العمل بنجاح في ويندوز تم
 . التطبيقنفيذ لت٦,٠الإصدار ++ الجهاز ولغة فيجوال سي

بجميع عمليات تنفيذ البرامج وعمليات الحذف و إنهاء عند تنفيذ التطبيق يتم التحكم
 .بإجراء العمليات المذكورة أو إلغاءهاالسماح ابلية قويمنح المستخدم المعالجات

ABSTRACT

The kernel of Windows operating system provides high-level
applications with the low-level functionality needed to perform system
operations. This functionality referred to as system services. So, Controlling

Monitoring Windows Kernel's Services.

١١٧

these services gives the ability to monitor and control important activities of
the operating system.

This research presents kernel hooking technique that is one of the
most efficient and used technique to achieve system services monitoring.

The aim of the research is how the operating system can be
programmatically monitored and controlled on a system-wide basis by
means of kernel hooking.

This technique was implemented in a device driver by accessing
SSDT (System Service Descriptor Table) to gain the ability for
manipulating and change number of effective kernel services for monitoring
programs execution, deletion operations and processes termination in the
system.

The work has been run successfully on Windows XP SP2 and
developed using DDK (Driver Development Kit) for device driver
implementation and Visual C++ version 6.0 for application implementation.

So, when the application is executed, programs execution, deletion,
and processes termination operations have been controlled, and gives user
the capability to permit performing these operations or canceling them.

1. Introduction

Operating system components (such as system services and device
drivers) runs in kernel mode, which refers to a mode of execution in a
processor that grants access to all system memory and all CPU (Central
Processing Unit) instructions [6].

In computing, the kernel is the lowest, most central component of a
computer operating system, and one of the first pieces of code to load when
a system starts. Its responsibilities include managing the system's resources
and the communication between hardware and software components [9].

As a basic component of a computer operating system, the kernel
provides an abstraction layer for the resources (especially memory,
processors and I/O devices) that applications must utilize to perform their
functions. It typically makes these facilities available to application
processes through inter-process communication mechanisms and system
services call. It is responsible for basic operating system housekeeping tasks
such as memory management, process creation and termination, and
managing the data on the disk. The integrity of the kernel is instrumental to
the performance and security of the computer it resides upon.

Since all other programs and many portions of the operating system
itself depend on the kernel, any problems in the kernel can make those
programs crash or behave in unexpected ways. The "Blue Screen of Death"

Rawaa Putros Polos

١١٨

(BSoD) in Windows is the result of an error in the kernel or a kernel mode
driver that is so severe that the system can't recover [1].

System services are the critical functions of the OS (Operating
System) and intercepting them will enable the programmer to understand
and modify the action of the OS at a deeper level than user mode techniques
[8].

Kernel services monitoring using SSDT hooking technique was
presented by Russinovich and Cogswell in 1997 as completely different
approach to system-wide hooks for Windows NT, and SVEN B.
SCHREIBER was presented it for Windows 2000 [10]. Also Chris Ries
presented a brief description of this technique [1].

In this work hooking SSDT was implemented to monitor Windows
programs execution, deletion operation and process termination. Hooking
operation requires accessing kernel memory, so that, a device driver had
been developed to achieve this task, which contains the main parts, i.e.
accessing SSDT and replace the pointer of the desired service by the address
of our own function.

The driver required user application to load and start it, therefore
special communication between user-mode application and the kernel device
driver was made to exchange important data using IRP (I/O Request
Packets).

2. Introducing Code into the Kernel:

As a general rule, processes cannot access kernel’s memory.
Therefore, the straightforward way to introduce code into the kernel is by
using a loadable module (sometimes called a device driver or kernel driver).
[7][4].

As its name suggests, a device driver is typically for devices.
However, any code can be introduced via a driver. Once the code running in
the kernel, it can be had full access to all of the privileged memory of the
kernel and system processes. With kernel-level access, modifying the code
and data structures of any software on the computer can be made [2][8].

To build Windows device driver, we'll need the Driver Development
Kit (DDK), which provides special header files, import libraries and
different build environments for building drivers. DDKs are available from
Microsoft for each version of Windows, Microsoft allows downloading the
DDK from their site. After building the device driver, it must be loaded by a
user-mode program [10].

 A loading program typically will decompress a copy of the .sys file to
the hard drive. .sys file is a single file represents the heart of device driver

Monitoring Windows Kernel's Services.

١١٩

and is very similar in concept to a DLL (Dynamic Link Library). After the
decompression operation, commands are issued to load it into the kernel [3].

After loaded the driver into kernel memory. All the power of the OS is
now under the dispose.

3. Bridging user and Kernel Mode:

A user-mode program can communicate with a kernel-level driver
through a variety of means. One of the most common is the use of I/O
request packets (IRP) [11].

3.1 What is an IRP?

Almost all I/O under Windows is packet-driven. Each separate I/O
transaction is described by a work order that tells the driver what to do and
tracks the progress of the request through the I/O subsystem. These work
orders take the form of a data structure called an I/O Request Packet (IRP).
The IRP is a variable sized structure includes information about the
operation that is being requested [3].

In order to communicate with a user-mode program, a Windows
device driver typically needs to handle IRPs. These are just data structures
which contain buffers of data. A user-mode program can open a file handle
and write to it. In the kernel, this write operation is represented as an IRP.
So, if a user-mode program writes the string "HELLO DRIVER!" to the file
handle, the kernel will create an IRP that contains the buffer and string
"HELLO DRIVER!", therefore Communication can take place between the
user and kernel modes via these IRPs [11].

In order to process IRPs, the kernel driver must include functions to
handle the IRP.

4. Kernel System Services:

Windows provides a largely undocumented set of base system
services, called the Native API which is somewhat similar to the interrupt
based system. These kernel-mode base system services are used by the
operating environment subsystems for the implementation of their operating
environments, on top of the Windows NT micro-kernel [2][5][10].

Under Windows NT, the NT executive (part of NTOSKRNL.EXE)
provides core system services. These services are rather generic and
primitive. Various APIs such as Win32, OS/2, and POSIX are provided in
the form of DLLs. These APIs, in turn, call services provided by the NT
executive. The name of the API function to call differs for users calling from
different subsystems even though the same system service is invoked. For

Rawaa Putros Polos

١٢٠

example, to open a file from the Win32 API, applications call CreateFile()
and to open a file from the POSIX API, applications call the open() function.
Both of these applications ultimately call the NtCreateFile() system service
from the NT executive [6][7].

Every system service has a unique index number, which is generated
automatically by a script that runs as part of the NT build process.

All of the Native APIs begin with "Nt". The export table in
NTDLL.DLL also makes the Native API accessible through an alternate
naming convention, one where command names begin with "Zw" instead of
"Nt". Thus, ZwCreateFile() is an alias for NtCreateFile() [4].

5. The System Table

Windows kernel relies on a table of pointers to functions in order to
perform system operations. This table, referred to by Microsoft as the system
service descriptor table (SSDT). So, SSDT is an array of function pointers to
an in-memory system services, which is implemented in the operation
system [9].

This table can be indexed by system call number to locate the address
of the function in memory. There are two ways a program can make a
system call: by using interrupt 0x2E, or by using the SYSENTER
instruction.

Figure (1): SSDT Table and KiSystemService [6].

Monitoring Windows Kernel's Services.

١٢١

On Windows XP and beyond, programs typically use the SYSENTER
instruction, while older platforms use interrupt 0x2E. The two mechanisms
are completely different, although they achieve the same result.

Making a system call results in the function KiSystemService being
called in the kernel. This function reads the system-call number from the
EAX register, and looks up the call in the SSDT as shown in Figure (1).The
KeServiceDescriptorTable is exported by the kernel [1].

The table contains a pointer to the portion of the SSDT that contains
the core system services implemented in Ntoskrnl.exe, which is a major
piece of the kernel.

To call a specific function, the system service dispatcher,
KiSystemService, simply takes the ID number of the desired function and
multiplies it by 4 to get the offset into the SSDT [9].

6. Modifying Kernel Memory Protections

Before hooking kernel functions, some consideration must be taken in
account. Modern Windows operating systems are capable of protecting
kernel memory by making the system call table read-only. If an attempt is
made to write to a read-only portion of memory, such as the SSDT, a Blue
Screen of Death (BSoD) will occur.

The key to circumventing protected memory lies with the Memory
Descriptor List, defined within ntddk.h of the Microsoft Windows Driver
Development Kit. A MDL (Memory Descriptor List) is a system-defined
structure that describes a buffer by a set of physical addresses. A driver that
performs direct I/O receives a pointer to an MDL from the I/O manager, and
reads and writes data through the MDL [9].

Number of related functions can be used to describe a region of
memory in a MDL. MDLs contain the start address, owning process, number
of bytes, and flags for the memory region [3].

7. SSDT Hooking Implementation

The efficient way to put a hook into the system services is to locate
the SSDT used by the operating system and change the function pointers to
point to other function provided in this work. This can be achieved only
from a kernel device driver because this table is protected by the OS as
mentioned earlier.

Once the hook program is loaded as a device driver, it can change the
SSDT to point to my new function instead of into Ntoskrnl.exe or
Win32k.sys. When a non-kernel application calls into the kernel, the request
is processed by the system service dispatcher, and the hook function is called
as depicts in Figure (2).

Rawaa Putros Polos

١٢٢

At this point, the hook function can call the original system service
and modify the returned data or it can just return bogus data without calling
the original code.

Figure (2) SSDT Hooking.

The DDK provides two different build environments: checked & free

environment. Checked environment was used for developing the device
driver, while the other is used for releasing code.

The source code for the driver was written in C which include the
essential parts of the driver: such as driver entry function and driver dispatch
function.

Driver parts contain SSDT hooking steps which can be described in
the following steps:
1. Defining and implementing a new function:

This function has the same definition as the system service to be
hooked. It contains actions differ from the original one, the new actions
gives the ability either to call the original service or perform another task.

2. Using MDL to change SSDT memory protection
As mentioned previously, OS makes the SSDT read-only. In this work

MDL was used to map virtual memory to physical pages, so the memory
region of SSDT was described in MDL using number of related functions
as follows:

After-hooking

Before-hooking

Monitoring Windows Kernel's Services.

١٢٣

- IoAllocateMdl function was used to allocate MDL for SSDT which
accept the SSDT and its size as first and second
parameters respectively.

IoAllocateMdl (IN PVOID VirtualAddress, IN ULONG Length,
IN BOOLEAN SecondaryBuffer, IN BOOLEANChargeQuota,
N OUT PIRP Irp OPTIONAL);

- MmBuildMdlForNonPagedPool function that receives the MDL
allocated for the SSDT from the previous function,
and updates it to describe the underlying physical
page.

MmBuildMdlForNonPagedPool(IN OUT PMDL MemoryDescriptorList);

- MmMapLockedPages function is used to lock the MDL page.
MmMapLockedPages(IN PMDL MemoryDescriptorList, IN KPROCESS
OR_MODE AccessMode);

3. Obtaining the address of the system service to be hooked in the SSDT.
To access SSDT, the driver must deal with

KeServiceDescriptorTable.
The structure of this entry was defined in the driver as follows:

typedef struct ServiceDescriptorEntry {

unsigned int ServiceTableBase;

 unsigned int *ServiceCounterTableBase;

 unsigned int NumberOfServices;

 unsigned char *ParamTableBase;

 } SSDT_Entry;

Driver entry function begins with saving the address of the original
system service using SYSTEMSERVICE macro:
#define SYSTEMSERVICE(_func)

KeServiceDescriptorTable.ServiceTableBase[

*(PULONG)((PUCHAR)_func+1)]

It accepts the address of a function exported by ntoskrnl.exe, a Zw*
function as parameters, and returns the address of the corresponding Nt*
function in the SSDT.

Rawaa Putros Polos

١٢٤

4. Replacing SSDT entry for that service with the address of the new
function.

Driver dispatch function contains the replacement operation. This
operation was accomplished using the following macro:
#define HOOK_SYSCALL(_Function, _Hook, _Orig)

 _Orig = (PVOID) InterlockedExchange((PLONG)
 &MappedSystemCallTable[SYSCALL_INDEX(_Function)], (LONG)

_Hook)
Macro parameters are:
• Address for the original system service.
• Address for the new function.
• Variable to hold the address of the original service.
This macro used InterLockedExchange function that made the

replacement operation and return original address:
LONG InterlockedExchange(

 LPLONG Target,
 LONG Value);

SYSCALL_INDEX macro was used to obtain service's index:
#define SYSCALL_INDEX(_Function)

*(PULONG)((PUCHAR)_Function+1)

Which takes the address of a Zw* function and returns its
corresponding index number in the SSDT.
MappedSystemCallTable is the MDL that describes SSDT table.

To terminate hooking operation UNHOOK_SYSCALL macro is used:
 #define UNHOOK_SYSCALL(_Func, _Hook, _Orig)
 InterlockedExchange((PLONG)
 &MappedSystemCallTable[SYSCALL_INDEX(_Func)], (LONG)

_Hook)

8. Monitoring Software Parts

Kernel monitoring software consists of two parts:
1. Kernel-mode part.
2. User-mode part.

Monitoring Windows Kernel's Services.

١٢٥

1. Kernel-mode part:
This part includes the device driver that contains the implementation

of hooking tasks as described in the previous section.
The driver performs kernel hooking by replacing the address of the

selected system service in the SSDT with the address of new supported
function.

2. User-mode part:

This part includes Windows application responsible for driver loading
and unloading as well as exchanging data between the application and the
driver.

The application program used SCM (Service Control Manager) to
load the driver, through the steps below:

1. Using the OpenSCManager function to get a handle to the specified

service control manager database.
SC_HANDLE OpenSCManager (LPCTSTR lpMachineName,

 LPCTSTR lpDatabaseName,
 DWORD dwDesiredAccess)

2. Using the CreateService function to create a service object and add it to
the specified service control manager database.

SC_HANDLE CreateService (SC_HANDLE hSCManager,

 LPCTSTR lpServiceName,
 LPCTSTR lpDisplayName,
 DWORD dwDesiredAccess,
 DWORD dwServiceType,
 DWORD dwStartType,
 DWORD dwErrorControl,
 LPCTSTR lpBinaryPathName,
 LPCTSTR lpLoadOrderGroup,
 LPDWORD lpdwTagId,
 LPCTSTR lpDependencies,
 LPCTSTR lpServiceStartName,
 LPCTSTR lpPassword)

3. Using StartService function to start a service.

BOOL StartService(SC_HANDLE hService,
 DWORD dwNumServiceArgs,
 LPCTSTR* lpServiceArgVectors)

Rawaa Putros Polos

١٢٦

Now the driver becomes a service, and the hooking process was
performed. So any call to any of the hooked system services by other
system's parts will cause to call the new functions provided by the
developer.

To unload the driver, the application program uses DeleteService
function.

BOOL DeleteService (SC_HANDLE hService)

At the start of monitoring operation, user application passes the
address of the exchange buffer to the driver using the function:

BOOL DeviceIoControl(
 HANDLE hDevice,
 DWORD dwIoControlCode,
 LPVOID lpInBuffer,
 DWORD nInBufferSize,
 LPVOID lpOutBuffer,
 DWORD nOutBufferSize,
 LPDWORD lpBytesReturned,
 LPOVERLAPPED lpOverlapped
);

The driver receives the buffer as an IRP using the function:

IoGetCurrentIrpStackLocation(Irp)

The buffer contains data that represents user decisions either to call
the original service or to do anther action as discarding the call.

9. Kernel Monitoring Software

Kernel SSDT hooking method had been implemented on a number of
system services:

- ZwCreateSection to monitor programs execution. It is used for
process creation (program execution) with ObjectAttributes is setting
to SEC_IMAGE and Protect field is set to PAGE_EXECUTE.

NTSYSAPI NTSTATUS NTAPI ZwCreateSection(
OUT PHANDLE SectionHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES,

Monitoring Windows Kernel's Services.

١٢٧

IN PLARGE_INTEGER SectionSize OPTIONAL,
IN ULONG Protect,
IN ULONG Attributes,
IN HANDLE FileHandle);

- ZwSetInformationFile for deletion operations monitoring. A file
typically deleted using the ZwSetInformationFile function with the
FileInformationClass parameter set to FileDispositionInformation and
the DeleteFile member of the FileDispositionInformation object set to
TRUE.

NTSYSAPI NTSTATUS NTAPI ZwSetInformationFile(
IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PVOID FileInformation,
IN ULONG FileInformationLength,
IN FILE_INFORMATION_CLASS
FileInformationClass);

- ZwTerminateProcess to monitor the termination of any process. It
terminates a process and the threads that it contains when the process
handle is grant PROCESS-TERMINATE access, i.e. its value is zero.

NTSYSAPI NTSTATUS NTAPI ZwTerminateProcess(
IN HANDLE ProcessHandle OPTIONAL,
IN NTSTATUS ExitStatus);

Software interface is shown in Figure (3), which gives the ability to
choose which service to hook or select to hook all.

Figure (3): Software interface.

Rawaa Putros Polos

١٢٨

When one of the kernel hooking choices was selected the
Hook&UnHook dialogue box will appear as depicted in Figure (4).

Figure (4): Hooking dialogue box.

To start service hooking, Start Hook button must be pressed from the

dialogue box, at that time; the driver will be loaded and waiting for any call
to the hooked system service. As the service is called, the driver sends data
related to the action of that service to the application and waits a response
from the user which will be sent by the application to it. Depending on user's
response, the driver will either continue service call or cancel the call. To
unhook, the Unhook button must be pressed.

10. Conclusion

The kernel is considered the heart of the Operating system. Therefore,
in general, hooking provides a powerful way for monitoring and modifying
the various actions of the OS. That is because hooking will divert the normal
flow of system's control.

Despite that, kernel hooking is difficult to implement as an error in
the kernel often end up in BSoD and required a device driver to access
kernel memory and components.

System services are critical functions of the OS & hooking them will
enable the programmer to understand and modify the action of the OS at a
deeper level, but hooking implementation are sophisticated, since these
services are undocumented.

Kernel hook get one central place from which it can be monitored the
events or actions occurring as a result of a user-mode call or a kernel-mode
call.

Monitoring Windows Kernel's Services.

١٢٩

Reference

[1] Chris Ries, 2006, "Inside Windows Rootkits", VigilantMinds Inc.
[2] David A. Solomon and Mark E. Russinovich, 2000, "Inside Microsoft

Windows 2000", Microsoft Press, 2nd Edition.
[3] DDK Documentation, 2003, Microsoft,

www.microsoft.com/whdc/devtools/ddk/default-mspx.
[4] Eldad Eilam, 2005, "Reversing: Secrets of reverse Engineering",

Widely publishing inc.
[5] Johnson M. Hart, 2004, “Windows System Programming”, Addison

Wesley Professional, 3rd edition.
[6] Mark E. Russinovich, David A. Solomon, 2004, "Microsoft Windows

Internals", Microsoft Press.
[7] Dabak P., M. Borate & S. Phadke, 1999, "Undocumented Windows

NT", M&T Books.
[8] Rajagopalan, M. Hittunem, M. A. Jim, T. Schlichting, 2006 "System

call monitoring using Authenticated system calls", IEEE, vol. 3, Issue
3.

[9] Ric Vieler, 2007, "Professional Rootkits", Wrox Press.
[10] Sven B. Schreiber, 2001, "Undocumented Windows 2000 Secrets",

Addison-wesley.
[11] Walter Oney, 2003, "Programming The Microsoft Windows Driver

Model", Microsoft Press.

