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Abstract

Based on the Dai-Liao and Kafaki-Ghanbari methods, a new non-linear
conjugate gradient method is proposed. Under proper conditions, it is briefly
shown that our proposed method possess the descent property and generates
conjugate directions. We also show that the suggested method with Wolfe line
search conditions is globally convergent. Numerical results illustrates that our
suggested method can efficiently solve the test problems and therefore is

promising.

Keywords: Conjugate gradient method, descent direction, unconstrained

optimization.
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1. Introduction

Recently, due to the features of strong global convergence properties and low
memory requirement, conjugate gradient (CG) methods constitute an active
choice for efficiently solving the large- scale unconstrained optimization
problems [4]. We refer to an excellent survey [8] for a review on recent advances
in this area.

Conjugacy condition is an important factor in CG methods. The searching
directions in CG methods are often selected in such a way that, when applied to
minimize a strongly quadratic convex function, two successive directions are
conjugate if no round-off error exists, subject to the Hessian of the quadratic
function. That is to say, minimizing a convex quadratic function in a subspace
spanned by a set of mutually conjugate directions is equivalent in the sense that
one minimizes this function along each conjugate direction in turn. But for the
general nonlinear function, the searching directions in most methods fail to
satisfy the conjugacy condition. This feature motivates us to solve unconstrained
problems by seeking efficient conjugacy conditions [8].

Consider the following unconstrained optimization problem:

Min f(x), xeR" (1)
=N . . . S .
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where [ R"=>Ris a smooth nonlinear function and its gradient9() is

available. The iterative formula of a CG method is given by

Xew =X +S¢, S = d, k=12, (2)
where dy Is a search direction updated by d, =-g, and
dk+1 :_gk+1+ﬁkdk (3)

and the step-length % >0

is commonly chosen to satisfy certain line search
conditions [11]. Among them, the so-called Wolfe conditions have attracted
special attention in the convergence analyses and the implementations of CG
methods, requiring that

f (X +dy)- f(xk)spakdkTgk (4)
g(Xy +akdk)Tdk+120-dl-<rgk (5)

The stronger version of the Wolfe line search conditions are (4) and

‘g;ﬂdk‘ S_O'g:dk (6)

where 0 < p < o <1 are often imposed on the line search.

With a distinct choice of the parameter 22 in (3), the obtained method has
different theoretical property and numerical performance. The leading

parameters formulate for 22 are called the Fletcher-Reeves (FR) [6], Hestenes-
Stiefel (HS) [7] and Polak—Ribie're (PR) [9], More recent reviews on nonlinear

conjugate gradient methods can be found in Hager and Zhang [8].

FR _ ||gk+1||2 HS _ ylgkﬂ PR _ y:gku
k™ ' k ' k  —
Jo.]° Y d Jo.|”
N,
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Here and throughout the paper, we always use ||-|| to stand for the Euclidian

norm of vectors and Yk = 9k ~ Yk

More recently, many researchers highlighted two properties in designing new
CG methods, the first is the conjugacy condition and the second is the descent
property, which play a crucial role in obtaining global convergence and nice
actual performance.

In order to accelerate the CG method, the conjugacy condition is often
utilized to obtain the order accuracy in the approximation of the curvature of
the function as high as possible. By modifying the HS method, Dai and Liao [3]
proposed the following Dai-Liao (DL) conjugacy condition

diaYie =15y Gy (7)
Based on the above conjugacy condition Dai and Liao in [3] suggested the
following conjugacy parameter

deye  diy,

ot = GV S G (8)

Very recently Kafaki and Ghanbari [2] discussed the optimal value for the
parameter t, see [2], and suggested the following choices for t

: — SI Y _'_M and t:2 =||yk|| (9)
1 ’
s, ”2 sl Isi |

Hence the search directions for Kafaki and Ghanbari methods are

v sy sy 10
dKT = g, + ykTgk+1 s, — (X YI2< N ”yk” kTgk+1 s, (10)
Sk Yk ||Sk|| ”Sk” Sk Yk
tOp, Yill\ Sk Ui (11)
dngz =, + ykTgk 1 S, — ” k”) kTgk 1 S,
Sk Yk ”Sk” Sk Y
'»‘#YPW& %, . . . . . ]
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The latter property is an indispensable factor in the convergence analysis of

d

CG methods. Exactly, a direction "k satisfies the so-called sufficient descent

condition, if there exists a constant ¢ > 0 such that

d, g, S—c||gk||2, k>1 (12)

The paper is organized as follows. Section 2 describes the suggested method
and their properties. In section 3 the global convergence analysis for the
proposed method is discussed. Section 4 is devoted to providing numerical

results.

2. Derivation of the new (AK1 say) CG method

The aim of this section is to derive a new conjugate gradient method Aynur
and Khalil (AK1 say) by using Dai-Liao and Kafaki-Ghanbari CG methods.
consider the search direction given by Dai — Liao
yI gk+l SI gk+l (13)

Sk
Sy Vi S Vi
It is remarkable that numerical performance of the DL method is very

DL
dk+1 = _gk+l +

5, —t

dependent on the parameter t for which there is no any optimal choice [1]. It has
been attempts to find an ideal value for t. We suggest the following value for t.
let

e g, 2SI Ind st (14)
1 2
[ I S I Y

Therefore if we substitute the above value for t in the DL method we get the new

search direction (AK1) can be defined as follows:

T T
dAKl__ +yk gk+1S _Sk gk+1S (15)
k+1 gk+1 T k T k
Sk yk Sk Sk

We can define the suggested (AK1) algorithm as follows:

P
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Algorithm (AK1)
Step (1):  select a starting point X €9°M f ang £>0 compute 1= f(x)

and % =VF(x) select some positive values for Pand o . Set

d;=-0; ang k=1,

Step (2): <
P (@) Test for convergence .If "g"”w_g, then stop X s optimal ;
otherwise go to step (3).
Step (3): Determine the step Iengthak, by using the Wolfe line search
conditions (4)-(5).
Step (4): Update the variables as K =% +akdk. Compute f and Jkn

. Compute yk = gk+l - gk and Sk = Xk+1 - Xk i

Step (5): . AKL
Compute the search direction as: "1 in (15) .

Step (6):  set k=k+1and go to step 2.
In the following theorems we will prove that our method generates conjugate
directions and sufficient descent directions.

Theorem (1): Suppose that the step-size % satisfies the standard Wolfe

conditions (SDWC), consider the search directions di generated from (15) then
the search directions dica are conjugate , for all K.ie.

Yed&s =-tS g (16)
Proof:

.
By multiplying both sides of equation (15) to Ye we get

e
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y:d'ﬁ(ll =—( $ : ) S;—gkﬂ
Sk Sk
.
As with Wolfe condition >« Y« ~ 0
T
t=(23%) >0 (17)
Sk Sk

Theorem (2): Suppose that the objective function is uniformly convex and step-

size %k satisfies the standard Wolfe conditions (SDWC), consider the search

d d

directions “* generated from (15) then the search directions "+ satisfies the

sufficient descent condition

dfg, <—qla.]’, k=1 (18)
Proof:

The proof is by induction.

dl =-0;, > le 9, = _"91”

S 0, <—¢|a,|

.
Know let to proof for K+1, multiply (15) by i to get

T T
YeOka Sk Ok |7
= — > S O

dkT+lgk+1 = _9I+1gk+1 +[ SI Vi ”Sk ”2

Now we simplify the equation to get the following

dT _ T ylgkﬂslgkﬂ (S;—gkﬂ)z
k+lgk+1 - _gk+1gk+1 + T - 2
Si Vi Isi|
ing Lipschi ition 9caYe LS Gu
Using Lipschitz condition 7k#7k = ="k Jk+1 jn the second -term of the above

equation to get

I_ ST 2
dl;r+19k+l < _||gk+1||2 +T—(SI gk+l)2 _M
T, y
ST
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On the other hand, since the objective function is uniformly convex that is

>ns) - - :
Sk 27 Sk satisfies the following inequality:
L 1
T 2
ScYie s

dk+1gk+l ||gk+l|| Cl (SI gk+l)2
The proof is complete.

)=-C_ where ¢, >0

3. Convergence analysis

Assume the following.

(1) The level set S = {X <R™: f(x)g f(xo )}is bounded, i.e. there exists

N <
positive constant B >0 such that, for all X€S | X< .

(2) In a neighborhood N of S the function f

differentiable and its gradient is Lipschitz continuous for all

is continuously

x,yeN_

f, there exists a constant I =0sych that

||Vf( 1| , for all X€S _ Observe that the assumption that the function f IS

Under these assumptions on

bounded below is weaker than the usual assumption that the level set is bounded.
Although the search directions generated by (15) are always descent directions,

to ensure convergence of the algorithm we need to constrain the choice of the
step-lengthak. The following proposition shows that the Wolfe line search

always gives a lower bound for the step-length %

Proposition 1 [14]. Suppose thatd

Vi

kis a descent direction and that the gradient
satisfies the Lipschitz condition for all X on the line segment connecting X

and %1 . I the line search satisfies the Wolfe conditions (4) and (5), then

el "’"“‘%.
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Q

‘W?
(1-o)oidy] (19)
>_ 7l
- 2
Ljd,]
Proposition 2 [10]. Suppose that assumptions (1) and (2) hold. Consider the

algorithm (2) and (15), where dy is a descent direction and %« is computed by the
general Wolfe line search (4) and (5). Then

Td,
Z(g )

Je

(20)

Proposition 3 [12,13]. Suppose that assumptions (1) and (2) hold, and consider

any conjugate gradient algorithm (2), where dy is a descent direction and %« is
obtained by the strong Wolfe line search (4) and (6). If

w 12:OO (21)
<0 |
li f =
Then " m‘””gk”

For uniformly convex functions, we can prove that our suggested AK1
algorithm is globally convergent (theorem4).

Theorem (4): Suppose that assumptions (1) and (2) hold, and consider the

dy is a descent direction and %« is computed by

f

algorithm (2) and (15), where
the strong Wolfe line search (4) and (6). Suppose that * is a uniformly convex

function on S , 1.e. there exists a constant p>0 such that

(VF(x)-VE(y) (x=y)> gfx=y[", ¥ xyeN (22)

li f =
Then d '!rlw”gk”

Proof: The prove is by Contradiction.
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[da] =

y:— gk+1 S: gk+1
— 0t - s
gk+l [ S: yk ||Sk ||2 J k

Usd” loeal , s’ loeal
2 2
Alsi| s

L
<)\, (1+ ; +1J

R
7

From the above relation we get:

<lgwall+

2
1 y7i 1
> —S'1=
20l (2ﬂ+|-j P

o n lim|g, |=0
Which is contradiction therefore k-«

4. Numerical results and comparisons

In this section, we report some numerical results on 75 nonlinear
unconstrained test problems. For each test problem, the dimension
n=100,...,1000. The Fortran77 expression of its function and gradient can be
downloaded from N. Andrei’s website:
http://www.ici.ro/camo/neculai/SCALCG/evalfg.for.

The following CG methods in the form of (2) and (3), only different in the
choice of the CG parameter, are test:

The Dai- Liao (DL) method [3]:

B = Giea Vi _tslgkﬂ t=1
deye  diyy
1. The Kafaki- Ghanbari (KF1) method [2]:
BFFL— Y Giut _(SI Y N ”yk”) Sk 9

S: Yk ”Sk”2 ”Sk” S: Y «
N . . . .. .
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2. The Kafaki- Ghanbari (KF2) method [2]:
ﬂKFZ _ y:gkﬂ _ ”yk” S-krgk+1

sV sl scv
3. The Aynur and Abbo (AK1)method :

T T
,BAKl — yk gk+l _ Sk gk+1
T T
Sk yk Sk Sk

Here we utilize the source code Fortran 77 on N. Andrei’s website. All the
parameters, including the parameters p = 0.0001, o = 0.9, are set as default. The
implementations are run on PC with 1.3 GHz CPU

processor and 760 MB RAM memory. We stop the iterations if the inequality
< -6
”g"”w <10 is satisfied.

We adopt the performance profiles by Dolan and More” [5] to compare the

n

n
performance among the tested methods. For s and P problems, the

P:R—[0]]

performance profile is defined as follows:

Let P and S be the set of problems and the set of solvers, respectively. For each

problem P€P and for each solver S€S , we define b = (computing time or(

number of iterations, etc) required to solve problem pby solver S ). The
=t,,/mint

r
p.s seS

performance ratio is given by P

is defined by:

Then the performance profile

P(7) =isize{p ePir, <7}, VreR
n

p,s —

: <
P where size {peP: Fos = 7

stands

r <
For the number of elements of the set {peP: fos = T}. Note that if the
performance profile of a method is over the performance profiles of the other
methods, then this method performed better than the other methods.

P
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Figures 1-3 are the performance profiles measured by the number of iterations,
the number of function and gradient evaluations, and CPU time respectively.
From Figuresl1-3, we can observe that our proposed method (AK1) numerically
outperforms with slight superiority to the other methods, since the figures
graphically illustrate that the curves of AK1 are always the top performer for
almost all values of 7. The possible reason is that our method suggests optimal
value for the parameter t which is an open question.

Fig(1) Performance profile with respect number of iterations.

Performance based on number of function and gradient evaluation

039 PP TP TL I T I I (L I T LI T
----- T e T
085 :.,;r-, ................................. s
-
0.8+ 4
0751 -
0.7 ; - 4
o 0.65F i
06 4
0.55 4
0.5 === AK1
—.=--DL
0.45 —-—-- KF1
— - KF2
0als )
10 10

Fig(2) Performance profile with respect number of function
gradient evaluations.
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Performance based on Time
0.1

0.095

Fig(3) Performance profile with respect to the total number of CPU time.

Table(1) shows the comparison of the algorithms AK1, DL, KF1 and KF2
with respect to the total number of iteration(iter), total number of
function and gradient evaluations (fg) and total required for solving 750
test problems.

Table(1) comparison of the algorithms

Algorithm Total iter Total fg Total Time
AK1 136404 224772 2981
DL 137538 231532 3346
KF1 137694 231885 3369
KF2 136494 224853 2992

5.Conclusions

In this paper we have developed a new conjugate gradient method which is

based on Dai-Liao and Kafaki-Ghanbari CG methods and generates sufficient
descent search direction. Under suitable assumptions our method have been

shown to converge globally.

P
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