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H I G H L I G H T S   A B S T R A C T  
• Different multiplication algorithms are 

implemented using Xilinx System 
Generator. 

• A new approach is called the VHDL 
approach used for dynamic power 
minimization. 

• The reconstruction method is used to 
implement the multiplication algorithms. 

• The multiplication algorithms are realized 
on FPGA using the Xilinx Spartan 3A kit. 

• Dynamic power dissipation is varied 
proportionally with the operating frequency. 

 In the VLSI circuits, power dissipation is a critical design parameter and it plays 
a vital role in the performance of different digital systems. The decrease in chip 
size along with the increase in chip density and complexity will increase the 
difficulty in designing higher performance and low power digital systems. 
Therefore, achieving a fast and low power system is the major concern of VLSI 
designers. Most of the digital systems have different math operations in their 
architectures. This paper focuses on the multiplication operation. Multiplication 
requires more iterations, long time, large area, and consumes high power of the 
digital system compared with the other basic computation operations. Hence to 
improve the system's performance, it is required to design a high speed and low 
power multiplier. In this paper, a dynamic power dissipation is targeted; 
therefore, different designs of multiplier algorithms such as a sequential 
multiplier, array multiplier, Booth’s multiplier (Radix-2), and modified Booth’s 
multiplier (Radix-4) are proposed to investigate the design that consumes the 
lowest dynamic power. New techniques such as VHDL and Basic Logic 
Elements are presented and applied to the proposed designs. The VHDL 
approach satisfies the highest optimization criteria in dynamic power at 87% for 
the sequential multiplier than the traditional ones. 
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1. Introduction 
In recent years, low power design of digital systems has become one of the vital concerns in the VLSI design. The primary 

concerns of VLSI designers are performance, area, reliability, and cost at the beginning. Achieving high-performance in digital 
systems leads to increase in the number of transistors over the integrated circuits (ICs). According to Moor's law, when the 
density increases, the size of these transistors needs to be shrunk in these ICs. Moor’s law states that “over the time, the 
number of transistors that can be incorporated into a single die can increase exponentially” [1]. However, this exponential 
growth in the number of transistors results in high power dissipation. Power dissipation is considered the main motivation for 
VLSI designers to produce techniques for optimizing the power consumed inside the digital circuits and systems. The 
significant advantages of power optimization in digital systems are; battery life and battery efficiency, system reliability, noise 
immunity, the demand for portable systems, and system cooling and packaging cost. Power dissipation has two main types, 
which are static power and dynamic power. This work will focus on the dynamic power dissipation instead of static power 
because the dynamic power is dominant in digital circuits and the ability to apply the dynamic optimization techniques to the 
digital circuits due to ease of handling the logic elements and structure of the digital systems. Alternatively, it is technology-
independent. In contrast, static power is technology-dependent which deals with intellectual property (IP) of manufacturing 
design such as transistor size, length, and width of gate oxide channel [2], which is out of the scope of this research.  

Most of the digital system configurations include different math operations such as addition, subtraction, multiplication, 
and division in their designs. This paper focuses on multiplication operation, which is considered the heart of most 
computational digital systems such as digital signal processing (DSP) and their branches (IIR & FIR) filters, image processing, 
communication systems, etc. The repeated addition is the basic idea of a multiplication operation [3]. The multipliers have long 
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latency, large area overhead, and consume a large amount of power. Therefore, the reduction of power dissipation will make 
the performance of digital systems more reliable.  

Many analyses and studies that have been made related to the most popular multiplication algorithms consider the power 
dissipation issue, particularly the dynamic power dissipation which is the core focus of this paper. Low power Radix-4 Booth 
pre-encoded was proposed in [4]. The basic idea of this technique is to reduce the switching activities of the encoder and 
decoder. This technique is applied to (8-bit and 16-bit) multiplier, for which the optimized dynamic power is (45 %) and 65% 
respectively. D. Nandan et al., obtained a total power reduction of about (39 %) by using their proposed iterative logarithmic 
multiplier (ILM) technique based on Mitchell’s algorithm with leading one detector (LOD) and smooth pipelined technique[5]. 
In [6], the Gate Diffusion technique on various architecture of multipliers is proposed. The total power optimization was 
(35 %) of the proposed design relative to other designs. 32-bit array multiplier was suggested in [7], through which the 
researchers applied optimized Carry Select Adder (CSLA) to the structure of traditional multiplier to eliminate the redundant 
transitions; therefore, the total power saving was (41 %). As mentioned in [8], they reduced the area of  Wallace multiplier by 
reducing the number of half adders. As the area is reduced, the power consumption is also reduced. In [9], the researchers 
proposed two comparative studies of two (8-bit by 8-bit) multiplier algorithms; the first one is the Booth’s multiplier and the 
other is the Vedic multiplier in which both designs use the reversible logic gates method. The proposed design optimized (26 
%) of the average power dissipation. K. R. Varma and S. Agrawal suggested a high speed, low power approximate multiplier 
with the use of (4-2) compressor technique. This work achieves power saving about (3.79 %) of the total power 
dissipation[10]. By using the operand decomposition technique, the authors made a (21 %) reduction in dynamic power 
dissipation for the proposed (Radix-8) modifier Booth’s multiplier[11].  

The aforementioned designs of multipliers were verified and implemented by using different platforms such as field-
programmable gate array (FPGA) and application-specific integrated circuits (ASIC). In this paper, the proposed multipliers 
are implemented by using the FPGA platform. This is due to the advantages of FPGA relative to the traditional fixed logic 
designs (e.g. ASICs). These advantages are the possibility for performing parallel data computation [12], flexibility enabling 
the user to program the FPGA on the field, reusability since it can be reprogrammed many times, and faster performance where 
these advantages make the FPGA suitable for testing and prototyping for small and medium scale digital systems [13-15]. 

The main objective of this research is to reduce the dynamic power dissipation in arithmetic operations, particularly for 
multiplication. Consequently, many proposed designs of multipliers are introduced, and new techniques are applied to these 
designs to reduce the dynamic power dissipation. One of these techniques is the VHDL approach. In this approach, the 
dynamic power is reduced due to the reduction in switching activities and transforming the design to the basic elements that 
consume less power. This paper is organized as follows; the sources of power dissipation are described in the second section, 
power optimization techniques are explained in the third section, in the fourth section types of multiplication algorithms used 
in this research are given, and the proposed designs are explained in detail in section five. The simulation results and 
discussion are presented in the sixth section, while the conclusion is given in the seventh section. 

2. Sources of Power Dissipation 
Before studying how to reduce the power dissipation in VLSI circuits, it is necessary to investigate the sources of power 

dissipation in these circuits. Power dissipation can be classified into two categorizations; the first one is the static power 
dissipation, and the second is the dynamic power dissipation. The static power is taking place when the device is turned ON, 
but there is no task to perform. This means it is in the idle (stand by) mode, and there is no signal transition. Also, static power 
is known as inactive, leakage, and quiescent power. Ideally, VLSI circuits should not consume any power in this mode. Still, in 
practice, the transistors constantly pass some leakage current, indicating that a certain amount of power is consumed by the 
CMOS gates. The sources of the static power dissipation are due to seven leakage current mechanisms, which are depicted in 
Figure 1. 

In this diagram,  𝑰𝑰𝟏𝟏 is the reverse bias p–n junction diode leakage current, 𝑰𝑰𝟐𝟐 is the reverse-biased p–n junction current due 
to tunneling of electrons from the valence bond of the p region to the conduction bond of the n region, 𝑰𝑰𝟑𝟑 is the sub-threshold 
leakage current between the source and the drain when the gate voltage is less than the threshold voltage 𝑽𝑽𝒕𝒕,  𝑰𝑰𝟒𝟒  is the oxide-
tunneling current due to a reduction in the oxide thickness, 𝑰𝑰𝟓𝟓 is the gate current due to hot-carrier injection of elections,  𝑰𝑰𝟔𝟔 is 
the gate induced drain leakage (GIDL) current due to a high field effect in the drain junction, and 𝑰𝑰𝟕𝟕  is the channel punch-
through current due to the proximity of the drain and the source in short-channel devices [17].  
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Figure 1: Sources of Static Power Dissipation [16] 

The equation of the static power dissipation can be described as: 

 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐼𝐼𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙𝑠𝑠𝑙𝑙𝑙𝑙  × 𝑉𝑉𝐷𝐷𝐷𝐷 (1) 
Where 𝑷𝑷𝒔𝒔𝒔𝒔𝒕𝒕𝒔𝒔𝒕𝒕𝒔𝒔 is the static power dissipation, 𝑰𝑰𝒍𝒍𝒍𝒍𝒔𝒔𝒍𝒍𝒔𝒔𝒍𝒍𝒍𝒍 is the total current of all seven leakage current mechanisms, and 

𝑽𝑽𝑫𝑫𝑫𝑫 is the supply voltage. 
The second type of power dissipation is the dynamic power dissipation. The dynamic power is the power consumed while 

the device is operating. In other words, the CMOS device is in the active mode. This power can be classified into three types 
which are switching power, short circuit power, and glitch power.  

The switching power is the power dissipation due to charging and discharging of the output loading capacitance. 
Equation   (2) demonstrates the power switching activity[16-18]: 

 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 𝛼𝛼 𝐶𝐶𝐿𝐿𝑉𝑉𝐷𝐷𝐷𝐷2 𝑓𝑓𝑝𝑝   (2) 
where 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ is the switching power, 𝛼𝛼 is known as switching activity, 𝐶𝐶𝐿𝐿 is the total load capacitance of all 

transistors, 𝑉𝑉𝐷𝐷𝐷𝐷 is the supply voltage and 𝑓𝑓𝑝𝑝 is the frequency of input signal. 
The short circuit power is caused by a crowbar flowing through the lapse of time when both 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 and 𝑵𝑵𝑷𝑷𝑷𝑷𝑷𝑷 transistors 

are in the ON state. The expression of short circuit power can be given in    (3) [17][19-20]: 

 𝑃𝑃𝑠𝑠.𝑠𝑠 =
𝛽𝛽

12
𝑉𝑉𝐷𝐷𝐷𝐷3 �1 − 2

𝑉𝑉𝑠𝑠
𝑉𝑉𝐷𝐷𝐷𝐷

�
3
𝑡𝑡𝑟𝑟𝑟𝑟   𝑓𝑓𝑝𝑝    (3) 

where 𝜷𝜷 is the current gain of the MOS transistor, and 𝒕𝒕𝒓𝒓𝒓𝒓   is the rising and falling time 
The glitch power occurs when the input signals arrive at different times to a single logic block, allowing a number of 

intermediate transitions to occur before the logic block output stabilizes. It also occurs at the same point in the circuit when 
paths with unequal propagation delays converge. The glitch power is given in equation (4) below[18]: 

 𝑃𝑃𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠ℎ =
1
2
𝐶𝐶𝐿𝐿𝑉𝑉𝐷𝐷𝐷𝐷(𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑠𝑠) (4) 

where, 𝑷𝑷𝒍𝒍𝒍𝒍𝒕𝒕𝒔𝒔𝒔𝒔𝒈𝒈 is the glitch power and 𝑉𝑉𝑠𝑠ℎis the threshold voltage. 
Therefore, the total dynamic power dissipation is given in equation (5) 

 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ + 𝑃𝑃𝑆𝑆.𝐶𝐶 + 𝑃𝑃𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠ℎ  (5) 
The average power dissipation can be given in the following expression: 

 𝑃𝑃𝑠𝑠𝑎𝑎𝑙𝑙 = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 (6) 
By substituting the equations ((1,   (2,    (3, and (4) in equation (6), then the expression for the average power dissipation 

can be summarized in the following equation [20]: 
 𝑃𝑃𝑠𝑠𝑎𝑎𝑙𝑙 = (𝐼𝐼𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙𝑠𝑠𝑙𝑙𝑙𝑙  × 𝑉𝑉𝐷𝐷𝐷𝐷)+( 𝛼𝛼 𝐶𝐶𝐿𝐿𝑉𝑉𝐷𝐷𝐷𝐷2 𝑓𝑓𝑝𝑝)+( 𝛽𝛽

12
𝑉𝑉𝐷𝐷𝐷𝐷3 �1 − 2 𝑉𝑉𝑡𝑡

𝑉𝑉𝐷𝐷𝐷𝐷
� 𝑡𝑡𝑟𝑟𝑟𝑟   𝑓𝑓𝑝𝑝) 

+( 1
2
𝐶𝐶𝐿𝐿𝑉𝑉𝐷𝐷𝐷𝐷(𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑠𝑠)) (7) 

3. Techniques for dynamic power optimization  
The classification of power optimization techniques can be categorized either by abstraction levels or depending on the 

type of power dissipation. In abstraction levels, the digital circuit passes through different design stages (levels). There are 
different abstraction levels such as system level, algorithmic level, register transfer logic (RTL) level, logic or gate level, and 
transistor level. High power saving can be obtained from the high levels. This means system level, algorithmic level, and RTL 
level in which the optimized power (either dynamic or static) is about (10-100 %), (10-90%), and (15-50 %) respectively [21]. 
Another classification is based on the type of power dissipation. In this paper, the dynamic power is the targeted power to be 
optimized. Therefore, the spotlight will be focused only on the dynamic power techniques. 

Many techniques can be used for dynamic power consumption but in this work, some of them will be studied according to 
the techniques applied to the proposed designs: 
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3.1 Operand Isolator Technique 
Operand isolator is a technique based on operating transformations into equivalent computation implementations at the 

algorithmic level. This technique is a way of saving power for data-path operators or combinational circuits that are not 
completely used in each clock cycle by design. These operators execute inefficient and redundant operations, which are 
obviously wasting power. The fundamental concept of isolating an operator is based on eliminating unwanted operations done 
by the isolated operator. In other words, when non useful computation is done, the logic blocks are shut off.  Shutting off is 
achieved when the block output is not used by disallowing the inputs to toggle in clock cycles [22]. 

3.2 Pre-computation technique 
The pre-computation technique is a logic optimization method at logic level design [23], which tends to minimize logic 

transitions in combinational digital circuits by selectively pre-evaluating the output values of a combinational logic function 
only one-clock cycle before they are needed and then by using the pre-evaluated values to decrease internal switching activities 
in the next clock cycle[24]. 

3.3 Guarded Evaluation Design Techniques 
Guarded evaluation is a technique of gate-level abstraction power optimization that is based on disabling the inputs of 

complex combinational circuits or data-path systems to reduce the transition when these inputs do not relate to the generation 
of output for a given input vector. In other terms, if an output is not detected under such situations, i.e. if it has, observable 
don't care (ODC) situations, then it is possible to insert transparent latches or floating gates at the required input [25]. 

3.4 Operation reduction technique 
The reduction of the operation is a technique based on operating transformations into equivalent computation 

implementations at the algorithmic level or can be known as register transfer logic (RTL) level. In this technique, the aim is to 
optimize type, number, interconnection, and the sequencing of computational modules while retaining the input/output 
behavior. This is a convenient way to reduce the switching capacitance in a circuit [29]. 

3.5 Operation Substitution Technique  
Switching capacitance is minimized in the operation substitution technique by substituting high power operations with low 

power operations in the data flow graph (DFG) at the algorithmic (RTL) level [26]. An addition operation that needs an adder, 
for example, is less power-consuming than a multiplication operation that needs a multiplier. When the number of 
multiplication operations in the data flow graph is reduced, this will lead to a reduction in the switching capacitances, and thus 
the dynamic power dissipation will decrease. 

3.6 Parallelism Technique  
The basic principle of this technique is to use several hardware resource copies, like processors and arithmetic and logic 

units (ALUs), to work in parallel in order to provide maximum performance. Usually, the parallelism technique is used to 
improve the performance at the expense of increasing chip area and higher power consumption. Instead of improving the 
performance, parallel processing is also used to reduce the power. As it is known, the scaling of the supply voltage is the most 
effective way to decrease power consumption. The power saving will lead to reduction in performance, or more accurately, 
maximizing the operating frequency. At the Architecture level, this technique can be used [31]. 

3.7 Pipelining Technique 
Pipeline technique can also be implemented on the architecture level. It is an execution process in which various tasks are 

carried out in a covered manner. This technology is used for an advanced digital system that uses microprocessors, where the 
microprocessor starts executing the second instruction when the first instruction is still in the processing stage. In the pipeline 
technique, the delay through the critical path of the digital circuit is minimized instead of decreasing the clock frequency so 
that the supply voltage can be decreased to reduce the power. This technique has the advantage of area-efficient over the 
parallelism technique [27]. 

4. Multiplication algorithms  
The basic idea of a multiplication operation is based on repeated addition. Multiplication plays a vital role in most high-

performance systems. At the same time, the multipliers are very complicated circuits with high cost. There are two ways to 
implement the hardware of multiplication. The first one is by using huge resources to achieve high performance, which 
consumes high power (leading to fast execution). On the other hand, the second way uses fewer hardware resources, which 
consumes less power with high delay (which means slow execution). The multiplication operation is more complicated than 
the addition operation due to the fact that multiplication includes two operations, addition and shifting. Multiplicand and 
multiplier are the two components of multiplication. There are many algorithms to implement the multiplication, such as 
classical (paper and pencil calculation) algorithm, array multiplier algorithm, Booth’s multiplication algorithm, etc. [3].  

4.1 Sequential Multiplier 
The internal construction of this multiplier is a sequential circuit that uses a single n-bit adder to calculate the product of 

any two binary numbers as shown in Figure 2. In this sketch, A and B represent binary numbers with length of n and m bits, 
respectively. The operation of this sequential circuit is to compute the partial products one time at each cycle and repeats the 
operation m times. At each cycle, the partial products will be produced, then summed to an accumulated partial sum and the 
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resulting partial sum is shifted to the right one-bit position to align the accumulated sum with a partial product of the next 
cycles [28]. Therefore, each cycle of a sequential multiplication operation consists of three arithmetic operations: 

A. Producing partial product. 
B. Summing the produced partial products to the accumulated partial sum 
C. Shifting the partial sum.  

The drawback of this method is that it consumes a lot of resources. Moreover, when the value of multiplication is very 
high (i.e., there are many partial products or many bits to be summed), the performance will slow down. 

4.2 Array Multiplier 
Error! Reference source not found. 3 shows the array multiplier of a 4-bit × 4-bit algorithm. The construction of array 

multiplier is based on an array of full-adders (FAs), half-adders (HAs), and AND gate blocks to compute the result of the 
multiplication. The basic idea of this algorithm is based on Add-Shift operations that can be applied to any number system, 
including the binary number system. The partial product at each cycle is produced by multiplying each bit of the multiplier 
with the entire bits of the multiplicand. The number of AND gates represents the partial products (i.e. No. of AND gates = 
4×4=16), 𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 𝑜𝑜𝑓𝑓 (𝑛𝑛 − 𝑛𝑛𝑏𝑏𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑛𝑛 =  𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 𝑜𝑜𝑓𝑓 (𝑛𝑛-𝑛𝑛𝑏𝑏𝑡𝑡)  − 1 (i.e.𝑁𝑁𝑜𝑜. 𝑜𝑜𝑓𝑓 4𝑛𝑛𝑏𝑏𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑛𝑛 =  4 − 1 =  3), and the 
number of partial products (final product bits) equals to the sum of multiplier bits with multiplicand bits 
(i.e. 𝑁𝑁𝑜𝑜. 𝑜𝑜𝑓𝑓 𝑝𝑝𝑎𝑎𝑛𝑛𝑡𝑡𝑏𝑏𝑎𝑎𝑝𝑝 𝑝𝑝𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛𝑝𝑝𝑡𝑡𝑝𝑝 =  4 +  4 =  8 𝑛𝑛𝑏𝑏𝑡𝑡𝑝𝑝), as shown in Figure 4. Multiple partial products (B0A0, B0A1=X0, 
B0A2=X1, B0A3=X2, etc.) are resulted from each individual multiplication and these partial products are obtained by shifting 
one-bit position to the right and finally summing all partial products to obtain the final result of the multiplication (i.e. P0 to 
P7). This type of algorithm is used only for unsigned binary multiplication [29]. 

4.3 Booth’s Multiplier Algorithm 
Booth’s algorithm is the most common algorithm used to implement the multiplication operation only by using shift and 

addition or subtraction operations. Andrew Donald Booth proposed this algorithm in 1951 when he was researching 
crystallography at Birkbeck College in Bloomsburg. Booth’s algorithm is suggested to solve the waiting problem of the partial 
products by cutting the number of partial products into half. Booth’s algorithm has the advantage of accelerating the 
multiplication operation in comparison to the classical method in which it can be applied in the multiplication of signed 
numbers without using any transformation. The hardware components of this algorithm are A, M, Q, and Count, which 
represent accumulator, multiplicand, multiplier, and counter registers, respectively. And one-bit register placed to the right of 
multiplier 𝑄𝑄 donated by 𝑄𝑄−1. The procedure of Booth’s algorithm is described in details as follows [3]: 

1 Register initialization: where 𝐴𝐴 and 𝑄𝑄−1 registers are initialized with zeros, M is initialized with 
multiplicand value, and count register is the number of bits in multiplicand (M) or multiplier (Q) registers. 

2 By comparing the least significant bit (𝑄𝑄0) of Q register with the 𝑄𝑄−1: 
3 If 𝑄𝑄0  =  𝑄𝑄−1 either for (0-0) or (1-1), then do nothing. 
4 If 𝑄𝑄0  ≠  𝑄𝑄−1 then there are two cases: 

a. Case1: if 𝑄𝑄0  =  0 and 𝑄𝑄−1 = 1then add multiplicand (M) to the accumulator (A). 
              b. Case2: if 𝑄𝑄0  =  1 and 𝑄𝑄−1 = 0, then subtract the multiplicand (M) from accumulator (A). 

5     a. Applying the arithmetic shift right to the accumulator, multiplier, and 𝑄𝑄−1 for step (2.b). 
                b.𝐶𝐶𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡 =  𝐶𝐶𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡 –  1, if 𝐶𝐶𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡 ≠  0, then repeat steps from 2 to 3. Otherwise, end the algorithm and the 
result placed in the combined register AQ register. 

 
Figure 2: Hardware implementation of the sequential multiplier [28] 
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Figure 3: Array Multiplier 4-bit x 4- bit algorithm 

[30] 
Figure 4: Array Multiplier 4-bit x 4-bit 

implementation [31] 

4.4 Modified (Radix-4) Booth’s Multiplication Algorithm 
Modified Booth’s algorithm, which is also known as Radix-4 Booth’s algorithm, has three main steps: the first step is to 

produce the partial product (recoding). The second step reduces the number of partial products, and the final step is the 
addition operation. The Radix-4 algorithm is an efficient way to increase the multiplication efficiency because it divides the 
multiplier into overlapping groups. Each group with three adjacent bits, which means there are eight states and according to the 
adjacent three bits of multiplier, the modified Booth's algorithm can produce the appropriate coefficient (𝑀𝑀𝑠𝑠), in which 𝑀𝑀𝑠𝑠 has 
five possible values (±1, ±2 𝑜𝑜𝑛𝑛 0); these coefficients have recoded the multiplicand, as depicted in Table 1[6]. The advantage 
of this algorithm is that the partial product can be reduced by half. This will reduce the circuit complexity. As the complexity is 
reduced, the power dissipation is also reduced. This algorithm can be used for signed and unsigned numbers. 

The steps of the modified Booth’s algorithm are described as follows[4]: 
1 Check the number of bits for multiplicand and multiplier if they are equal;  
a. If they are even, there is no need to add zeros. 
b. If one of them is odd, (n-bits) either 0s or 1s should be added to the left (for multiplier or multiplicand) according 

to the number of highest bits. 
2 Initialize the LSB bit of multiplier (𝑄𝑄𝑠𝑠−1) with zero. 
3 Overlapped grouping should take place for three adjacent bits (𝑄𝑄𝑠𝑠+1,𝑄𝑄0,𝑄𝑄𝑠𝑠−1) of the multiplier,  
4 The multiplicand is recoded by using the Radix-4 encoding table (see TABLE 1), which can take five possible 

values (±1, ±2 𝑜𝑜𝑛𝑛 0) to find the partial products. 
5 To get the final result of multiplication, an addition operation should take place for all the partial products. 

5. The Proposed Design of Low Power Multipliers 
The multipliers are considered as the core of many digital systems. Due to the long delay, large area, and high power 

consumption of these multipliers, the designers try to use reduction techniques to optimize the power dissipation. In this 
section, seven proposed designs are implemented in different algorithms to investigate which one of the proposed designs has 
the lower dynamic power dissipation. Besides, new techniques are applied to each algorithm to achieve the best power 
optimization of the multiplier. Alternatively, to reach the optimal power multiplier, two procedures are involved; the first is 
implementing different structure designs, and the second is applying the power optimization techniques. In this paper, new 
techniques such as the Basic logic Elements technique and VHDL approach are applied to the proposed designs to reduce the 
dynamic power dissipation. To evaluate the power optimization percentage, the sequential multiplier using Hard FPGA blocks 
is considered as the reference design with the highest power dissipation to compare it with the powers of the other proposed 
designs. All the proposed multipliers are implemented by using Xilinx System Generator (XSG) software which is resulted in 
the configuration of MATLAB 2012a and ISE 14.7 software. These multipliers have the same width of multiplicand and 
multiplier, which is 32 bits for each. The designs are verified and simulated by using Xilinx Spartan 3A-3N/XC3S700a/-
4/fg484 FPGA platform. 

5.1 Sequential Multiplier Using Hard FPGA Blocks 
The proposed sequential multiplier is implemented by using Hard FPGA blocks. In contrast to the original sequential 

multiplier, which is restricted to unsigned numbers, this design can be used for signed and unsigned numbers as well. 
 Figure 5  shows the construction of this design which is consist of A register represents the accumulator register and CAQ 

register, which is combined the accumulator register (A register), quotient register (Q register), and C bit which is the most 
significant bit of A register. The multiplier (𝑄𝑄) and multiplicand (𝑀𝑀) represent the inputs that the user can determine. These 
inputs are driven to Xilinx Absolute and Absolute1 blocks t take the absolute values. The Xilinx Absolute block output is 
connected to the first input (𝑎𝑎0) of the Mux1 block. When the design is running at the first cycle, the state of the counter is 
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equal to zero, and the output of the Relational block is also zero. Then, the multiplier value will be passed through the Mux1 
block and stored in the Register block. The least significant bit (𝑄𝑄0) will be extracted from the Register block using Slice 
block. 𝑄𝑄0 represents the condition of the sequential multiplier algorithm, and there are two cases for that: the first one when 
𝑄𝑄0 = 𝑆𝑆𝑒𝑒𝑝𝑝 = 0, then the CAQ register content is one-bit right-shifted using BitBasher1 block. The second when 𝑄𝑄0 = 𝑆𝑆𝑒𝑒𝑝𝑝 = 1, 
then the multiplicand will be added to the high content of the CAQ register (CAQ High), and the partial product is shifted one 
bit to the right. The output of the Mux2 block will be shifted using the BitBasher block and then stored in the CAQ register. To 
enable this design to operate with signed and unsigned numbers, the most significant bits (MSBs) of each input XORed using 
Logical xor block. The output of the Logical block will operate as a select line to choose the positive or negative value of the 
final result outcome from the CAQ register. The result of this design can be obtained after 33 cycles. 

5.2 Sequential Multiplier Using VHDL Code 
The exact sequential algorithm of the previous design is applied to this design. Alternatively, this design is implemented 

based on the VHDL approach. The VHDL code is written using ISE 14.7 package and imported to XSG using the Black Box 
block, as shown in Figure 6. The flowchart of the proposed sequential multiplier is demonstrated in Figure 7. From this figure, 
the multiplier (A), the multiplicand (B), the AQ register, AQ [0], and the counter are initialized with zero. Each one with its 
corresponding bit(s). after that, the AQ [0] bit must be checked, representing the least significant bit of the AQ register, and 
there are two cases. If AQ [0] =0, then no operation is performed, and if AQ [0] =1, then add the absolute value of multiplicand 
(|B|) to the high content of AQ register (i.e., AQ [63:32] +B2). After that, the entire content of the AQ register will be shifted 
one bit to the right, and the counter is incremented by one. The counter is checked; if the counter ≠ 32, repeat the steps from 
checking the AQ [0] bit, and if the counter = 32, then proceed to the next step. The next step is to check the sign bit, which is 
equal to the XORing of the MSBs of the multiplier and multiplicand (i.e., S=B [31] XOR A [31]). If S=1, then 2’s complement 
is taken for the content of AQ register, and if S=0, then the algorithm is ended, and the result will be obtained on the Display 
block, as shown in Figure 6. 

Table 1: Radix-4 Booth’s Algorithm Recoding [4] 

𝑸𝑸𝒔𝒔+𝟏𝟏 𝑸𝑸𝒔𝒔 𝑸𝑸𝒔𝒔−𝟏𝟏 Partial products 

0 0 0 +0 ∗ 𝑀𝑀𝑛𝑛𝑝𝑝𝑡𝑡𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑎𝑎𝑛𝑛𝑎𝑎 

0 0 1 +1 ∗ 𝑀𝑀𝑛𝑛𝑝𝑝𝑡𝑡𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑎𝑎𝑛𝑛𝑎𝑎 

0 1 0 +1 ∗ 𝑀𝑀𝑛𝑛𝑝𝑝𝑡𝑡𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑎𝑎𝑛𝑛𝑎𝑎 

0 1 1 +2 ∗ 𝑀𝑀𝑛𝑛𝑝𝑝𝑡𝑡𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑎𝑎𝑛𝑛𝑎𝑎 

1 0 0 −2 ∗ 𝑀𝑀𝑛𝑛𝑝𝑝𝑡𝑡𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑎𝑎𝑛𝑛𝑎𝑎 

1 0 1 −1 ∗ 𝑀𝑀𝑛𝑛𝑝𝑝𝑡𝑡𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑎𝑎𝑛𝑛𝑎𝑎 

1 1 0 −1 ∗ 𝑀𝑀𝑛𝑛𝑝𝑝𝑡𝑡𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑎𝑎𝑛𝑛𝑎𝑎 

1 1 1 −0 ∗ 𝑀𝑀𝑛𝑛𝑝𝑝𝑡𝑡𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑎𝑎𝑛𝑛𝑎𝑎 

  
Figure 5: The Proposed Sequential Multiplier Using 

XSG Blocks 
Figure 6: Proposed design of Sequential Multiplier 

using VHDL code 
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Figure 7: Flow chart of the proposed sequential multiplier  

5.3 𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗 𝐋𝐋𝐋𝐋𝐋𝐋𝐗𝐗𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 𝐈𝐈𝐈𝐈 Multiplier 
This design is implemented by using 𝑿𝑿𝒔𝒔𝒍𝒍𝒔𝒔𝑿𝑿𝑿𝑿 𝑳𝑳𝑳𝑳𝒍𝒍𝒔𝒔𝑳𝑳𝑷𝑷𝑳𝑳𝑬𝑬𝑻𝑻𝑷𝑷 𝑰𝑰𝑷𝑷 𝑷𝑷𝑴𝑴𝒍𝒍𝒕𝒕𝒔𝒔𝑴𝑴𝒍𝒍𝒔𝒔𝒍𝒍𝒓𝒓. This multiplier can be found in the Math 

and Index Xilinx Block-set libraries. Xilinx Mult Block represents a multiplier in which the calculations of the data can be 
done on its two inputs and shows the results on its output, as shown in Figure 8 . High-performance and optimized multipliers 
are implemented by 𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗 𝐋𝐋𝐋𝐋𝐋𝐋𝐗𝐗𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 𝐈𝐈𝐈𝐈 multiplier. There are several options to compromise between resources and 
performance to adapt the core to a given application. The feature of this multiplier can be configured in either parallel 
architecture or constant-coefficient architecture. In parallel architecture, the multiplier takes two inputs and produces the 
product of these two multiplied numbers. In constant-coefficient architecture, the multiplier takes one input (a) and multiplies 
it by a constant value determined by the user. The inputs ranging from (1) to (64) bits wide and the outputs ranging from (1) to 
(128) bits wide. The latency for all multiplier inputs is configurable [32]. This multiplier is used for signed and unsigned 
numbers. 

5.4 Array Multiplier Using Basic Elements  
The proposed array multiplier is implemented by using XSG blocks. In this multiplier, the full adders (FAs) and half 

adders (HAs) are built by using the basic logic elements such as AND, XOR, and OR gates. These basic logic elements have 
low power consumption due to lower switching activity and the load capacitance is minimum relative to the traditional design. 
The proposed design is characterized by the use of signed and unsigned numbers, as illustrated in Figure 9, opposite to the 
traditional array multiplier therefore to enable this design to operate with signed and unsigned numbers, the most significant 
bits (MSBs) of each input (Q and M)  XORed using Logical xor block. The output of the Logical block will operate as a select 
line to choose the positive or negative value of the final result outcome from the 32 bit x 32 bit Sub-System block. The 
proposed signed array multiplier according to the design rules of the traditional array multiplier consists of 1024 AND gates 
which represent the partial products, (31) of a 32-bit adder, and 64-bits representing the bits of the final product as shown in 
Figure 10 

 0 Figure 10 shows the construction of the 32 bit x 32 bit Sub-System block, where each bit of the M is ANDed with each 
bit of the Q in as many levels as there are bits in the M. The binary output in each level of AND gates is added with the partial 
product of the previous level using the 32 bit Adder block to form a new partial product. The last level produces the product 
that represented by 32bit Adder 31 block. 

5.5 Booth’s Multiplier by Hard FPGA Blocks 
According to Booth’s multiplication algorithm steps, the proposed Booth’s multiplier is implemented using XSG blocks. 

This is a unique implementation with the use of Simulink software. As depicted in Figure 11, the construction of this is consist 
of the accumulator (A) register and the combined accumulator and quotient (AQ) register that produces the final value. The 
multiplier value is directly driven to the BitBasher1 blocks instead of using the Absolute block. This value will be concatenated 
with the Constant block to initialize the A register. At the running of the first cycle, the Counter block starts counting from (0) 
to (31). Therefore, the output of the Relational block, at the first cycle, is logic 0. The Mux1 block passes the concatenated 
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value of the multiplier and stores it in the A register. For the remaining counts (i.e., 1 to 31), the Mux block will choose the A 
register's right-shifted value. After that, the content of the A register will be sliced using the Slice block to extract the least two 
significant bits (i.e., Q1 and Q0). The Q1 and Q0 bits represent the three conditions of Booth’s algorithm. The arithmetic 
operation is done by comparing the Q1 bit and Q0 bit. The three conditions are: If Q1, Q0= 00 or 11, then no operation is done, 
if Q1, Q0=01, then the multiplicand is added to the high content of the AQ register (i.e., AQ High) using the AddSub1, or if Q1, 
Q0=10, then the multiplicand is subtracted from the AQ. High using the AddSub block. The output of the Mux2 block will be 
one bit shifted to the right using the BitBasher2 block, and the result will be stored in the AQ register. The obtained result can 
be shown on the Display block. The performance of this design takes 33 cycles to obtain the final result. 

 
Figure 8: Proposed design using Xilinx LogiCORE^TM  IP Multiplier 

 
Figure 9: Proposed Design of Array Multiplier Using Basic Elements XSG Blocks 

 
Figure 10: Subsystem of 32x32 bit array multiplier 

 
Figure 11: Proposed Booth’s multiplier using XSG blocks 
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5.6 Booth’s Multiplier with VHDL Code 
The proposed design of Booth’s multiplier is implemented by using VHDL code instead of using XSG blocks as in the 

previous design. The VHDL source code has been written by using ISE 14.7 and exported to the Xilinx Black Box block as 
illustrated in Figure 12. According to Booth’s algorithm procedure that depicted in  0, the first step is initializing the multiplier 
(A), the multiplicand (B), the high content of the AQ register (AQ High), and AQ [0] with zeros, each one corresponding to its 
bit(s). In addition, initializing the low content of the AQ register with the value of multiplier (i.e., AQ [32:1] =A). The next 
step is to compare the AQ [1] and AQ [0] bits. Three cases resulted from this comparison. The cases are AQ [1], AQ [0] = 00 
or 11, 01, and 10, representing no operation performed, adding the multiplicand to the AQ. High subtracting the multiplicand 
from the AQ. High, respectively. After that, the result will be right-shifted one bit (i.e., AQ=AQ [64] & AQ [64] & AQ [64:1]), 
and the counter is incremented by one. Checking the counter, if counter ≠ 32, then repeat the process of reviewing the AQ [1] 
and AQ [0], and when the counter =32, then end the algorithm, and the result will be presented on the Display block. 

5.7 Modified Booth’s Algorithm Using VHDL Code 
A VHDL code is used to implement the proposed design of modified Booth’s multiplier. Black Box block is used to 

import the VHDL code written in ISE 14.7 of the proposed modified Booth's multiplier, as shown in Figure 14. In this design, 
the number of counts is reduced to half (i.e. 15 counts) according to the Radix-4 algorithm. This reduction in the number of 
counts will reduce the number of switching activities and redundant transitions. After one cycle, the result can be obtained. 

The flowchart of modified Booth’s multiplier is illustrated in Figure 12 . Initialization the multiplier, the multiplicand, the 
least significant bit of the Q register (AQ [0]), and the counter with zeros, each one with its corresponding bit(s); initializing 
the high content of the AQ register with the value of multiplier (i.e., AQ [32:1]=A); and initialize the additional register (B2) 
with the right-shifted value of the multiplicand (i.e., B2=B[30:0]&0), all these represent the first step of the algorithm. This 
algorithm is scanning the last three bits of the AQ register instead of two bits as in the original Booth’s algorithm mentioned in 
the previous subsection. This means the comparison will be made between the least significant bit (AQ [0]) and the other two 
least significant bits (AQ [2] and AQ [2]), and this comparison leads to reduce the number of iterations to half, which means 
from 32 to 15. According to these three bits comparison, five cases will be there: the first three cases when AQ [2], AQ [1], 
and AQ [0]= (000 or 111), (001 or 010), and (101 or 110), representing no operation is performed, the multiplicand (B) is 
added to the AQ. High register (i.e., AQ [64:33]= AQ [64:33]+B), and the multiplicand is subtracted from the AQ. High 
register (i.e., A.Q. [64:33]= A.Q. [64:33]+B), respectively. In the fourth case, when AQ [2], AQ [1], and AQ [0] = 011, then 
the shifted multiplicand (B2) is added to the AQ High register (i.e., AQ [64:33] = AQ [64:33] +B2). Where the fifth case when 
AQ [2], AQ [1], and AQ [0] = 100, then the shifted multiplicand is subtracted from the AQ High register (i.e., AQ [64:33] = 
AQ [64:33]-B2). After that, the arithmetic right shift is performed, and the counter is incremented by one. The next step is 
checking the counter. If the counter ≠15, then repeat the scanning process to the three bits, and if the counter = 15 (it's the half 
number of the 32 counts), then end the algorithm, and the result will be shown at the Display block. 

6. Simulation Results and Discussion 
In this paper, seven proposed designs of multiplier algorithms were implemented by using different approaches. Each 

multiplier has multiplicand and multiplier widths of 32-bits.  All the proposed designs are verified by using Xilinx Spartan 3A-
3N/XC3S700a/-4/fg484 FPGA platform. Since some of the proposed designs were implemented by Xilinx System Generator 
(XSG) block sets that can be obtained from the configuration of MATLAB R2012a and ISE 14.7, the simulator and the other 
designs can be implemented by means of the VHDL method. The VHDL code can be considered as a new approach for power 
optimization and particularly dynamic power. The dynamic power is targeted in this research. X-power Analyzer software was 
used for estimating the performances of the proposed designs in terms of total power, dynamic power, and area overhead. In 
this work, two comparisons were made in terms of power analysis. The first one is the comparison of the highest power for the 
proposed sequential multiplier using Hard FPGA blocks with the other six proposed designs as shown in Table 2. The second 
comparison is between the related works and the best optimal power multiplier as listed in Table 3. From TABLE 2, the 
comparison is made between the proposed design of the sequential multiplier by using hard FPGA blocks since it is considered 
as a reference design and the other six proposed designs in terms of dynamic power and total power. From this comparison, it 
can be found that the optimization percentages of dynamic power and total power respectively are (19.62, 11.65) % of Booth’s 
multiplier using hard FPGA blocks, (49.73, 29.52) % of array multiplier by using basic elements hard FPGA blocks, (77.8, 
46.18) % of Xilinx LogiCore multiplier, (80.31, 47.67) % of Booth’s multiplier using VHDL approach, (82.24, 48.81) % of 
modified Booth’s multiplier using VHDL approach, and (87.35, 51.86) % of the sequential multiplier using VHDL approach. 

Figure 16 shows the area overhead of the seven proposed designs in which the Booth’s multiplier using the VHDL 
approach has the highest number of look-up tables with (3489) LUTs. The proposed array multiplier has the highest number of 
occupied slices with (1985) slices. The highest number of flip-flops (D-FF) has been found in the sequential multiplier and 
Booth’s multiplier of hard FPGA blocks with (102) flip-flops for each and zero flip-flops for the other designs. 

 
Figure 12: The proposed design of Booth’s algorithm using VHDL code 
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Figure 13: Flowchart of the Booth’s multiplier using VHDL 

 
Figure 14: The proposed design of the Modified Booth’s algorithm using VHDL code 

 
Figure 15: Flowchart of the modified Booth’s algorithm 
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Table 2: Power dissipation comparison of the proposed designs 

Multiplier Type 

Dynamic 
Power 
Dissipation 
(mW) 

Static Power 
Dissipation 
(mW) 

Total Power 
Dissipation 
(mW) 

Percentage of 
dynamic 
power 
optimization 

Percentage of 
total power 
optimization 

Sequential Multiplier 
Using Hard FPGA Blocks 45.77 31.77 77.54 - - 

Booth’s Multiplier Using 
Hard FPGA Blocks 36.79 31.72 68.51 19.62 % 11.65 % 

Array Multiplier Using 
Basic Elements of Hard 
FPGA Blocks. 

23.01 31.64 54.65 49.73 % 29.52 % 

𝑿𝑿𝒔𝒔𝒍𝒍𝒔𝒔𝑿𝑿𝑿𝑿 𝑳𝑳𝑳𝑳𝒍𝒍𝒔𝒔𝑳𝑳𝑷𝑷𝑳𝑳𝑬𝑬𝑻𝑻𝑷𝑷 𝑰𝑰𝑷𝑷 
Multiplier 10.16 31.57 41.73 77.80 % 46.18 % 

Radix-4 Booth’s Multiplier 
Using VHDL Code 9.01 31.57 40.58 80.31 % 47.67 % 

Modified Booth’s 
Multiplier Using VHDL 
Code 

8.13 31.56 39.69 82.24 % 48.81 % 

Sequential Multiplier 
Using VHDL Code 5.79 31.55 37.33 87.35 % 51.86 % 

Table 3: Comparison of the proposed Sequential Multiplier Using VHDL with the related works 

 

 

 

 
 
 
 
 
 
 
 
 

 
Figure 16: Device Utilization Summary of the proposed designs 

The proposed design of sequential multiplier with the VHDL approach has the lowest dynamic and total power 
consumptions than the others. This decrease in power is due to the VHDL approach to implement the proposed design using 
the basic element components. Moreover, the steps of the multiplier algorithm for the proposed design take only one cycle for 
execution. This means there is no latency (delay) and this will lead to the minimization of the critical paths. In addition, there is 
also internal optimization handling by the placing and routing phases. Besides, all the above-mentioned zero flip-flops lead to 
increasing the switching activities. On the other hand, the proposed design of sequential multiplier using hard FPGA blocks 
takes less area overhead in terms of the number of LUTs and number of I/O blocks, but at the same time, the design consumes 
many flip-flops as illustrated in Figure 16. These flip-flops will increase the switching activities of the design. The result of 
multiplication for this proposed design will be obtained after (33) cycles, which means it is slower than the proposed design by 
the VHDL approach. The delay means there are a lot of critical paths which will result in high power consumption. 

Multiplier Type No. of 
bits 

Dynamic Power 
Optimization 
percentage (%) 

Total Power 
Optimization 
percentage (%) 

[4] 8 45% - 
16 65% - 

[11] 8 21% - 

[5] 
8 - 17.8% 
16 - 26% 
32 - 39% 

[6] 32 - 35% 
[7] 32 - 41% 
[9] 8 - 26% 
[10] 4 - 3.79% 

Proposed Sequential Multiplier 
Using VHDL Approach 32 87.35% 51.86% 
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TABLE 3 represents the second comparison of the proposed sequential multiplier by using the VHDL approach with the 
related works. It can be shown from this table that the proposed design has the highest percentage of dynamic power 
consumption optimization relative to [4], [11] and also has the highest percentage in terms of power consumption optimization 
compared with [3] [6], [7], [9], and [10]. 

7. Conclusion  
 In this work, several 32-bit by 32-bit multipliers have been designed and implemented. Four of these designs were 

implemented using Hard FPGA blocks, while three were implemented using the VHDL code approach. 
From the performance analysis in terms of dynamic and total power dissipation, it can be concluded that the proposed 

designs with the use of Hard FPGA blocks consume high power dissipation in regard to the dynamic power and total power. 
On the other hand, the proposed designs with the use of the VHDL approach have minimum dynamic and total power 
dissipation. This reduction is due to decreasing or eliminating the switching activities and low critical path delays in these 
designs.  

Therefore, as a conclusion, the most efficient technique to obtain higher power savings can be achieved by using the 
VHDL approach, where the power savings are about (87 %) and (52%) for dynamic and total power optimization, respectively 
in the case of the proposed design of sequential multiplier using VHDL code. The latter design achieves the highest power 
optimization compared to other proposed designs and the existing designs in the literature. The VHDL approach has two main 
advantages; the first is transforming the design to its basic logic elements that consume less power. the second, it has a slight 
delay. whereas the previous works either consume significant resource utilization or have a long execution time.  
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