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 Localization is one of the potential challenges for a mobile robot. Due to 

the inaccuracy of GPS systems in determining the location of the moving 

robot alongside weathering effects on sensors such as RGBs (e.g. rain and 

light-sensitivity  ( . This paper aims to improve the localization of mobile 

robots by combining the 3D LiDAR data with RGB-D images using deep 

learning algorithms. The proposed approach is to design an outdoor 

localization system. It is divided into three stages. The first stage is the 

training stage where 3D LiDAR scans the city and then reduces the 

dimensions of 3D LiDAR data to 2.5D image. This is based on PCA method 

where these data are used as training data. The second stage is the testing 

data stage. RGB and depth image in IHS method are combined to generate 

2.5D fusion image. The training and testing of these datasets are based on 

using Convolution Neural Network. The third stage consists of using the K-

Nearest Neighbor algorithm. This is the classification stage to get high 

accuracy and reduces the training time. The experimental results obtained 

prove the superiorly of the proposed approach with accuracy up to 97.52%, 

Mean Square of Error of 0.057568, and Mean error in distance equals 0.804 

meters. 
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1. INTRODUCTION 

Mobile robots have an important part in many areas of situations [1]. Mobile robots sometimes 

work with insufficient knowledge about the areas. Most studies had been conducted on the 

environmental study as the robot works through different forms of sensors combined on the robot [2]. 

Global Positioning System GPS is the most commonly used localization solution, though it suffers 
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from some limitations, for example, the multipath influence, delay, restricting its use in urban and poor 

GPS signal due to large buildings [3]. 

The Simultaneous Localization And Mapping (SLAM). It is commonly used to calculate the 

location of moving mobile robots at the same time to generate a map of the local area [4]. The 

researchers have the attention of SLAM and achieved many practical results. Zhang et al. combined a 

Deep Learning (DL) Algorithm's object detection unit and localization with RGB-D SLAM [5]. But it 

is always pricey to produce a large-scale outdoor map, however, try to find a simple way [6].  

In the field of Machine Learning (ML), the task of enhancing the efficiency of robotics through the 

integration of (ML) technology has generated new challenges. Interest and efforts in designing machine 

learning approaches for robotics systems focused on computer vision have grown in recent years for 

example Keisuke et al. proposed an algorithm based on distance measurement that uses only odometer 

measurement of distances computed from robot movements using Convolution Neural Network (CNN) 

algorithm [7]. Junior et al. proposed the solution of using the Internet of Things (IoT) to build a system 

capable of carrying out this online operation. For the robot to navigate by computer vision, a 

topological map, CNN, and machine learning methods are used [8]. 

The Light Detection And Ranging LiDAR  as an active sensor and invariant to light. A typical 3D 

LiDAR, on the other hand, can obtain environmental information with 30 (±15) º in the vertical 

direction and 360º in the horizontal field of view (FOV) at a scanning rate of around 10 Hz. In an area 

with long ranges [9], high resolution enables the LiDAR to collect a huge number of good information. 

In robot systems, these benefits make LiDAR widely used. Li et al. Presented a technique to increase 

the precision of pose prediction of 3D point clouds from LiDAR by accurately segmenting the surface 

point and point cloud [9]. Li et al. presented a camera localization workflow based on a highly accurate 

3D prior map optimized by RGB-D SLAM method [10]. Kang et al. suggested RGB-D SLAM 

approach used prior LiDAR point cloud data as a reference for constructing and navigating the indoor 

3-D scene [11]. LiDAR-based SLAM approaches have very precise 3D environmental details but also 

take time to scan and also depend on very simplistic scan-matching approaches that are not very robust 

[12]. 

To precise and stable self-localization of mobile robots in the outdoor environment, some 

approaches fail to correctly identify the location of the mobile robot due to different weather conditions 

such as rain and snow. In addition to the fact that some sensors such as RGB do not work well in an 

outdoor environment were very sensitive to light, the LiDAR is seriously disrupted for SLAM 

problems. So, a proposed a system based on 3D data with Deep learning (DL) algorithm to achieve 

accuracy and robustness to identify the correct location of the mobile robot.  

The proposed method is divided into three stages. Each stage is made up of many operations: 

training, testing, and classification. In the training stage, the conversion of 3D LiDAR point cloud scan 

into 2.5D image using Principal Component Analysis (PCA) method is done. The extraction of features 

from the 2.5D images using Convolution Neural Network (CNN) algorithm is implemented. Then, all 

features data, point cloud data, and data associated with the pre-processing stage are stored to use in 

the classification stage. This is to get the ground true position of the mobile robot.  In the testing stage, 

an image fusion is performed by combining two images RGB and Depth (D) image, into a single RGB-

D image then using CNN to extract the features from the RGB-D image. In the classification stage, the 

tested image is classified using the K-Nearest Neighbors algorithm to locate the position of the mobile 

robot. 

The organization of the paper is as follows: In Section 2 presents the material and methods. The 

proposed method in section 3 is described in detail. Section 4 presents the experimental result and 

discussion. Finally, the conclusion is obtained in section 5. 

2. METHODOLOGY 

I. Deep Learning (DL) 

In the area of Artificial Intelligence, (DL) is a method that falls within a group of machine learning 

algorithms that operate on the basic idea of learning. For learning, supervised [13] and unsupervised 

[14], both models can be used. In (DL), Based on previously studied data, a computerized model 

executes a particular set of classification or pattern analysis tasks. Therefore, the model must first be 

trained with a set of structured data. (DL) is mainly used to categorize images, texts, or sounds. The 
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models work without human intervention and are equivalent, and sometimes better than humans. These 

models are mostly realized through deep neural networks. 

II. Convolution Neural Network (CNN) 

Convolutional neural network (CNN) is one of the most amazing types of Artificial Neural 

Network (ANN) designs. (CNN) is a technology that combines ANNs with modern Deep Learning 

strategies. This (ANN) has been applied to various image recognition tasks over decades and has 

attracted the attention of researchers from many countries in recent years, as CNN has shown promising 

performance in various computer vision and machine learning tasks [15]. 

A CNN consists of an input and output layer, and multiple hidden layers in between. These layers 

are generally divided into three types: Convolution (CONV), Pooling (POOL), and Full Connected 

(FC) [16]. 

A CNN is made up of many convolutional and subsampling layers, which may be joined by fully 

connected layers as shown in Figure 1., i.e. after several convolutions and pooling layers, one or more 

fully connected layers are present. Each stage's inputs and outputs are collections of arrays referred to 

as feature maps. 

 

 

 

Figure 1: Basic architecture of a Convolutional Neural Network [16] 

III. K-Nearest Neighbors (K-NN) 

K-NN Classifier is the classification of unlabeled observations by assigning them to the most 

similar labeled examples. Observation characteristics are collected for both the training and testing 

dataset. The K-NN algorithm preserves all available data and categorizes new data points based on 

their similarities. This ensures that as new data appears, the K-NN algorithm will efficiently categorize 

it into a useful collection. 

While the K-NN algorithm can be used for both regression and classification, it is most widely 

used for classification. For example, consider two categories, Category A and Category B, as well as 

a new data point X1 is located [17] So, this data point will lie in which of these categories. A K-NN 

algorithm is necessary to solve this type of problem. With the help of K-NN, easy identification of the 

category or class of a particular dataset is obtained. Consider the diagram shown in Figure 2. 

First, choose the number of neighbors, so k=5. Next, calculate the Euclidean distance among the 

data points is done as shown in Figure 3. The distance between two points is known as the Euclidean 

distance [18]. 

               
Figure 2: The K-NN principle [17]                               Figure 3: The Euclidean Distance for K-NN [18] 
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 Euclidean Distance between A and B  = √(X2 − X1)
2 + (Y2 − Y1)

2                                        (1)  
              

Using the Euclidean distance formula, the closest neighbors are classified into two categories: 

category A has three neighbors, and category B has two neighbors. The three nearest neighbors are 

from category A. Hence, this new data point must belong to category A. 

IV. Principal Component Analysis (PCA) 

LiDAR is a high-precision sensor that is used in some applications to calculate the distance to its 

surroundings and present 3D shape as a point cloud where each point has (x, y, z.) coordinates. Due to 

the harmful effects of atmospheric particles, the return of multiple paths. The point cloud image 

obtained by LiDAR sensors affords a lot of noise due to diffuse reflection, as well as diverse weather 

conditions such as rain and snow. To achieve a high-quality point cloud image, this noise must be 

removed [19]. 

(PCA) is a dimensional reduction approach for 3D LiDAR data sets that requires transforming a 

large number of variables into a smaller set that preserves the most information from the larger set. 

The covariance matrix is a symmetric matrix of p × p (where p is the number of dimensions) with 

the covariance associated with all valid pairs of the original variables as entries. For example, the 

covariance matrix is a 3 × 3 matrices of this form: for a 3-dimensional data set of 3 variables x, y, and 

z [20] 

                                         [

Cov⁡(x, x) Cov⁡(x, y) Cov⁡(x, z)
Cov⁡(y, x) Cov⁡(y, y) Cov⁡(y, z)
Cov⁡(z, x) Cov⁡(z, y) Cov⁡(z, z)

]                                               (2) 

 

As the variance of a variable is its variance with itself (Cov(a, a)=Var(a)), basically have the 

variances of each original in the main diagonal vector (top left to bottom right). (Cov(a,b)=Cov(b,a) 

since the covariance is commutative. For the main diagonal, the covariance matrix entries are 

symmetric, meaning that the upper and lower triangular parts are identical. 

The linear algebra principles are needed to calculate from the covariance matrix to evaluate the key 

components of the data, eigenvectors, and eigenvalues. The first main components (Y1) are given by 

the linear combination of variables X1, X2,...,Xp [21]: 

                                                    Y1 = a11X1 + a12X2 + ⋯a1pXp                                                  (3) 

The first main element component is measured in such a method that in the data collection it 

accounts for as many as a possible variation. The second main component (Y2) is measured in the same 

manner, provided that the first principal component is not compared with (i.e. perpendicular to) and 

that the next largest variation is accounted for. 

                                                     Y2 = a21X1 + a22X2 + ⋯a2pXp                                             (4) 

This process is repeated until the sum of the principal components of p equals the original number 

of variables. At this point, the sum of the variances of all the principal components equals the sum of 

the variances of all the variables. 

                                                                        Y = XA                                                                  (5) 

V. Conversion of 3D LiDAR to 2.5D image and rotation around Z 

The point cloud shows the Z-values that denote height or depth using the 3D point cloud. The 

positive Z-value point is above the ground, while the negative Z-value point is below the ground and 

invisible on the map. This problem is solved by the rotation around the z-axis to align the point cloud 

along x-axis to get rid of negative Z-values using PCA method. In the case of 3D, three elements can 
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be represented by Matrices for rotation. If it is required to rotate around the z-axis, use the following 

matrices [22-23]: 

                                                         Rz = [
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

]                                              (6) 

 

                                                      ⁡⁡Rx = [
1 0 0
0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)
]                                              (7) 

 

                                                        Ry = [
cos⁡(θ) 0 sin⁡(θ)

0 1 0
−sin⁡(θ) 0 cos⁡(θ)

]                                             (8) 

 

VI. Intensity Hue Saturation )IHS( Transformations 

Image Fusion is used to combine and place valuable information from a series of input images into 

a single output image to make it more effective and useful than all of the input images [24]. One of the 

most widely used fusion methods for sharpening is the IHS method. It has become a traditional image 

processing technique for color analysis. This is to have improvement, the perfection of features, 

enhancement of spatial precision, and the convergence of various data sets. Spectral knowledge is often 

reflected in the Hue and the Saturation. One can infer from the visual system that the change in 

amplitude has no effect on the spectral details and is simple to work with [25]. Most pieces of literature 

accept IHS as a third-order approach because of the RGB IHS conversion model. It uses a 3×3 matrix 

as its transform kernel. Many published studies indicated that the following definition uses separate 

IHS transformations, which have some significant variations in the values of the matrix: 

[
I
V1

V2

] =

[
 
 
 
 

1

√3

1

√3

1

√3
−1

√6

−1

√6

2

√6
−1

√2

1

√2
0 ]

 
 
 
 

[
R
G
B
]                     H = tan−1⁡(

V2

V1
)                        S = √V1

2 + V2
2          (9) 

Two intermediate values are where (V1 and V2) are. Special case processing and final scaling of 

the intensity, hue, and saturation values between 0 and 255 are used in the algorithm. 

VII. 2.5D image fusion based IHS  

In IHS fusion methods, the RGB and depth image are combined taking the same position to produce 

2.5D image.  Hue, Saturation, and Intensity can be obtained from the RGB color cube. In a color image, 

the Intensity variable is decoupled from the color carrying data (Hue and Saturation). RGB point 

converted into a corresponding point is the IHS color by working out the geometrical formulas[26]: 

The Hue H is given by                      H = {
θ  if B ≤ G

360 − θ  if B > G
} where                                              (10) 

                                                                     θ = cos−1⁡{
1

2
[(R−G)+(R−B)]

√(R−G)2+(R−B)(G−B)
}                                            (11) 

The Saturation S is given by:            S = 1 −
3

(R+G+B)
[min(R, G, B)]                                               (12) 

The Intensity I is given by:                I =
1

3
(R + G + B)                                                                      (13) 



Engineering and Technology Journal                           Vol. 39, (2021), No. 06, Pages 965-976 

 

970 
 
 

VIII. Measuring of error  

The Error Rate (ER), Mean Error of Distance (MED) and Mean Square Error (MSE) are used in 

the error estimation of an estimated arithmetic circuit. First, the error of Distance (ED) is defined as 

the difference between the approximate sum S* and the specific sum S, i.e. [27]: 

                                                                             ED = |S∗ − S|                                                                 (14) 

The error rate (ER) is the number of input configurations for which the predicted adder delivers 

incorrect effects. results, i.e., a non-zero error distance. It is determined mathematically as [27]: 

                                                                           ER = P(ED ≠ 0)                                                           (15) 

The (MED) is the mean value of all distances of error. The (MSE) overall error distances is the 

Mean value of the squares, measured mathematically as [27]: 

                                                        MED = E[ED] = ∑  EDi∈Ω EDiP(EDi)                                       (16)           

                                                      MSE = E[ED2] = ∑  EDi∈Ω EDi
2P(EDi)                                       (17)  

where Ω is the set of all error distances. 

If n predictions are created from a sample of n data, Y is the variable being predicted, with ⁡Ŷ  is 

being the predicted value, then MSE is calculated as [27]:  

                                                                 MSE =
1

n
∑  n

i=1 (Yi − Ŷi)
2
⁡                                                 (18) 

3. PROPOSED OUTDOOR LOCALIZATION SYSTEM 

The proposed method in this research for knowing the location of a mobile robot is divided into 

three stages. Each stage consists of several operations:  training, testing, and classification stages. In 

the training stage, the LiDAR sensor performs a scan to obtain 3D point cloud data. Converting a 3D 

point cloud to a 2.5D image is using the PCA method. The feature is extracted from 2.5D images using 

CNN algorithm. It stores all featured data, point cloud data, and all pre-processing-related data as a 

matrix. In the testing stage, it uses RGB and Depth sensors to get two images of the same location. 

Then, combine two RGB images and depth (D) into an RGB-D merge image to be a single 2.5D by 

IHS method. The features are extracted from 2.5D with CNN algorithm. All feature data are then 

located in a matrix. In the classification stage, the classifier K-NN, the test data is classified with the 

training data stored to find the correct location of the mobile robot.  

Assume the proposed system consists of two sensors (LiDAR and RGB-D) are mounted on a 

mobile robot in order to collect the dataset for training and testing, as shown in Figure 4. 
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Figure 4: Proposed outdoor localization system 

4. EXPERIMENTAL RESULTS   

I. Collected Datasets 

 A large amount of data is typically needed to train a neural network with supervised learning. A 

dataset contains RGB images, depth images, High-resolution LiDAR scans with corresponding mode 

designations is required to train and test the device design. This was not, however, found in the public 

domain and it was agreed to use a simulator to produce the data needed. The CARLA driving simulator 

is used to produce simulated results. CARLA is an open-source simulator. In CARLA a camera sensor 

can be connected to a mobile robot, capturing images with a frame rate preset [28]. The camera sensor 

will create images in both RGB and depth, as seen in Figure 5. 

 

           

                                                                                                          

Figure 5: RGB image explanation and corresponding Depth map (photos from the simulator) 

In CARLA emulated LiDAR sensors are available. All related parameters can be configured, such 

as the upper and lower fields of vision, number of channels, maximum range, and the number of points 

per channel. The simulation area can be frozen during a scan capture, resulting in a 360 ° scan without 

any velocity changes needed. See Figures 6 and 7. 

 

(b) RGB image  (a) Depth image  
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A mobile robot with an RGB, a depth camera sensor, and LiDAR sensor attached to it was set to 

drive around a map on autopilot to produce the data sets used in this research. Approximately 120,000 

m2 of a map is used to produce the data collection including the downtown area, residential areas, and 

wooded areas. There were two training data sets, each with 7600 image pairs of RGB and Depth and 

46,741 frames of LiDAR, acquired. This city is divided into 9 streets in addition to a street between 

them as shown in Figure 8. 

 
Figure 8: Proposed street numbers used in Carla simulator 

 

Each street is divided into the beginning and the end of the street, as listed in Table I. 

TABLE I: Streets division and data for each street 

Item Street name Approximate  LiDAR frames for 

each street  

Number of testing images 

for each street (RGB and 

Depth) 

1 Beginning of street 1 126 56 

2 End of street 1 2382 54 

3 Beginning of street 2 3453 22 

4 End of street 2 3332 67 

5 street 3 3632 11 

6 Beginning of street 4 749 38 

7 End of street 4 3267 25 

8 Beginning of street 5 3824 76 

9 End of street 5 4643 37 

10 Street 6 2463 34 

11 Beginning of street 7 3267 53 

12 End of street 7 3688 32 

13 Street 8 4635 49 

14 Beginning of street 9 2377 20 

15 End of street 9 3745 21 

16 Between 749 31 

Figure 6: LiDAR scan as a point cloud and each point 

has X, Y, Z coordinate image processed in MatLab 
Figure 7: LiDAR output after being 

processed in MeshLab [28]  
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II. CNN Design and architecture   

To improve the accuracy of the results and reduce error with short training time, a 12-layer CNN 

was designed with an input image of 224 x 224. A number of researchers used  Gradient Descent with 

a Momentum (GDM) algorithm to train the neural network used for backpropagation [29]. In this 

network, using optimizer Stochastic Gradient Descent with Momentum (SGDM), which is always 

better and faster than (GDM) algorithm [30]. With the K-NN classifier, 16 classes according to the 

number of streets are identified in Figure 8. Details of CNN's design are shown in Figure 9. 

 
Figure 9: Design of CNN with 12 layers and K-NN classifier 

 

III. Training the network & preprocessing 

MATLAB code is written using a PC with specifications of Intel(R) Core (TM) i5-8250U CPU 

@1.60GHz 1.80 GHz UHD Graphics 620, RAM (8 GB). As the dataset includes 46,741 frames 

LiDAR, it took 4 epochs. Iteration for each epoch is 21 and a maximum of 84 iterations, and an initial 

learning rate of 3*10-4. It took 138 minutes for training, with 70 % of the training data and 30 % of the 

testing. The accuracy obtained is 97.52%, as seen in Figure 10. 

 
Figure 10: Training time spent and accuracy for training 
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IV. IHS method results 

IHS method affects when merging RGB and Depth images. The Intensity value varies depending 

on how bright the pixel is the depth image, Hue, saturation, and intensity merge in the 2.5d image, see 

Figure 11. 

 

                  

              

 
Figure 11: Production of 2.5D image by merge two images RGB & Depth in IHS method 

V. Performance with PCA and K-NN algorithm  

Testing 5 cases of RGB and Depth images by chosen random locations in the city, the MSE is 

calculated, then taking the average of MSE for the test image, as listed in Table II. 

TABLE II:  MSE from some cases of the test image 

Case The correct prediction of localization  MSE 

1 beginning of street 1 0.09224 

2 begin of street 9 0.0326 

3 end of street 5 0.0598 

4 between 0.0489 

5 street 6 0.0543 

             Mean error  0.057568 

                           Median error  0.0489 

 

To calculate the Mean error in distance. Simulator from CARLA recorded 30 to 50 Frame Per 

Second (FPS) in one meter. From equation (16), MED = 0.804 meters. 

Regarding Table III, the proposed method is excellent than that used in research [31]. As the used 

the iterative closest point (ICP) algorithm, the PointNetLK network is used for registration and 

GoogleNet for RGB-D Neural network. 

TABLE III: Comparison between the proposed method with other methods  

Method  Mean error  Training time  Training dataset  

ICP+ PointNetLK+ GoogleNet [31] 30.3 meters  4200 minutes  7600  

Proposed method CNN +PCA +K-NN  0.804 meters  138 minutes  46741 

 

Improvement in network training time and the error rate is clear because this method [31] took 

4200 minutes for 7600 images dataset and mean error of 30.3 meters. The proposed method took a 

training time of 138 minutes for 46,741 frames of LiDAR dataset and the accuracy is 97.52%, MSE 

equals to 0.057568, and Mean Error of Distance equals to 0.804 meters using PCA method, IHS is 

used for fusion image and K-NN classifier. K-NN classifier gives more accuracy results and it is not 

required for training to obtain the results. 

5.  CONCLUSION  

In this paper, the mobile robot localization system is designed to resolve the issue of robot position 

loss in the outdoor environment due to many factors in the outdoor that affect the sensors mounted 

with the robot. This leads to inaccuracies in calculating the position. Therefore, proposing the use of 

3D sensors to achieve more accuracy with the aid of Deep Learning algorithms. The proposed design 

is based on three stages: training, testing, and classification. The method uses PCA for reducing the 

dimension and rotate the point cloud 3D LiDAR, IHS method is used to make the 2.5D RGB-D fusion 

image reduced and K-NN algorithm to obtain the results with high accuracy and less training time. 

(a) RGB Image  
(b) Depth Image  (c) IHS Image  

+ = 
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Experimental results are enhanced as compared with results obtained in reference number 31. The 

training time is reduced to 138 minutes with 97.52% accuracy, MSE equals 0.057568, and MED equals 

0.804 meters. 
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