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H I G H L I G H T S   A B S T R A C T  
• Coordination of automatic generation 

control and economic dispatch lowers 
running cost. 

• Power systems interconnecting is more 
economic than systems individual operation. 

• Novel optimization algorithms are more 
accurate in tuning the gains of the 
controllers.   

• Without automatic generation control, 
steady state frequency deviation is not zero. 

 This paper proposes an integrated Economic Load Dispatch (ELD) and 
Automatic Generation Control (AGC) for interconnected power systems. Based 
on their participation factor determined from the economic load dispatch 
calculation, each unit shares the total change in the same control region. In this 
study, two control areas are considered. Three thermal units are located in each 
control area. An integral controller (I) is only used for the AGC mechanism's 
secondary controller and is used for the primary controller for the ELD 
mechanism. An Improved Grey Wolf Optimizer (IGWO) technique is used to 
evaluate the optimum parameters of the integral controllers for primary and 
secondary controllers. An integral time square error (ITSE) has been used as the 
objective function to tune the suitability of the proposed controller gains. The 
simulation results demonstrate that the integrated AGC with ELD has the 
superiority in reducing the overshoot and fast steady state compared with AGC 
only. 
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1. Introduction 
The main aim of automatic generation control in interconnected power systems is to maintain zero frequency deviation and 

balance the generated power with load demand [1]. Since the load demand changes continuously, the operating point of the 
power system changes, causing the system imposed to deviations in normal frequency and scheduled tie-line power that flows 
to other areas, which may result in abnormal situations [2]. In traditional automatic generation control (AGC), the frequency 
and power exchange deviations are combined into a single variable called area control error (ACE), which is used as an input 
to the conventional controller. The power system's primary goal is to maintain enough generation to satisfy the load at the 
lowest possible cost. This target must be accomplished to maintain the system frequency under reasonable limits. The control 
area of the power system is made up of massive integrated generation power units. Uninterruptible electricity supply reduces 
maintenance costs, and all economic facets of the power grid are important in the power sector. The stable and cost-effective 
operation of the integrated power grid is dependent on multiple layers of the automatic generation control system, which 
ensures that generator production corresponds to changes in electrical load demand. The power system's control strategy's 
primary objective is to eliminate power generation and demand mismatches while keeping the system's frequency within the 
normal prescribed range. In addition to the (frequency) speed error signal, the speed governor system in each unit changes the 
prime-mover's mechanical feedback to keep the generation unit speed constant [3]. Automatic generation control is primarily 
concerned with responses to error signals, which are directly or indirectly affected by the system's governor and turbine 
dynamics. The governor setpoint of each unit determines who is in charge of the system's primary frequency control. The 
economic load dispatch feature's key purpose is to reduce the cost role of the overall load demand by changing the unit's 
participation factor. Load frequency control allows changing the output generation at any time. On the other hand, the 

https://etj.uotechnology.edu.iq/
http://doi.org/10.30684/etj.v39i10.2158
http://doi.org/10.30684/etj.v39i10.2158
http://creativecommons.org/licenses/by/4.0
mailto:%20prod_plan06@yahoo.com


Faeq J. Zwayyer et al. Engineering and Technology Journal 39 (10) (2021) 1610-1624 
 

1611 

economic load dispatch would alter the participation factors every few minutes to reduce the system's total generation expense. 
Many real-world optimization problems have numerous challenges, including high computation costs, nonlinear constraints, 
dynamic/sharp cost functions, and a large solving area [4]. Despite the fact that perfect algorithms can precisely supply the 
universal optimum, the time to achieve it grows exponentially in proportion to the number of variables [5]. 

Algorithms that are metaheuristic or heuristic are known to be among the practical sections of convergent algorithms that 
can solve complicated problems [6]. One method to classify metaheuristic algorithms is differentiating between their origin, 
which may be divided into nature-inspired and non-nature-inspired algorithms. Non-nature inspired algorithms are few, like 
the tabu search [7, 8], adaptive dimensional search [9], and iterated local search [10]. The solver of the problem which is most 
important is mother nature. In addition, it is a fundamental inspiring source for developing effective algorithms that are nature-
inspired and have extended use in solving optimization problems [11]. Nature-inspired algorithms may be evolutionary, swarm 
intelligence, and physics-based algorithms. The most well-known evolutionary algorithms are genetic algorithm (GA) [12], 
genetic programming (GP) [13], and differential evolution (DE) [14]. Some popular Physics-based algorithms are big bang-big 
crunch [15], gravitational search algorithm [16], charged system search [17], ray optimization [18], black hole [19], atom 
search optimization [20], and henry gas solubility optimization [21]. Swarm intelligence algorithms inspiration is the social 
creature’s collective manner as animal herding, bird group, and ants’ searching for food. The most well-known algorithms in 
this class are particle swarm intelligence (PSO) [22], artificial bee colony [23], krill herd [24], grey wolf optimizer [25], whale 
optimization algorithm [26], crow search algorithm [27], and harris hawks optimization [28]. The mentioned algorithms have 
an extending use in solving discrete or continuous problems of optimization [29- 32]. For instance, In 2016, Salim and 
Afaneen proposed a Fuzzy Logic-based algorithm for the AGC of the Iraqi super grid network power system controller to 
improve the efficiency of the traditional controller in both usual and abnormal conditions. They got an improved dynamic 
response [ 51]. In 2010, an Artificial Neural Network technique was developed by Muthana and Afaneen to alert control room 
operators to any outage in power system elements (Generating unit or Transmission line) [ 52]. In 2015, Anmar and Afaneen 
suggested two approaches to find the most efficient state estimation solution in power systems: Weighted Least Square (WLS) 
method and Particle Swarm Optimization technique (PSO). Results revealed that the PSO is more accurate and faster [53]. 

The grey wolf optimizer was suggested in 2014 [36]. It is a population-based swarm intelligence algorithm that mimics the 
behavior of wolves group hunting. Because it is easy and uses fewer control parameters, GWO is widely used to solve different 
optimization problems [37, 38]. Since the foundation of GWO in 2014, many alternatives of the fundamental GWO algorithm 
is introduced to eliminate GWO’s drawbacks and offer superior performance [39]. Despite the perfect algorithms' capability to 
accurately offer the universal optimum, their achievement period is in proportion to the variables number and increases 
exponentially [5]. Inversely, the random algorithms of optimization are capable of determining optimum solving’s through a 
reasonable period. Although a little number of algorithms have been improved in the non-nature-inspired class, many 
algorithms are nature-inspired. The grey wolf optimizer (GWO) [25] is an effective metaheuristic inspired by nature, which is 
newly suggested grounded on the mechanism of group hunting and the wolves’ leadership hierarchy in nature. The GW 
optimizer is considered an efficient metaheuristic algorithm, and it is utilized in solving various optimization problems in many 
fields like engineering, medical, bioinformatics, and machining learning [40]. The contribution in this paper is the coordination 
between automatic generation control and economic dispatch using up to date I-GWO optimization algorithm.  

The proposed method of controller tuning has been implemented in two areas interconnected power systems. For 
simulation studies MATLAB/SIMULINK has been used. Optimal parameters of the controller are obtained by minimizing the 
fitness function. Integration of the square of the area control error, which involves the deviation of frequency and power 
interchange, has been used to select the fitness function for the I-GWO algorithm. The rest of this study is organized as 
follows: description of the problem formulation, examined power system models, details of the controller design and 
optimizer, simulation and analysis of the results, and finally, the study's conclusion. 

The paper should be organized into logical parts or sections. Any subsection is given a brief numbered heading. The 
contents include the introduction that should clearly define the nature of the problem, and the references should be made to 
previously published papers. Theoretical, experimental, results, discussions, and conclusions form the main sections of the 
paper. The theoretical section extends the analytical background of the article and develops a new formulation of the problem. 
Calculations are achieved here using the developed equations, and the modifications should be pointed out. Depending on the 
suggested research methods, the experimental investigation is achieved, using the testing instruments or designing and 
manufacturing a test rig. Materials and methods are detailed here. In the results and discussions section, the significance of the 
obtained results should be pointed out. The citations and the discussions of the kinds of literature should be avoided in this 
section. Sometimes results and discussions are combined in one section. 

2. Research Method  

2.1 AGC Model 
As shown in Fig 1, the proposed transfer function model is a two-area interconnected thermal power system with a 

secondary loop controller for AGC mechanism and an ED primary loop controller for economic mechanism. Each control area 
has a thermal generating station with a controllable Turbine-Governor unit, a power system, and suitable controllers for AGC 
and ELD concerns. Equivalent transfer functions are used to model the thermal system. Equation (1) depicts the power balance 
of each control area of a multi-area AGC system. 

∆𝑃𝑃𝑔𝑔(𝑠𝑠) = ∆𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟(𝑠𝑠) − ∆𝑟𝑟(𝑠𝑠)
𝑅𝑅

                                                                            (1) 
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Equation (2) shows the transfer mechanism of a hydraulic actuator (Governor). 
𝐺𝐺𝐻𝐻(𝑠𝑠) = ∆𝑃𝑃𝑉𝑉(𝑠𝑠)

∆𝑃𝑃𝑔𝑔(𝑠𝑠)
= 1

1+𝑇𝑇𝑔𝑔𝑠𝑠
                                                                       (2) 

Equation (3) illustrates the turbine's transfer function  
𝐺𝐺𝑇𝑇(𝑠𝑠) = ∆𝑃𝑃𝑇𝑇(𝑠𝑠)

∆𝑃𝑃𝑉𝑉(𝑠𝑠)
= 1

1+𝑇𝑇𝑇𝑇𝑠𝑠
                                                                            (3) 

Equation (4) illustrates the tie-line power as a function of frequency. 
∆𝑃𝑃12(𝑠𝑠) = 2𝜋𝜋𝑇𝑇

𝑠𝑠
(∆𝑓𝑓1(𝑠𝑠) − (∆𝑓𝑓2(𝑠𝑠))                                                                           (4) 

As shown in equation (5), the total error induced in each control area is estimated as the linear sum of deviations in 
frequency and tie-line power and is represented as area control error (ACE). 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 = 𝐵𝐵𝑖𝑖∆𝑓𝑓𝑖𝑖 + ∑ ∆𝑃𝑃𝑖𝑖−𝑗𝑗𝑛𝑛
𝑗𝑗=1 (𝑖𝑖 ≠ 𝑗𝑗)                                               (5) 

2.2 Economic Load Dispatch (ELD) 
The factors that affect power generation at the lowest cost are fuel cost, transmission losses, and generators' operating 

efficiencies. The minimum cost does not guarantee if the most efficient generating unit is placed in a high fuel cost area. In 
addition, when the plant location is distant from the center of the load. The losses of transmission may be relatively greater, 
and consequently, the plant may become excessively uneconomical. Therefore, the problem is to find the power generation of 
various plants, and as a result, the total cost of operation is minimized. The cost of operation has a significant role in 
scheduling the economic operation of generating units. In general, the thermal plant input is measured in Btu/h, while the 
output measuring unit is MW [3].                                                                                                                                                    

Practically, the generator i fuel cost  can be written as generated real power quadratic function: 
𝐴𝐴𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑃𝑃𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑃𝑃𝑖𝑖2                                                                       (6) 

A characteristic that draws a derivative of the fuel-cost curve against real power is important and called the curve of 
incremental fuel cost. 

𝑑𝑑𝐶𝐶𝑖𝑖
𝑑𝑑𝑃𝑃𝑖𝑖

= 2𝛾𝛾𝑖𝑖𝑃𝑃𝑖𝑖 + 𝛽𝛽𝑖𝑖                                                                         (7) 
Equation (8) is to be solved for Pi 

𝑃𝑃𝑖𝑖 = 𝜆𝜆−𝛽𝛽𝑖𝑖
2𝛾𝛾𝑖𝑖

                                                                          (8) 
The analytic solution may be found for λ, that is 

∑ 𝜆𝜆−𝛽𝛽𝑖𝑖
2𝛾𝛾𝑖𝑖

𝑛𝑛𝑔𝑔
𝑖𝑖=1 = 𝑃𝑃𝐷𝐷                                                                  (9) 

or 

λ =
𝑃𝑃𝐷𝐷+∑  

𝛽𝛽𝑖𝑖
2𝛾𝛾𝑖𝑖

𝑛𝑛𝑔𝑔
𝑖𝑖=1

∑  12𝛾𝛾𝑖𝑖
𝑛𝑛𝑔𝑔
𝑖𝑖=1

                                                               (10) 

2.3  Coordination of ELD and AGC Using Base Point and Participation Factor Method 
This approach assumes that the problem of economic dispatch should be repeatedly solved by shifting generating units 

from one optimum economic value to another as the demand varies by a small reasonable amount. 
We begin with a schedule that has already been established/ the base point. The scheduler then expects a load shift and 

investigates how often each generating unit needs to be shifted (i.e., “participate”) to serve the new load at the most cost-
effective operating point. 

Assume that the cost versus output power equation has the first and second derivatives (F′i and F′′i). The machine 
incremental cost changes from λ° to λ°+ Δλ as the unit load is shifted by a sum ΔPi. On this single unit, a slight change in 
output power [1], 

Δλ ≅ 𝐹𝐹″𝑖𝑖 Δ𝑃𝑃𝑖𝑖                                                                            (11) 
This holds for each of the system's N units, implying that 

ΔP1 = Δλ/ 𝐹𝐹″1                                                                       (12)    
                            

ΔP2 = Δλ/ 𝐹𝐹″2                                                                       (13)    
                              

ΔP𝑁𝑁 = Δλ/ 𝐹𝐹″𝑁𝑁                                                                    (14)                                
The number of the individual unit changes is, of course, the overall change in generation (change in total system demand). 
Generation total change (= system demand total change) is the sum of changes of individual units.  
Let the generators total equal demand PD, where  

𝑃𝑃𝐷𝐷 = 𝑃𝑃load  + 𝑃𝑃𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠                                                                    (15) 
then  

∆𝑃𝑃𝐷𝐷 = ∆𝑃𝑃𝐷𝐷1 + ∆𝑃𝑃𝐷𝐷2 + ⋯+ ∆𝑃𝑃𝐷𝐷𝑁𝑁                                                                (16) 
 
Each unit participation factor is 
 



Faeq J. Zwayyer et al. Engineering and Technology Journal 39 (10) (2021) 1610-1624 
 

1613 

�∆𝑃𝑃𝑖𝑖
∆𝑃𝑃𝐷𝐷

� =
�1 𝐹𝐹𝑖𝑖

"⁄ �

∑ �1 𝐹𝐹𝑖𝑖
"⁄ �𝑖𝑖

                                                              (17) 

 
The computer accomplishment of such an economic dispatch scheme is easy. It could be achieved by providing tables of 

Fi′′ values as a function of load levels and devising an easy scheme to look up these data and calculate the factors using the 
current load plus the expected rise. 

A less elegant method of calculating participation factors would be repeated computing of economic dispatch at PD
°+ΔPD. 

The participation factors are calculated by subtracting the base-point values of economic generation from the current values of 
economic generation and dividing the difference by ΔPD. 

 
If ΔPD is the total load change in the system, then the following equations represent the generation change of each 

individual unit: 
∆𝑃𝑃𝐺𝐺𝑖𝑖 = 𝑃𝑃𝑓𝑓𝑖𝑖 × ΔP𝐷𝐷                                                          (18)       

                               
𝑃𝑃𝑖𝑖𝑑𝑑𝑟𝑟𝑠𝑠 = 𝑃𝑃𝑓𝑓𝑖𝑖 × P𝑏𝑏𝑏𝑏𝑠𝑠𝑟𝑟                                                           (19)      

                                    
∑ Pfi = 1𝑛𝑛
𝑖𝑖=1                                                             (20)                             

  
Where “Pides is the desired output from ith unit and pfi, the participation factors for ith unit and ΔPGi, the incremental 

change from the base point generation of the individual unit” [1].  
Investigation of Figure 1 shows an overall control system that will try to drive ACE to 0 and drive each unit’s output to its 

required economic value. 

  
Figure 1: Coordination of AGC with ELD  

3. Improved Grey Wolf Optimizer (I-GWO) 
The search process in GWO is led by three wolves who are the best in each iteration, demonstrating a powerful 

convergence towards these three wolves. On the other hand, it is afflicted by a lack of demographic diversity, early 
convergence, and a disparity between exploitation and exploration [41-45]. Encircling, hunting, and attacking the prey are the 
stages in wolf hunting. 

- Encircling: can be modeled, as in Eqs. (21) and (22). 
D = |C ∗  Xp(t)  − X(t)|                                                              (21) 

 
X(t + 1)  =  Xp(t)  − A ∗  D                                                        (22) 

Where the location of the prey is Xp, X is the wolf location vector, the current iteration is t. A and C are coefficients 
obtained from Eqs. (23) and (24). 

A = 2 ∗ A ∗ r1 −  a(t)                                                               (23) 
 

C =  2 ∗ r2                                                                                                                    (24) 
Where r1, r2 are random vectors between [0,1], and the vector a elements decrease linearly from 2 to 0 over the iterations 

course given by Eq. (25). 
 

  a(t)  =  2 −  (2 ∗  t)/ MaxIter                                                  (25) 
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- Hunting: α, 𝛽𝛽, and δ are assumed to have better information about prey location. Hence, by considering them as the best 
three solutions, the other wolves’ ω are compelled to follow them. The hunting behavior is described by Eqs. (26 - 28). 

    
Dα =  |C1 ∗  Xα –  X(t)|
Dβ =  |C2 ∗  Xβ –  X(t)|
Dδ =  �C3 ∗  Xδ –  X(t)�

�                                            (26) 

 
Where C1, C2, and C3 are obtained from Eq. 

  
Xi1(t) =  Xα (t)–  Ai1 ∗  Dα (t),
Xi2(t)  =  Xβ (t) –  Ai2 ∗  Dβ (t),
Xi3(t) =  Xδ (t) –  Ai3 ∗  Dδ (t)

�                                       (27) 

 
Where at iteration t, Xα, X𝛽𝛽, and Xδ are best three solutions obtained firstly, A1, A2, and A3 are obtained from Eq. (21), and 

Dα, D𝛽𝛽, and Dδ are calculated from Eq. (26). 

𝑋𝑋(𝑡𝑡 + 1) = 𝑋𝑋𝑖𝑖1+𝑋𝑋𝑖𝑖2+𝑋𝑋𝑖𝑖3 
3

                                                            (28) 
- Attacking: when the prey stops moving, the hunting process is finished, and wolves begin an attack. As illustrated in Eq. 

(25), in every iteration, it is updated to change from 2 to 0.  
An improvement called improved grey wolf optimizer (I-GWO) is suggested to address GWO's drawbacks. By 

introducing a new scanning technique known as dimension learning-based hunting, the I-GWO improves the hunting quest 
strategy. The aforementioned technique is learned through individual wolf hunting actions, and it expands the global search 
range through multi-neighbor learning. After that, I-GWO brings together candidate wolves in each iteration, resulting from 
both GWO and DLH strategies to relocate Xi wolf from its current location to a better location. In addition, I-GWO employs 
an additional selecting and updating step to pick the wolf candidate to win in each iteration and update the current position for 
the next iteration. The three phases of I-GWO are: initializing, moving, and selecting, and updating.Initializing: during this 
stage, N wolves are distributed randomly in the range [li, uj] given by Eq. (29). 

Xij  =  lj  +  randj [0, 1]  ∗ �Uj –   lj�, i ϵ [1, N], j ϵ [1, D]                               (29) 
 

The i-th wolf location in the t-th iteration is a vector of real values Xi(t) = {xi1, xi2, …, xiD}, where D is the problem 
dimension number. The wolves’ population is stored in a matrix Pop, that has N rows and D columns. The Xi (t) fitness value 
is obtained from the fitness function, f (Xi (t)). 

Movement phase: hunting individually is another grey wolves’ social manner, motivating to enhance the GWO. The 
candidate no.1for the following location of wolf Xi (t) called Xi -GWO (t+1) is obtained from Eq. (28). 

 (DLH) search strategy: besides Xi- GWO (t+1), this strategy produces different candidates for the following position of 
wolf Xi (t) called Xi- DLH (t+1).  The Ri (t) is measured between the present location of Xi (t) and the candidate location Xi-
GWO (t+1) from Eq. (29). 

 
Ri(t)  =  Xi (t)  −  Xi −  GWO (t + 1)                                                                                     
Then, the Xi (t) neighbors called Ni (t) is formulated by Eq. (30) respected to ≤ Ri  

{Xj (t) |Di (Xi (t), Xj (t)) Rj (t), Xj (t) ϵ Pop                                                (30) 
 

Di is the measured range between Xi (t) and Xj (t).multi neighbors learning is performed by Eq. (31) 
Xi −  DLH, d (t + 1)  =  Xi, d (t)  +  rand ∗  (Xn, d (t) –  Xr, d (t))                           (31) 

 
Selecting and updating phase: choosing the most candidate by comparing Xi -GWO (t+1) and Xi -DLH (t+1) fitness values by 

Eq. (32)                   

𝑋𝑋𝑖𝑖 (t + 1)  =  � 𝑋𝑋𝑖𝑖−𝐺𝐺𝐺𝐺𝐺𝐺 (t + 1), if  f(𝑋𝑋𝑖𝑖−𝐺𝐺𝐺𝐺𝐺𝐺) ˂ f (𝑋𝑋𝑖𝑖−𝐷𝐷𝐷𝐷𝐻𝐻)   
𝑋𝑋𝑖𝑖−𝐷𝐷𝐷𝐷𝐻𝐻 (t + 1)                otherwise                                                    (32) 

 
If the chosen candidate's fitness value is smaller than Xi (t), Xi (t) is modified by the chosen candidate to correct the 

following position of Xi (t+1). In Pop, on the other hand, Xi (t) remains unchanged. After completing this procedure for each 
individual, the iterations counter (iter) is increased by one, and the search can be repeated until the maximum number of 
iterations (Maxiter) is reached. The obtained results from different experiments and statistical tests prove that I-GWO has 
better performance than the comparative algorithms [54]. 
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The following steps are the pseudo-code of I-GWO  
Input: N, D, Maxiter 
Output: The global optimum 
1: Begin 
2: Initializing (N wolves are randomly distributed throughout the search space, and their fitness is calculated.). 
3: For iter = 2 to Maxiter 
4: Find Xα, X𝛽𝛽, and Xδ. 
5: For i = 1 to N 
6: Computing Xi1, Xi2, Xi3 by using Eq. (27). 
7: Computing Xi-GWO (t+1) by using Eq. (28). 
8: Calculating Ri (t) by Eq. (). 
9: Constructing neighborhood Xi (t) with radius Ri by Eq. (11). 
10: For d = 1 to D 
11: Xi-DLH,d (t+1) = Xi,d (t) + rand × (Xn,d (t) - Xr,d (t)) 
12: End for 
13: Selecting best (Xi-GWO (t+1), Xi-DLH (t+1)). 
14: Updating Pop. 
15: End for 
16: End for 
17: Return the global optimum. 
18: End 

4. Controller Structure and Objective Function 
For the two-area six units’ scheme, the secondary controller for AGC objective and primary controller for ELD controller 

are considered in this paper. To eliminate the controlled output's steady-state error to match the reference input exactly, the 
integral term I is used for AGC and ELD. The I controller transfer functions are: 

𝑇𝑇𝐹𝐹𝐼𝐼=
𝐾𝐾𝑖𝑖
𝑠𝑠

                                                                                         (33) 
For fixing the controller parameters, an objective function is formulated based on the predicted provisions and restraints. 

In engineering, the classical implemented objective functions are the IAE (integral-absolute error), ISE (integral-squared 
error), ITAE (integral-time-multiplied- AE) and ITSE (integral-time-multiplied-ISE), and [46-50].  

Most used function is the ISE due to its easier calculation and its permission to separate underdamped from the 
overdamped system. The elements of negative error are eradicated because the ISE squares it. In addition, the ISE penalizes 
the errors which are large more than smaller ones and provides fast responses. As time passes, it allows small oscillations. The 
results explain that the tuning based on ISE has fewer iterations for global convergence than other methods. The ITSE is used 
as cost function in this paper, and the ITSE function can be expressed as: 

  𝐼𝐼𝑇𝑇𝐼𝐼𝐴𝐴 =  𝑡𝑡 ∫ {∆𝐹𝐹12 + ∆𝐹𝐹22 + ∆𝑃𝑃𝑡𝑡𝑖𝑖𝑡𝑡122 }𝑑𝑑𝑡𝑡𝑇𝑇
0                                          (34) 

T denotes the simulation's time range. ∆F1, ∆F2, and ∆Ptie12 are the frequency deviations in area-1, area-2, and the tie-
line's power deviation connecting areas 1 and 2, respectively. 

5. Simulation Results and Discussion 
The proposed solution strategy is illustrated with a two-control-area, six-unit thermal station power system, as shown in 

Figure 2. The parameters of the transfer function of Figure 2 are listed in the appendix. 
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Figure 2: TF model of thermal multi-unit PS 

Figure 3 illustrates Simulink of the case study. The green block represents (ITSE) and is illustrated in details in Figure 4. 
Table 1 shows the input and full output values of economic load dispatch of three generating units that supply each area and 
the table is discussed below. A 0.05-p.u. step load perturbation (SLP) is applied to the first area (area 1) at the t=0 to 400 s to 
show the efficiency of the I-GWO in solving the system (system load becomes 1050MW). The initial population in this article 
consists of 20 search agents, with a maximum iteration is equal to 10 iterations. To achieve the desired benefit of economic 
load dispatch, the ITSE is used as an objective function to tune the parameters of the secondary controller, which operates as 
an AGC controller, as well as the parameters of the primary controller, which operates as a speed changer for the governor. 
The optimal value of secondary controllers and primary controllers is also listed in Table 1. In Figure 4, the cost function (J) is 
seen, with the ITSE value for the I controller is equal to J= 0.052228. 

At t=0 s to 400 s, the behavior of a power system with only AGC and without ED is investigated in the first step. The 
frequency response, the net tie-line power change, ACE of each area, deviation of mechanical power in each area1, deviation 
of mechanical power in each area2, and the total mechanical power of each area are shown in Figure 5(a-g), respectively. 
Obviously, all the dynamic responses during this period are deviated at zero in the steady-state region, which implies the AGC 
objective is investigated for regulating the own load of each area without interchange power between the two areas. In another 
period (400 s to 600 s) at the same figure, the integration of ELD with AGC, which is termed as ECO-AGC, is considered in 
the proposed system with the same SLP (0.05 pu). In addition, all the dynamic responses during this period do not deviate at 
zero at steady state region, which means that the ECO-AGC objective, is investigated for regulating the load of each area with 
interchange power between the two area from the area of less operation cost to the area of high operation cost. Finally, for the 
robust test of the proposed coordination between ELD and AGC based on I-GWO for employing the integral parameters of 
secondary and primary controllers is considered at the last period in the same figures which is started from 600 s to 1500 s, the 
ECO-AGC is considered with severe SLP (0.1 pu at area 1).  It is evident that all the dynamic responses during this period are 
responded for economic values. The interchange power through the tie line is increased because the SLP is increased, which 
means the ECO AGC works economically. 
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Figure 3: Application of the idea in Figure 1 on two areas six-unit power system 

 

Figure 4: Details of the green block in Figure 3 
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Figure 5: minimum fitness-based ITSE for tuning I parameters (I-GWO) 
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Figure 6: Dynamic responses of ECO-AGC based on I-GWO under 5% and 10% SLP, (a) frequency deviation 

in area 1, (b) frequency deviation in area 2, (c) tie line power deviation, (d) area control error (ACE) in 
area 1 and area 2, (e) deviation of mechanical power in area 1, and (f) deviation of mechanical power in 
area 2, and (g) total mechanical power of each area 

 

 

 
Figure 7: Minimum fitness-based ITSE for tuning I parameters (LFD) 
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Figure 8: Dynamic responses of ECO-AGC based on LFD [55] under 5% and 10% SLP, (a) 

frequency deviation in area 1, (b) frequency deviation in area 2, (c) tie line power 
deviation, (d) area control error (ACE) in area 1 and area 2, (e) deviation of mechanical 
power in area 1, and (f) deviation of mechanical power in area 2, and (g) total mechanical 
power of each area 

Table 1: Input-output values of the proposed controller and economic load dispatch 

Parameter Area 1 Area 2 
Secondary Integral controller gains Ki1 1.1282 Ki2 0.23105 
Primary Integral controller gains Ki1 0.39481 Ki4 0.48976 

Ki2 0.43945 Ki5 1.1765 
Ki3 0.41298 Ki6 0.81862 

Incremental cost (system lambda) 
$/MWh 

λ1 19.117271 λ2 16.181335 

 
Participation Factor 

Pf1 0.469974 Pf4 0.398268 
Pf2 0.377918 Pf5 0.300866 
Pf3 0.152108 Pf6 0.300866 

 
Optimal Dispatch 

P1 525.203762 P4 524.675325 
P2 400.000000 P5 287.662338 
P3 164.796238 P6 287.662338 

Total generation cost $/h CT1 20867.30 CT2 18564.86 
Load Demand MW PD1 1000 PD2 1100 
 
 
 
Generating Unit Cost Function 

Unit1 1122 + 15.84P1 + 
0.003124P12 

Unit4 950 + 13.41P4 + 
0.002641P42 

Unit2 620 + 15.70P2 + 
0.003880P22 

Unit5 560.5 + 14.17P5 + 
0.003496P52 

Unit3 156 + 15.94P3 + 
0.009640P32 

Unit6 560.5 + 14.17P6 + 
0.003496P62 

 
Constraints MW 

Unit1 150min. – 600max, Unit4 140min. – 590max. 
Unit2 100min. – 400max. Unit5 110min. – 440max. 
Unit3 50min. – 200max. Unit6 110min. – 440max. 

best objective function  0.052228 
 

Table 2: I-GWO vs. LFD fitness from 5 runs 

 Iteration 
1 

Iteration 
2 

Iteration 
3 

Iteration 
4 

Iteration 
5 

Best 
fitness 

Worst 
fitness 

Average 
fitness 

I-
GWO 

0.093528 0.078244 0.092878 0.10622 0.096155 0.092878 0.10622 0.093405 

LFD 0.14428 0.19556 0.18558 0.28856 0.3290 0.14428 0.3290 0.228596 
 
The parameters inserted in Table1 are: 
Optimized AGC integral controller gains for area 1and area 2, Ki1and Ki2. Optimized primary integral controller of 

economic dispatch for units 1-6, Ki1-Ki6. Optimal incremental cost lambda1 and lambda2 for area1 and area2 in $/MWh 
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obtained from dispatch program. Optimal power generation of units 1-6 in area1 and2 obtained from dispatch program. The 
participation factors Pf1-Pf6 for each unit obtained from dispatch program, the summation of the participation factors for each 
area equals unity. Total generation cost for each area, CT1, and CT2 in $/h obtained from dispatch program based on cost 
functions of generating units. Load demand in MW for area1 and area2. Cost functions of generating units 1-6 involve the 
coefficients alpha, beta, and gamma. Inequality constraints (maximum and minimum limits of generated power) for each unit 
in MW. The best optimal value of the objective function is found by I-GWO (optimization algorithm) after 10 iterations. 

With the I-GWO and LFD techniques, the best optimal value of the objective function found and compared and is shown. 
The comparison between the dynamic responses in Figure 6(a-g) and Figure 8(a-g) explains that I-GWO has superiority over 
LFD algorithm.  

6. Conclusion 
This paper proposes an improved GWO algorithm for tuning the primary integral controller (I) and secondary integral (I) 

controller parameters in a two-area, a six-unit interconnected power system for simultaneous AGC and ELD. Both actions are 
carried out in the same time frame but on different time scales to demonstrate the benefit of Eco-AGC analysis over traditional 
AGC. As a result of Eco-AGC activity, there has been an increase in dynamic responses and efficiency index parameters, and 
all units can help scheduled generation economically. The Eco-AGC is worked in a smooth distribution of affected load 
variance across units, regardless of power or economics. Without the ED controller, the system becomes more unstable; but, 
with the ED controller, the system becomes more stable due to the improved optimal control mechanism. Our proposed I-
GWO optimized integral (I) controller has been shown to be more effective for AGC and Eco-AGC study and gracefully 
enhances dynamic system responses under various uncertainties, as demonstrated by various dynamic responses. Future works 
suggested are to use other types of controller and optimization algorithm. In addition, the application of this procedure on the 
Iraqi power grid is proposed. 

Appendix 
KPSi = 120, TPSi = 20 s, Bi = 0.425 puMW/Hz, Tri = 10 s, Ri = 2. 4 Hz/puMW, TGi = 0.08 s, T12 = 0.0866 puMW/rad, TTi = 

0.3 s, Kri = 0.5. 
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