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 Abstract 

An experimental investigation of refrigerant R-134a two-phase flow 

condensation heat transfer coefficient and pressure drop in condenser tube section of 

refrigeration system under different operating conditions is presented. The 

experimental and theoretical investigations are based on test conditions in range of 10 

-17 kW/m2 for heat flux, 42-63 kg/m2s for mass flux, vapor quality 1-0.03 and 

saturation temperature 44 to 49˚C. The experimental tests are conducted on test rig 

supplied with a test section to simulate the water cooled double pipe heat exchanger, 

which is designed and constructed in the present work. “The experimental results have 

revealed that, the heat flux and mass flux have significant impacts on the heat transfer 

coefficient. “The heat transfer coefficient was increased with increase in heat flux and 

mass flux at prescribed test conditions, where the enhancement in heat transfer 

coefficient was about 47% and 14% for relatively higher heat flux and mass flux, 

respectively. “The enhancement in the heat transfer coefficient was about 51% for 

relatively lower saturation temperature 45.97˚C and 43% for higher vapor quality 0.88 

compared to other values at constant test conditions. “The pressure drop was higher in 

the range of 12% and 49% for relatively higher mass flux and heat flux respectively. 

“The present work results have validated by comparison with predictive models and 

with similar research work results and the comparison has revealed  an acceptable 

agreement. 

Keywords: Heat transfer coefficient, Flow condensation, Heat flux, Mass flux. 

Nomenclature 

Cp: Specific heat at constant pressure    kJ/kg.K                µ: Dynamic viscosity kg/m.s 

G: Mass flux                                          kg/m2.s                ρ: Density kg /m3 

h: Specific enthalpy                               kJ/kg                   Subscripts 

hfg: Latent heat of condensation            kJ/kg                    a: Top  

hz: Local heat transfer coefficient         W/m2.℃               b: Bottom  

ID: Inside diameter of pipe                    m                         fr: Frictional 

k: Thermal conductivity                        W/ m.℃               g: Vapor 

L: Length of tube                                   m                         i: Inlet  

m.: Mass flowrate                                   kg/s                     l: Liquid 
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OD: Outside diameter of pipe                m                        m: Momentum  

P: Pressure                                             Pa                        o: Outlet 
  

Q : Heat transfer rate                            W                         pre: Pre-condenser 

q: Heat flux                                           W/m2                              ref: Refrigerant, R134a  

R: Thermal resistance                             °C /W                     s: Sensible 

T: Temperature                                    ℃, K                      st: Static 

x: Vapor quality                                                                 sat: Saturation 

.                                                                                          t: Test section  

Greek letters                                                                      w: Tube wall 

Δ: Denotes a difference or gradient.                                  wt: Water 

1. Introduction  

Condensation is a phase change process from vapor to liquid which represents an 

efficient way of heat removal as the latent heat of condensation provides a high heat 

transfer coefficient. Condensation heat transfer characteristics are important in many 

engineering and industrial applications, such as air-conditioning and refrigeration, 

steam power plants, cooling of nuclear reactors, heating and cooling process. 

Condensation of refrigerants inside heat exchanger channels was investigated by many 

researchers. [1] “investigated experimentally the two-phase heat transfer coefficient of 

pure R134a condensing inside a smooth tube with inner diameter 8.1 mm and 500 mm 

length in tube heat exchanger vertical downward flow at high mass flux”. “The test runs 

are performed at average saturation condensing temperatures between 40-50℃, the 

mass fluxes are between 260 and 515kg m-2 s-1 and the heat fluxes are between 11.3 and 

55.3 kW m-2. The results showed that, the experimental heat transfer coefficient 

increases with the average vapor quality and refrigerant mass flux and decreases with 

increases of condensation and tube wall temperature difference. [2] measured 

condensation heat transfer coefficients in mini channels with smaller measurement 

uncertainties than previously obtained using three specially designed copper test 

sections. The test included three channel geometries, square, triangular and semi-

circular multiple parallel mini-channels cooled on three sides of 1mm hydraulic 

diameters. Condensation heat transfer coefficients were obtained for the range of mass 

flux, average quality, saturation pressure and heat flux. The results revealed that, mass 

flux and quality have significant effects on the condensation process, even at lower 

mass fluxes, while saturation pressure, heat flux, and channel shape had no significant 

effects. [3] investigated experimentally the heat transfer and observed the condensation 

flow patterns of refrigerant R-134a inside a single smooth tube with several inclination 

angles. The test-condenser was a 1.04 m long double pipe counter-flow heat exchanger 

with an inner diameter of 8.38 mm. The experiments are performed for seven different 

tube inclinations in the range of -90◦ to +90◦ (with 30° increments) and mass velocities 

between 53 and 212 kg/m2.s”. “The best performance is achieved by the tube with an 

inclination angle of +30° for all refrigerant mass velocities. [4] developed models to 

study the pressure drop and heat transfer coefficients for condensation of hydrocarbons 

in smooth horizontal tubes over a wide range of conditions for pure natural fluids, 

propane and pentane”. “They were combined with first study a measure of the heat 

transfer coefficient and pressure drops during condensation of propane in smooth 

horizontal tubes by [5]. These correlations validated for tubes with internal diameters 

between 6 and 19 mm. The models showed improved agreement with the frictional 

pressure drop and heat transfer coefficient measurements in the database when 

compared to the predictions of the correlations available. The models predicted the 
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frictional pressure drop and heat transfer coefficient for the propane database with 

average deviations of 3% and -1%, respectively. [6] investigated experimentally the 

condensation of pure refrigerant R134a vapor inside a smooth vertical tube under 

different operating conditions”. “The test section was made of a copper tube with an 

inside diameter of 7.52 mm and length of 1m. Experimental tests were conducted for 

mass fluxes in the range of 20 – 175 (kg/m2. s) with saturation pressure ranging between 

5.8 and 7 bars. “Obtained results showed that average condensation heat transfer 

coefficient decreases with increasing saturation pressure or temperature difference and 

increases with the increasing mass flux at the same saturation pressure and temperature 

difference. The saturation pressure and temperature were very effective on the average 

condensation heat transfer coefficient. [7] measured condensation heat transfer 

coefficient of R410A inside three different circular tubes with an inner diameter of 6.61, 

7.5 and 9.2mm”. “Two-phase fluid flow conditions include mass fluxes from 200 to 

320 (kg/m2. s), qualities between 0.1 to 0.9, and heat flux range from 5 to 20 kW/m2 at 

a fixed saturation temperature of 48 ℃. “The results showed that the average heat 

transfer coefficient increased with the increase of vapor quality, mass flux, and heat 

flux, but decreased with an inner diameter. [8] studied the condensing flow heat transfer 

coefficient and pressure drop of a multiport mini-channel aluminium tube with a natural 

hydrocarbon, propane R290 as working fluid flowing through a square section 

horizontal tube having an internal diameter of 1.16 mm and a condensing length of 259 

mm. “The results showed that, the two-phase friction pressure gradient increases with 

the increase of mass velocity and vapor quality and with the decrease of saturation 

temperature. “The heat transfer coefficients showed to be increased with increases in 

vapor quality and mass velocity, while increases of saturation temperature were 

observed to reduce the heat transfer coefficient. [9] investigated the condensation heat 

transfer coefficient and pressure drop of methane in a horizontal smooth tube. “The 

tests were conducted at saturation pressure of 2 - 3.5 Mpa with the mass flux of 99 - 

255kg/m2.s and fluid to wall temperature difference of 4.8-20.2 K throughout the vapor 

quality range. The influences of mass flux, saturation pressure, vapor quality and 

temperature difference were analysed and discussed. Some condensation heat transfer 

coefficients of ethane with larger temperature differences were also reported at different 

operating conditions. The experimental data were compared with many well-known 

correlations of condensation heat transfer coefficient and pressure drop”.  

2. “Experimental Setup and Test Conditions”  

2.1 “Experimental setup” 

The experimental apparatus is schematically shown in the Fig.1”. The 

refrigeration system is of 310W capacity operating with R-134a and including a test 

section to simulate the condenser channel. It mainly consists of a reciprocating 

compressor with 124W capacity, pre-condenser which is double pipe heat exchanger, 

test section, refrigerant flow meter, capillary tube, electrically heated evaporator, water 

pump, pressure transmitters, two water flow meters, pressure gages, thermocouples and 

data loggers, and many other accessories as illustrated in Fig.2. “The counter flow tube 

in tube coaxial type heat exchanger with 279 mm length and 15.9 mm inner tube 

diameter is used as a pre-condenser to desuperheat the refrigerant vapor in the cycle 

before entering the test section”. “The single-phase refrigerant enters the pre-condenser 

as a superheated vapor and exchange heat with cooling water to obtain the required 

vapor quality at the test section entrance”. “The cooling load (heat flux) applied in 

condenser test section is regulated by adjusting the cooling water flow rate entering test 
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section. While the mass flux of the refrigerant is regulated via bypass loop connected 

in parallel with test section line to maintain the specified test conditions. “Temperatures 

of the tube wall at test section and refrigerant at different locations in the test rig are 

measured using calibrated K-type thermocouples with range of -200 ℃ to 1250 ℃ and 

the temperatures reading are displayed using data loggers of model BTM-4208SD and 

EXTECH-TM500 with 12 channels as shown in the Fig.1. “The experimental 

investigations of the refrigerant R134a flow condensation heat transfer coefficient and 

pressure drop in the condenser test section are limited by operating conditions in range 

of 10.49 – 17.17 kW/m2 for heat flux, 42 -64 kg/m2.s for mass flux, vapor quality 0.03 

– 1 and saturation temperature 44 to 49C. “The accuracy of the experimental 

measurements is illustrated in the Table 1. 

2.2 Test Section 

A water cooled double-pipe heat exchanger with a counter-flow arrangement was 

designed and fabricated as the test section to simulate the condenser of refrigeration 

system with 310W capacity and to conduct the experimental investigations of the 

refrigerant flow condensation heat transfer characteristics. The test section consists of 

inner smooth copper pipe with 5.8 mm inner diameter, 7.8 mm outer diameter and 800 

mm length and outer copper pipe (shell) with 22.2 mm inner diameter and 25.6 mm 

outer diameter as shown in Fig.3. The test section was wrapped with 10 mm thick 

polyurethane insulation to reduce heat losses. Ten thermocouples are fixed with equally 

distance on the outer surface of inner tube at five locations along the length of the tube, 

and at each location two thermocouples are mounted, one at the top and one at the 

bottom of tube surface to measure the average temperature of the refrigerant at each 

location. Two other thermocouples are inserted inside inner tube to measure the 

refrigerant temperature at the inlet and outlet of the test section. Temperatures of the 

cooling water are measured using two thermocouples inserted inside outer tube at the 

inlet and outlet of the water line. Two transparent tubes of 5.8 mm inner diameter and 

150 mm length are connected in the inlet and outlet of the test section to visualize the 

flow pattern. 
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Figure 1. Schematic diagram of the experimental setup. 

 

Figure 2. Test rig  
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Figure 3. Condenser test section.  

Table1. Accuracy of the experimental measurements 

Variables Measurement accuracy 

Pressure gauge [kPa]    ± 0.1 %   

Pressure transmitter [kPa]    ± 0.04 %   

Temperature readers [℃] ± 1% 

Refrigerant flow meter [kg/s]       ± 0.01 %   

Water flow meter [kg/s]      ± 0.2 %   
 

3. Experimental Data Analysis 

To calculate the flow condensation heat transfer coefficient and pressure drop 

from the experimental data, the following considerations are supposed:  

1- Heat transfer in the axial direction of the test section tube is neglected.  

2- Heat flux is uniform along the condenser tube. 

3- Pressure drop from the inlet to outlet pressure is a linear function of tube length. 
 

3.1 Heat Transfer Coefficient 

The heat removal rate for water flowing in the annulus of the test section and pre-

condenser can be determined by [6]: 

, ,( )wt wt wt o wt iQ m cp T T                                                                                          (1)                                                                                              
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The rate of heat rejected by refrigerant in the test section is calculated by [10]: 

( )S ref i oQ m h h                                                                                                         (2) 

Q
q

ID L




 

                                                                                                                (3) 

The local heat transfer coefficient of the refrigerant flow condensation in the test 

section (condenser tube) is calculated by: 

( )
z

ref wi

q
h

T T



                                                                                                            (4) 

The external wall temperature 𝑇𝑤𝑜 for each axial location (z) along the test section 

tube was assumed to be the average of measured temperatures around the tube cross 

section and calculated by:       

2

a b
wo

T T
T


                                                                                                                 (5) 

The mean inner wall temperature at each position (z), ,wi zT  is calculated 

using one dimensional heat conduction across [11]: 

, ( )wi z woT T Q R                                                                                                         (6)

                                                                                                           (7) 

zL : The length of tube subsection (increment in the axial position along tube) (m) 

The refrigerant saturation temperature along the test section at each position 

(z) 𝑇𝑟𝑒𝑓.𝑧 is calculated depending on the local saturation pressure ,sat zP at any location 

(z) as follows: 

,sat z in z

P
P P L

L

 
   

 
                                                                                                  (8) 

Where:  
 

in outP P P  
                                                                                                               

(9)
 

inP , outP : “is the refrigerant pressure at inlet and outlet of the test section tube 

respectively”.  

3.2 Refrigerant Vapor Quality:  

The vapor quality at the inlet of the test section tube ( inx ) is expressed in term of 

the local enthalpy as follows [10]: 
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, ,

,

i t l i

in

fg i

h h
x

h


                                                                                                   (10)  

Where: 
,l ih is the specific enthalpy of the liquid refrigerant at the inlet of test 

section “and 
,fg ih  is the latent heat of condensation of the refrigerant at the inlet of test 

section (from R134a thermo-physical properties table)”. 

The specific enthalpy of the refrigerant at the inlet of test section 
,i th  represents 

the specific enthalpy of the refrigerant at the outlet of pre-condenser, which can be   

determined by applying an energy balance on the pre-condenser as follows”: 

, ,

pre

i t i pre

ref

Q
h h

m




                                                                                                         (11) 

Where: ,i preh is the specific enthalpy of the refrigerant at the inlet of pre-condenser 

(kJ/kg). 

Vapor quality (dryness fraction) of the refrigerant at each position (𝑥𝑧) is 

calculated by: 

z in z

x
x x L

L

 
   

 
                                                                                                    (12) 

Where: x  is the vapor quality difference of the refrigerant between inlet and 

outlet of the condenser tube which is expressed by: 

in outx x x                                                                                                                (13) 

outx : Vapor quality of the refrigerant at the outlet of test section tube which is 

calculated by: 

o, ,o

,o

t l

out

fg

h h
x

h


                                                                                                            (14) 

,olh : Specific enthalpy of the liquid refrigerant at the outlet of the test section. 

,ofgh : Latent heat of condensation of the refrigerant at the outlet of the test section. 

 o,th : Specific enthalpy of the refrigerant at the outlet of the test section tube which is 

determined by applying an energy balance on the test section [12]: 

o, ,tt i

ref

Q
h h

m




                                                                                                           (15) 
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3.3 Frictional Pressure Drop 

Total pressure gradient in the test section tube is calculated by: 

dp P

dz L


                                                                                                                 (16) 

fr m stP P P P                                                                                                   (17) 

Where,  P is determined from equation (9) and: 

frP : Frictional pressure drop of the refrigerant flow due to shear at the tube surface 

and at the vapor-liquid interface in the test section (kPa).  

mP : Momentum pressure drop due to the acceleration of  the two phase refrigerant 

flow in the test section ( change in kinetic energy) (kPa). 

stP : Pressure drop of the refrigerant flow due to the static pressure change in the test 

section (kPa). 

P : Total pressure drop of the refrigerant flow in the test section tube (kPa) which is 

determined experimentally using the following equation: 

Pressure drop of the refrigerant flow due to the static pressure change stP can be 

neglected because the test section is a horizontal tube and thus no change in the static 

pressure along the tube, so the frictional pressure drop frP can be determined by: 

fr mP P P                                                                                                             (18) 

Where ,  mP is determined using homogeneous model by [13]: 

2 1 1
m

g l

P G x
 

 
       

 

                                                                                         (19) 

x : The absolute value of the vapor quality change along the test section tube. 

4. “Results and Discussion” 

4.1 “Experimental results” 

Figures 4 and 5 show the effect of heat flux measured in range of 10.49 to 17.17 

kW/m2 on the local heat transfer coefficient at fixed mass fluxes 53.17 and 63.63 

kg/m2.s respectively. It can be observed that, the heat transfer coefficient is increased 

with increasing of vapor quality and continuously decrease with vapor quality for all 

the values of heat flux. “The heat transfer coefficient was directly proportional with 

heat flux and relatively higher value of heat transfer coefficient was observed at heat 

flux 17.17 kW/m2”. “The increase in heat flux at fixed difference between refrigerant 

and tube wall temperatures lead to enhance the heat transfer corresponds to newton law 

of convection heat transfer. “A significant reduction in heat transfer coefficient was 

noticed at lower vapor quality (x<0.3) and the local heat transfer coefficient at constant 
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mass flux 63.63 kg/m2 was higher for heat flux 17.17 in range of 47% than that for 

relatively lower heat flux 10.49 kW/m2. “The variation of local heat transfer coefficient 

with vapor quality at fixed heat flux 10.49 kW/m2 and different mass fluxes 42.64, 

53.17 and 63.63 kg/m2.s is shown in Fig.6. It can be seen that the higher values of heat 

transfer coefficient are achieved by a greater mass flux 63.63 kg/m2.s due to the 

contribution of forced convection which is influenced by relatively higher refrigerant 

mass flow rate and then greater flow velocity in condenser channel. The same behaviour 

of heat transfer coefficient can be observed in Fig. 7 for heat flux 17.17 kW/m2”. “It is 

evident that, the values of local heat transfer coefficient was higher at 17.17 kW/m2 

compared to heat flux of 10.49 kW/m2 resulted from the effect of cooling load in 

condenser tube at constant test conditions”. “The local heat transfer coefficient at 

constant heat flux 17.17 kW/m2 was higher for mass flux 63.63 kg/m2 by about of 14% 

than that for relatively lower mass flux 42.64 kg/m2”.  

The effect of saturation temperature of the refrigerant R-134a on the local heat 

transfer coefficient at constant mass flux 63.63 kg/m2.s for three tested values of 

temperature 48.51℃, 47.64 ℃ and 45.97 ℃ is shown in Fig.8. It can be seen that, the 

increase of saturation temperature leads to a significant variation in the heat transfer 

coefficient. This behaviour can be explained by the fact that, the rise in saturation 

temperature will increase the value of refrigerant–tube wall difference and leads to a 

reduction in condensation heat transfer coefficient at constant mass and heat fluxes. The 

value of local heat transfer coefficient for saturation temperature 45.97℃ was higher of 

51% than that for a relatively higher temperature 48.51℃ for constant mass flux. Fig.9 

depicts the effect of inlet vapor quality of the refrigerant R-134a on the local heat 

transfer coefficient in the condenser tube at a constant heat flux 17.17 kW/m2 and mass 

flux 63.63 kg/m2. S”. “It can be observed for the three different tested values of the inlet 

vapor quality 0.8868, 0.6915, and 0.6455, the local heat transfer coefficient tends to 

partially increase with inlet vapor quality through most values of local vapor quality in 

the condenser tube due to the dominance of forced convective condensation at high 

vapor quality”. “The local heat transfer coefficient for vapor quality 0.8868 was higher 

in range of 43% than that for a relatively lower value 0.6455. Fig. 10 shows the 

frictional pressure drop variation with vapor quality for mass fluxes (42.64 and 63.63 

kg/m2.s) and constant heat flux 17.17 kW/m2. “It can be seen that, the pressure drop of 

the refrigerant for both mass fluxes decrease with vapor quality along condenser tube, 

but the pressure drop for mass flux 63.63 kg/m2.s was higher than that for 42.64 kg/m2.s 

in range of 12% due to the shear effect of the refrigerant flow on inner surface of the 

tube. A similar trend of pressure drop variation can be observed in Fig.11 for constant 

mass flux 63.63 kg/m2.s. and different heat fluxes, but the pressure drop for heat flux  

17.17 kW/m2  was relatively higher than that for 10.49 kW/m2 in the range of 49% at 

constant test conditions. 

4.2 Comparison of Experimental and Predictive Models Results 

The theoretical results are determined using three of the most quoted predictive 

models, Shah, Cavallini and Thome [14]-[16]. These theoretical results are calculated 

by engineering equations solver (EES) software based on similar operating conditions 

and plotted with experimental results for comparison. The comparison between 

theoretical and experimental results of heat transfer coefficient as a function of vapor 

quality for mass flux 63.63 kg/m2.s and heat flux 17.17 kW/m2 is shown in Fig.(12). “It 

can be seen from this figure that the theoretical models have well predicted the results 

within prescribed test conditions. The trend of the theoretical and experimental results 
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is approximately similar with average deviation in range of (8%), (47%) and (98%) for 

Shah, Thome and Cavallini respectively. This difference in results is due to the 

assumptions made to the theoretical models and measurement errors in the experimental 

work. It can be concluded that, Shah and Thome models have revealed a best prediction 

of heat transfer coefficient and tend to be closer to the experimental results compared 

to Cavallini model. The experimental results of the present study are validated by 

comparison with other research work results of [7]. It can be observed that, the trend of 

both results is approximately similar with some deviation resulted from the differences 

in operating conditions”. 

                                                         

Fig.(4) Effect of heat flux on the local        Fig.(5) Effect of heat flux on the local           heat 

 .s2at G=63.63kg/mheat transfer coefficient      .s2at G=53.17kg/mtransfer coefficient  

       

 

 

 

 

 
 

Fig.(6) Effect of mass flux on local                 Fig.(7) Effect of mass flux on local heat 

heat transfer coefficient at q=10.49 kW/m2      transfer coefficient at q=17.17 kW/m2 
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Figure 8. Effect of saturation temperature        Figure 9. Effect of inlet vapor quality       

on local heat transfer coefficient at                    on local heat transfer coefficient at 

G =63.63kg/m2.s                                                G =63.63kg/m2.s 

       

Figure 10. Variation of pressure drop with        Figure 11. Variation of pressure drop 

 vapor quality for different mass fluxes and      with vapor quality for different heat                                                               

q=  17.17 kW/m2.                                                 fluxes and G= 63.63 kg/m2.s  
                

       

 Figure 12. Predicted and experimental            Figure14. Comparison of present study 

heat transfer coefficient as a function of          experimental results with Pham et.al.  

     vapor quality for G= 63.63 kg/m2.s and                             2015 work.                                                                                  

                 q= 17.17 kW/m2.    
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Conclusion 

The experimental and theoretical results of the flow condensation heat transfer of 

the refrigerant R-134a in condenser test section for refrigeration system under different 

operating conditions of, heat flux, mass flux, vapor quality and saturation temperature 

are presented and can be concluded as follows”: 

1-“The heat flux has a significant impact on value of local heat transfer coefficient, 

where the percentage rise for relatively higher heat flux 17.17 kW/m2 was about 47% 

compared to10.49 kW/m2 at constant test conditions”.  

2- “The enhancement in the heat transfer coefficient was about 14% when the 

refrigerant mass flux increased from 42.64 kg/m2.s to 63.63 kg/m2.s at constant test 

conditions”. 

3- “The enhancement in the heat transfer coefficient was about 51% for the saturation 

temperature 45.97 ˚C compared to 48.51 ˚C at a fixed refrigerant mass flux and heat 

flux”.  

4- “For prescribed tested values of heat flux 17.17 kW/m2 and mass flux 63.63 kg/m2.s,  

the local heat transfer coefficient has increased in range of 43% for relatively higher  

inlet vapor quality 0.8868 compared with lower value of vapor quality 0.6455”. 

5- “The pressure drop of the refrigerant flow in the condenser test section was 

significantly influenced by mass flux and heat flux. The pressure drop was increased 

with heat flux and mass flux in range of 12% and 49% respectively”.  

6- “The comparison between the experimental and theoretical results has showed an 

acceptable agreement with average deviations resulted from the assumptions made 

to the theoretical models and measurement errors of the experimental work”.  
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