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 الملخص

تم أقتراح الطريقة الجديدة  Kafaki-Ghanbariو  Dai-Liaoاستناداً الى الخوارزميات     

في التدرج المترافق الغير الخطي. بفرض بعض الشروط أثبت خاصية الأنحدار الكافي وكذلك 

خاصية التقارب تم أثبات التقارب المطلق للخوارزمية المقترحة  وذلك بأستخدام خط البحث 

Wolfe لك كفاءة جيدة في حل الأعتيادي. النتائج العددية أظهرت بأن الخوارزمية المقترحة تمت

 مسائل الأختبار.
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Abstract 

    Based on the Dai-Liao and Kafaki-Ghanbari methods, a new non-linear 

conjugate gradient method is proposed. Under proper conditions, it is briefly 

shown that our proposed method possess the descent property and generates 

conjugate directions. We also show that the suggested method with Wolfe line 

search conditions is globally convergent. Numerical results illustrates that our 

suggested method can efficiently solve the test problems and therefore is 

promising. 

Keywords: Conjugate gradient method, descent direction, unconstrained 

optimization. 
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1. Introduction 

   Recently, due to the features of strong global convergence properties and low 

memory requirement, conjugate gradient (CG) methods constitute an active 

choice for efficiently solving the large- scale unconstrained optimization 

problems [4]. We refer to an excellent survey [8] for a review on recent advances 

in this area. 

   Conjugacy condition is an important factor in CG methods. The searching 

directions in CG methods are often selected in such a way that, when applied to 

minimize a strongly quadratic convex function, two successive directions are 

conjugate if no round-off  error exists, subject to the Hessian of the quadratic 

function. That is to say, minimizing a convex quadratic function in a subspace 

spanned by a set of mutually conjugate directions is equivalent in the sense that 

one minimizes this function along each conjugate direction in turn.  But for the 

general nonlinear function, the searching directions in most methods fail to 

satisfy the conjugacy condition. This feature motivates us to solve unconstrained 

problems by seeking efficient conjugacy conditions [8].  

   Consider the following unconstrained optimization problem: 

     
nRxxfMin      , )(      (1) 
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where RRf n : is a smooth nonlinear function and its gradient )(xg  is 

available. The iterative formula of a CG method is given by  

    ,...2,1           , 1  kdssxx kkkkkk       (2) 

where kd
is a search direction updated by 11 gd   and 

     11 kkkk dgd        (3) 
 

 

  and the step-length 
0k is commonly chosen to satisfy certain line search 

conditions [11]. Among them, the so-called Wolfe conditions have attracted 

special attention in the convergence analyses and the implementations of CG 

methods, requiring that 

    k

T

kkkk gdxfdxf kk )(-)(         (4) 

    k

T

kkkkk gdddg  )(x 1

T          (5) 

 The stronger version of the Wolfe line search conditions are (4) and  

   k

T

kk

T dgd  g 1h            (6) 

 where 10    are often imposed on the line search.  

   With a distinct choice of the parameter k  in (3), the obtained method has 

different theoretical property and numerical performance. The leading 

parameters formulate for k  are called the Fletcher-Reeves (FR) [6], Hestenes-

Stiefel (HS) [7] and Polak–Ribie`re (PR) [9],   More recent reviews on nonlinear 

conjugate gradient methods can be found in Hager and Zhang [8]. 
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   Here and throughout the paper, we always use ||·|| to stand for the Euclidian 

norm of vectors and  kkk ggy  1 .  

    More recently, many researchers highlighted two properties in designing new 

CG methods, the first is the conjugacy condition and the second is the descent 

property, which play a crucial role in obtaining global convergence and nice 

actual performance. 

     In order to accelerate the CG method, the conjugacy condition is often 

utilized to obtain the order accuracy in the approximation  of the curvature of 

the function as high as possible. By modifying the HS method, Dai and Liao [3] 

proposed the following Dai–Liao (DL) conjugacy condition 

    11   k

T

kk

T

k gtsyd            (7) 
  Based on the above conjugacy condition Dai and Liao in [3] suggested the 

following conjugacy parameter 
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   Very recently Kafaki and Ghanbari [2] discussed the optimal value for the 

parameter t , see [2], and suggested the following  choices for t  
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 Hence the search directions for Kafaki and Ghanbari methods are 
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      The latter property is an indispensable factor in the convergence analysis of 

CG methods. Exactly, a direction  kd
 satisfies the so-called sufficient descent 

condition,  if there exists a constant c > 0 such that 

    1      ,
2

 kgcgd kk

T

k         (12) 

    The paper is organized as follows. Section 2 describes the suggested method 

and their properties. In section 3  the global convergence analysis for the 

proposed method is discussed. Section 4 is devoted to providing numerical 

results. 

 

2. Derivation of the new (AK1 say) CG method 

    The aim of this section is to derive a new conjugate gradient method Aynur 

and Khalil (AK1 say) by using Dai-Liao  and  Kafaki-Ghanbari CG methods. 

consider the search direction given by Dai – Liao 
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    It is remarkable that numerical performance of the DL method is very 

dependent on the parameter t  for which there is no any optimal choice [1]. It has 

been attempts to find an ideal value for t . We suggest the following value for t . 

let 
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    (14) 

Therefore if we substitute the above value for t in the DL method we get the new 

search direction (AK1) can be defined as follows: 
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 We can define the suggested (AK1) algorithm as follows: 
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Algorithm (AK1) 

Step (1): Select a starting point domx 1 f  and 0 , compute  11 xff   

and  11 xfg  . Select some positive values for 


and  . Set 

11 gd   and 1k . 

Step (2): 
Test for convergence .If 


kg

, then stop kx
 is optimal ; 

otherwise go to step (3). 

Step (3): 
Determine the step length k

, by using the Wolfe line search 

conditions (4)-(5).  

Step (4): 
Update the variables as : kkkk dxx 1 .  Compute 1kf  and 1kg

. Compute kkk ggy  1 and kkk xxs  1 . 

Step (5): 
Compute the search direction as: 

1

1

AK

kd   in (15) . 

Step (6): Set  1 kk  and go to step 2. 

    In the following theorems we will prove that our method generates  conjugate 

directions and sufficient descent directions. 

 Theorem (1):  Suppose that the step-size k
 satisfies the standard Wolfe 

conditions (SDWC), consider the search directions kd
 generated from (15) then 

the search directions 1kd
 are conjugate , for all k . i.e. 

   1

1
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k gstdy     (16) 

 

Proof: 

By multiplying both sides of equation (15) to 
T

ky
we get 
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As with Wolfe condition 
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    (17) 

Theorem (2): Suppose that the objective function is uniformly convex and step-

size k
satisfies the standard Wolfe conditions (SDWC), consider the search 

directions kd
 generated from (15) then the search directions 1kd

 satisfies the 

sufficient descent condition 

    1      ,
2

 kgcgd kk
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k     (18) 

Proof: 

   The proof  is by induction. 
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Now we simplify the equation to get the following 
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Using Lipschitz condition 11   k

T
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k gLsyg
 in the second -term of the above 

equation to get 
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On the other hand, since the objective function is uniformly convex that is 

k

T
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T

k ssys  
satisfies the following inequality: 
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The proof is complete.   

3. Convergence analysis 

   Assume the following. 

(1) The level set 
    0: xfxfRxS n 

is bounded, i.e. there exists  

     positive constant 0B  such that, for all Sx , 
Bx 

. 

(2) In a neighborhood N of S the function  f  is continuously 

     differentiable and its gradient is Lipschitz continuous for all  

       Nyx , .  

    Under these assumptions on f , there exists a constant 0 such that 

   xf
, for all Sx . Observe that the assumption that the function f is 

bounded below is weaker than the usual assumption that the level set is bounded. 

Although the search directions generated by (15) are always descent directions, 

to ensure convergence of the algorithm we need to constrain the choice of the 

step-length k
. The following proposition shows that the Wolfe line search 

always gives a lower bound for the step-length k  . 

Proposition 1 [14]. Suppose that kd
is a descent direction and that the gradient 

f  satisfies the Lipschitz condition for all x  on the line segment connecting kx
 

and 1kx
 .  If the line search satisfies the Wolfe conditions (4) and (5), then 
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Proposition 2 [10].  Suppose that assumptions (1) and (2) hold. Consider the 

algorithm (2) and (15), where kd
 is a descent direction and k

 is computed by the 

general Wolfe line search (4) and (5). Then 
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Proposition 3 [12,13]. Suppose that assumptions (1) and (2) hold, and consider 

any conjugate gradient algorithm (2), where kd
 is a descent direction and k

 is 

obtained by the strong Wolfe line search (4) and (6). If  
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    For uniformly convex functions, we can prove that our suggested AK1 

algorithm is globally convergent (theorem4). 

 Theorem (4): Suppose that assumptions (1) and (2) hold, and consider the 

algorithm (2) and (15), where  kd
 is a descent direction and k

 is computed by 

the  strong  Wolfe line search (4) and (6). Suppose that f  is a uniformly convex 

function on S , i.e. there exists a constant  0  such that   

           Nyxyxyxyfxf
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 ,       ,
2

    
      (22) 

 Then 
0inflim 


k

k
g

 

 

Proof: The prove is by Contradiction. 
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From the above relation we get: 
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4. Numerical results and comparisons 

    In this section, we report some numerical results on 75  nonlinear 

unconstrained test problems.  For each test problem, the dimension 

n=100,…,1000. The Fortran77 expression of its function and gradient can be 

downloaded from N. Andrei’s website: 

http://www.ici.ro/camo/neculai/SCALCG/evalfg.for. 

   The following CG methods in the form of (2) and (3), only different in the 

choice of the CG parameter, are test: 

The Dai- Liao (DL) method [3]:   
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1. The Kafaki- Ghanbari (KF1) method [2]: 
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2. The Kafaki- Ghanbari (KF2) method [2]: 
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3. The Aynur and Abbo (AK1)method :  
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     Here we utilize the source code Fortran 77 on N. Andrei’s website. All the 

parameters, including the parameters ρ = 0.0001, σ = 0.9, are set as default. The 

implementations are run on PC with 1.3 GHz CPU 

processor and 760 MB RAM memory. We stop the iterations if the inequality 
610


kg

 is satisfied.  

    We adopt the performance profiles  by Dolan and More´ [5] to compare the 

performance among the tested methods. For sn
 and pn

problems, the 

performance profile ]1,0[:   is defined as follows: 

Let P  and S  be the set of problems and the set of solvers, respectively. For  each 

problem Pp  and for each solver Ss  , we define 
:,spt

(computing time or( 

number of iterations, etc) required to solve problem 
p

by solver s  ). The 

performance ratio is given by 
.min/: ,,, sp

s
spsp ttr

S


  Then the performance profile 

is defined by: 

  

    , } { 
1

)( ,sp

p

rpsize
n

P

 where size 
} { ,  sprp P

 stands 

For the number of elements of the set 
} { ,  sprp P

. Note that if the 

performance profile of a method is over the performance profiles of the other 

methods, then this method performed better than the other methods. 
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  Figures 1-3 are the performance profiles measured by the number of iterations, 

the number of function and gradient evaluations, and CPU time respectively. 

From Figures1-3, we can observe that our proposed method (AK1) numerically 

outperforms with slight superiority to the other methods, since the figures 

graphically illustrate that the curves of AK1 are always the top performer for 

almost all values of  . The possible reason is that our method suggests optimal 

value for the parameter t which is an open question.     

 

                 Fig(1) Performance profile with respect number of iterations. 

   
       
 
 
 
 
 
 
 
 
 

 
Fig(2) Performance profile with respect number of function  

                               gradient evaluations.  
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           Fig(3) Performance profile with respect to the total number of CPU time. 

  Table(1) shows the comparison of the algorithms AK1, DL, KF1 and KF2 

with respect to the total number of iteration(iter), total number of 

function and gradient evaluations (fg) and total required for solving 750 

test problems. 

Table(1) comparison of the algorithms 

Algorithm Total iter Total fg Total Time 

AK1 136404 224772 2981 

DL 137538 231532 3346 

KF1 137694 231885 3369 

KF2 136494 224853 2992 

5.Conclusions 

   In this paper we have developed a new conjugate gradient method which is 

based on Dai-Liao and Kafaki-Ghanbari CG methods and generates sufficient 

descent search direction. Under suitable assumptions our method have been 

shown to converge globally.  

 



 
 
 

  Kirkuk University Journal /Scientific Studies (KUJSS)  
                               Volume 12, Issue 2, March 2017                               
                        ISSN 1992 – 0849                             

 

 
 
 

  Kirkuk University Journal /Scientific Studies (KUJSS)  
                               Volume 12, Issue 2, March 2017                               
                        ISSN 1992 – 0849                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References 



 
 
 

  Kirkuk University Journal /Scientific Studies (KUJSS)  
                               Volume 12, Issue 2, March 2017                               
                        ISSN 1992 – 0849                             

 

 
 
 

  Kirkuk University Journal /Scientific Studies (KUJSS)  
                               Volume 12, Issue 2, March 2017                               
                        ISSN 1992 – 0849                             

 

[1] N. Andrei, (2011). Open Problems in Nonlinear Conjugate Gradient 
Algorithms for Unconstrained Optimization. BULLETIN of the 
Malaysian Mathematical Sciences Society. 34, 319–330. 

[2] S. Babaie-Kafaki and R. Ghanbari, (2014). The Dai-Liao nonlinear 
conjugate gradient methods with optimal parameter choices, 
European Journal of Operational Research, 234, 625-630. 

[3] Y. H. Dai and L. Z. Liao, (2001). New Conjugacy Conditions and 
Related Nonlinear Conjugate Gradient Methods, Applied 
Mathematics and Optimization, Springer-Verlag, New York, USA, 
43, PP. 87-101. 

[4] X. Dong, H. Liu and Y. He, (2015): A Self-Adjusting Conjugate 
Gradient Method with Sufficient Descent Condition and Conjugacy 
Condition.  J.  Optim Theory Appl 165. 

[5] E.D. Dolan and J.J. Mor´e ,(2002). "Benchmarking optimization 
software with performance profiles", Math. Programming, 91, pp. 
201-213. 

[6] R. Fletcher  and C.M. Reeves, (1964). Function Minimization by 
Conjugate Gradients. Computer Journal, 7, PP. 149-154. 

[7] M.R. Hestenes and E. Stiefel, (1952). Methods of 
ConjugateGradients for Solving Linear Systems, Journal of 
Research of the National Bureau of Standards, Vol.(5), No.(49), pp. 
409-436. 

[8] W. Hager and  H. Zhang, (2006): A survey of nonlinear conjugate 
gradient methods. Pac. J. Optim. 2(1). 

 

[9] E. Polak  and G. Ribiére, (1969). Note Sur la Convergence de 
Directions Conjuguée. Revue Francaise Information, Recherche. 
Operationnelle, (16), pp.35-43. 

[10] M.J.D. Powell, (1984). Nonconvex Minimization Calculations and 
the Conjugate Gradient Method.in : Numerical Analysis 
(Dundee,1983),In Lecture Notes in mathematics, Springer-Verlag, 
Berlin, 1066, PP. 122-141. 



 
 
 

  Kirkuk University Journal /Scientific Studies (KUJSS)  
                               Volume 12, Issue 2, March 2017                               
                        ISSN 1992 – 0849                             

 

 
 
 

  Kirkuk University Journal /Scientific Studies (KUJSS)  
                               Volume 12, Issue 2, March 2017                               
                        ISSN 1992 – 0849                             

 

[11] W. Sun and Y. Yuan, (2006). Optimization Theory and Methods, 
Nonlinear programming, Springer Science, Business Media, 
LLC.,New York. 

[12] P. Wolfe,  (1968). Convergence conditions for ascent methods , 
SIAM Review, 11, 226-235. 

[13] P. Wolfe,  (1971). Convergence conditions for ascent methods, (II): 
some corrections, SIAM Review, 13, 185-188. 

[14] G. Zoutendijk, (1970). Nonlinear Programming, Computational 
Methods. Integer and Nonlinear Programming (J. Abadie ED.). 
North-Holland, Amsterdam, PP. 37-86. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

  Kirkuk University Journal /Scientific Studies (KUJSS)  
                               Volume 12, Issue 2, March 2017                               
                        ISSN 1992 – 0849                             

 

 
 
 

  Kirkuk University Journal /Scientific Studies (KUJSS)  
                               Volume 12, Issue 2, March 2017                               
                        ISSN 1992 – 0849                             

 

 

 

 

 

 

 


