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Abstract

This research paper presents a new method: the integral Rohit
transform to study and solve quantum physics problems. The standard
calculus approach is typically used to solve quantum mechanics issues.
The obtained solutions demonstrate the potential and efficacy of the
suggested approach to overcoming quantum mechanical problems,
such as low-energy particle scattering by a completely rigid sphere
and particle behavior in a one-dimensional infinitely high potential
box. The successful application of the integral Rohit Transform has
been demonstrated in solving the one-dimensional time-independent
Schrodinger’s equation. This application has yielded results that include
the determination of eigenenergy values and eigenfunctions for a
particle confined within an infinitely high potential well, as well as the
calculation of the total scattering cross-section for low-energy particles
interacting with a perfectly rigid sphere. In the case of low energy
limit, the total scattering cross-section for low energy particles due to a
perfectly rigid sphere, as determined through quantum mechanics, is
equivalent to the geometrical cross-section of said sphere. Additionally,
the energy values that the particle can possess within a one-dimensional
infinitely high potential well demonstrate that the energy of said particle,
when confined within this potential well, is quantized.

1. Introduction:
Any type of particle beam that is directed towards matter

will deflect its constituent particles off their original course
upon colliding with those particles [1]. The scattering is char-
acterized by the wave functions, which are the solutions to
Schrodinger’s equation, in order to approach the scattering
problem quantum mechanically [2]. Only the s-wave is scat-
tered when the energy of the incident particles is low; all other
waves in the partial waves in the region of non-zero potential
are so little that they stay unaltered [3]. The scattering of low
energy particles by a completely rigid sphere has been covered
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in this publication. Quantum mechanics is used to determine
the total scattering cross-section for low energy particles by
a completely rigid sphere, and the results are contrasted with
classical findings. The phase shift of the s-wave induced by
the scattering potential is obtained by solving the Schrodinger
equation with the integral Rohit transform. This phase shift is
then utilized to derive the quantum mechanical total scattering
cross-section for low energy particles by a completely rigid
sphere. The likelihood that a particle will be scattered as it
moves through a material of a specific thickness is known as
the scattering cross-section. When considering low energy,
the total scattering cross-section can be expressed as follows:
σtotal = 4π

k2 sin2 δ0, where δ0 is the scattering potential-induced
phase shift of the s-wave [1], [2], [3]. Due to the combined
potential of the entire crystal lattice rather than the atomic nu-
cleus, a small number of loosely bound valence electrons (that
is, electrons present in the outermost shells but not entirely
filled shells) become free from atoms and travel throughout
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the crystal [4]. With the exception of limiting forces at the
crystal’s boundaries, electrons in the free electron gas experi-
ence no force within the infinite walls of the crystal [5], [6].
In order to determine the eigen values and eigen functions for
a particle inside the one-dimensional infinitely high potential
box, such as an electron in a one-dimensional crystal, this
paper also addresses the application of integral Rohit trans-
form to the one-dimensional time-independent Schrodinger’s
equation. The Rohit transform (RT) is put into words for a
function of exponential order by the integral equations as

Rh(t) = q3
∫

∞

0
e−qth(t)dt, t ≥ 0,q1 ≥ q ≥ q2.

The variable q is used to factor the variable t in the argu-
ment of the function h [7], [8].

The Rohit transform (RT) of unidentified functions [9],
[10] is given by

i. R {tn}= q3
∫

∞

0
e−qttndt =

∫
∞

0
e−z

(
z
z

)n dz
q

where z = qt

R{h(t)}= q2

qn

∫
∞

0
e−z(z)ndz =

q2

qn (n+1) =
q2

qn n! =
n!

qn−2

Thus R {tn} = n!
qn−2

ii. R {sinbt}= q3
∫

∞

0
e−qtsinbtdt

= q3
∫

∞

0
e−qt

(
eibt − e−ibt

2i

)
dt

R{sinbt}= q3
∫

∞

0

(
e−(q−ib)t − e−(q+ib)t

2i

)
dt =

− q3

2i(q− ib)
(e−∞ − e−0)+

q3

2i(q− ib)
(e−∞ − e−0)

Rsinbt =
q3

2i(q− ib)
− q3

2i(q+ ib)
=

bq3

q2 +b2

Thus R {sinbt} = bq3

q2+b2

iii. R {cosbt}= q3
∫

∞

0
e−qtcosbtdt

= q3
∫

∞

0
e−qt

(
eibt + e−ibt

2

)

R {cosbt}= q3
∫

∞

0

(
e−(q−ib)t − e−(q+ib)t

2

)
dt

R {cosbt}=− q3

2i(q− ib)
(e−∞ − e−0)− q3

2i(q+ ib)
(e−∞−

e−0) =
q3

2i(q− ib)
+

q3

2i(q+ ib)
=

q4

q2 +b2

T husR {cosbt}= q4

q2 +b2

iv. R {ebt}= q3
∫

∞

0
eqtebtdt = q3

∫
∞

0
(e−(q−b)t)dt

=− q3

(q−b)
(e−∞e−0) =

q3

(q−b)

T hus R{ebt}= q3

(q−b)

Let g(t) be a piecewise continuous function in some inter-
vals, then the Rohit Transform (RT) of g

′
(t) is given by

R{g
′
(t)}= q3

∫
∞

0
e−qtg

′
(t)dt

Integrating by parts and applying limits, we have

R{g
′
(t)}=

[
g(0)−

∫
∞

0
−qe−qtg(t)dt

]
q3
[
−g(0)+q

∫
∞

0
qe−qtg(t)dt

]
R {g

′
(t)}= qRg(t)−q3g(0)

Hence R {g
′
(t)}= qG(q)−q3g(0)

On replacing g(t) by g
′

(t)and g
′

(t) by g
′′

(t), we have

R{g
′′
(t)}= qRg

′
(t)−q3g

′
(0)

= qqRg(t)−q3g(0)−q3g
′
(0)

R{g
′′
(t)}= q2Rg(t)−q4g(0)−q3g

′
(0)

= q2G(q)−q4g(0)−q3g
′
(0)

Hence R{g
′′
(t)}= q2G(q)−q4g(0)−q3g

′
(0)

Similarly, R{g
′′
(t)}= q3G(q)−q5g(0)−q4g

′
(0)−q3g

′′
(0).
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In general,

Rgn(t) = qnR{g(t)}−
n

∑
k=1

qn−k+3gk−1(0)

A unit step function is written as

U(t −α) =

{0 f or t<α

1 f or t≥∂

The RT of a unit step function is given by

R{U(t −a)}= q3
∫

∞

0
e−qtU(t −a)dt

R{U(t −a)}= q3
∫

∞

0
e−qtdt

R{U(t −a)}= q2e−qa

Shifting property:

If R{g(t)} = G(q), then

R[g(t −a)U(t −a)] = e−qaG(q).

Proof:

R[g(t −a)U(t −a)] = q3
∫

∞

0
e−qtg(t −a)U(t −a)dt

= q3
∫

∞

0
e−qtg(t −a)dt.

Putting v=t-a, we get

R[g(v)U(v)] = q3
∫

∞

0
e−q(v+a)g(v)dv,

R[g(v)U(v)] = e−qaq3
∫

∞

0
e−qvg(v)dv

Putting v=t-a, we get

R[g(t −a)U(t −a)] = e−q(a)q3
∫

∞

0
e−q(t)g(t)dt

R[g(t −a)U(t −a)] = e−qaG(q)

2. Material and Method:
2.1 Scattering of Low Energy Particles i.e. S-Wave

by Perfectly Rigid Sphere:

A perfectly rigid sphere of radius R [1], [3] is represented
as

V (r) =
{∞ f orr<R

0 f orr>R

The wave function vanishes for r < R, as V (r) = ∞ for r
< R.

The radial part of time-independent Schrodinger equation
for r > R is written as:

1
r2

∂

∂ r

(
r2 ∂ul(r)

∂ r

)
− l(l +1)ul(r)

r2 +
2mE
h̄2 ul(r) = 0 (1)

For low energy particles i.e. for s-wave, l = 0, therefore
equation 1 becomes

1
r2

∂

∂ r

(
r2 ∂u0(r)

∂ r

)
+

2mE
h̄2 u0(r) = 0 (2)

Let u0 (r)= U0 (r)/r, then

∂u0(r)
∂ r

= r
∂U0(r)

∂ r
− U0(r)

r2

Or

r2 ∂u0(r)
∂ r

= r
∂U0(r)

∂ r−U0(r)
(3)

Differentiate equation with respect to r, we get

∂

∂ r

(
r2 ∂u0(r)

∂ r

)
= r

∂ 2U0(r)
∂ r2 +

∂U0(r)
∂ r

− ∂U0(r)
∂ r

Or

∂

∂ r

(
r2 ∂u0(r)

∂ r

)
= r

∂ 2U0(r)
∂ r2 (4)

Using equation 4 in equation 2 and simplifying, we get

∂ 2U0(r)
∂ r2 +

2mE
h̄2 U0(r) = 0

Or
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∂ 2U0(r)
∂ r2 + k2U0(r) = 0 (5)

where k =
√

2mE
h̄2

Taking Rohit transform of equation 5, we get

q3
∫

∞

0
e−qrU

′′
0 (r)dr+ k2RU0(r) = 0

q3
[∫ R

0
e−qrU

′′
0 (r)dr+

∫
∞

R
e−qrÜ0(r)dr

]
+ k2R{U0(r)}= 0

(6)

The wave function vanishes for r < R, as V (r) = ∞ for r < R,
therefore,

∫ R
0 e−qr Ü0(r) dr = 0.

Hence, equation 6 becomes

q3
∫

∞

0
e−qrU

′′
0 (r)dr+ k2RU0(r) = 0

q3
[
− e−qRU ′

0(R)+q
∫

∞

R
e−qrU ′

0(r)dr
]
+ k2RU0(r) = 0

q3
[
− e−qRU ′

0(R)−qe−qRU0(R)+q2
∫

∞

R
e−qrU0(r)dr

]
+ k2RU0(r) = 0

−q3e−qRU ′
0(R)−q4e−qRU0(R)+q5R{U0(r)}+ k2R{U0(r)}

= 0
(7)

Since the wavefunction u0 (r) is continuous at r = R, it vanishes
at r = R i.e. U0 (R)=0. Therefore, equation 7 becomes:

−q3e−qRU ′
0(R)+q2R{U0(r)}+ k2R{U0(r)}= 0 (8)

Since U
′
0(R) = ∂

∂ r [U0(R)] is a constant, let ∂

∂ r [U0(R)] = d, then
equation 8 becomes:

−q3e−qRd +q2R{U0(r)}+ k2R{U0(r)}= 0

R{U0(r)}=
q3e−qLd
q2 + k2 (9)

Taking inverse Rohit transform of equation 9, we get

U0(r) =
d
k

sink(r−R)U(r−R) (10)

Now for r ≥ R, U(x−R) = 1. Therefore, equation 10 becomes:

U0(r) =
d
k

sink(r−R)

Or

U0(r) =
d
k

sin(kr−δ0) (11)

where δ0 = kR is the phase shift of the s-wave caused by
scattering potential.
Now,

u0(r) =
U0(r)

r
=

d
kr

sin(kr−δ0) (12)

This equation represents the solution of Schrodinger’s equa-
tion for r > R.
Now, quantum mechanically, the total scattering cross-section
for s-wave is given by

σtotal =
4π

k2 sin2
δ0

Or

σtotal =
4π

k2 sin2
δ(kR)

Or

σtotal = 4πR2 sin2(kR)
(kR)2

In the low energy limit, k −→ 0. Since in the limk→0
sin2(kR)
(kR)2 = 1, therefore, σtotal = 4πR2, which is equal to the

geometrical cross-section of the rigid sphere. Classically, the
scattering cross-section for a rigid sphere is 2. Therefore,
it is observed that in the limit of low energy, according to
quantum mechanics, the total scattering cross-section for low
energy particles caused by a perfectly rigid sphere is four
times greater than the classical scattering cross-section for a
rigid sphere with the same radius.
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2.2 Particle in A One-Dimensional Infinitely High
Potential Box:

The one-dimensional time-independent Schrodinger’s equa-
tion 11, 12 is given by

ψ
′′(x)+

2m
h̄2 [E–V (x)ψ(x)] = 0 (13)

In this equation, ψ(x) is the probability wave function
and V(x) is the potential energy function. Consider a particle
confined to the region 0 < x < L. It can move freely in this
region but it is subject to strong forces at x = 0 and x = L. The
one-dimensional infinitely high potential box is defined as

V (x) =
{0 f or 0 < x < L

∞ f or x leq 0 and x ≥ L

For a particle inside the one-dimensional infinitely high
potential box [11], [12], V(x) = 0 Therefore, equation 13
becomes

Ψ
′′(x)+ k2

Ψ(x) = 0 (14)

where k =
√

2mE
h̄2 and x belongs to [0, L] with ψ(0) = ψ(L) =

0.

Taking Rohit transform of equation 14, we have

q3
∫

∞

0
e−qx

ψ
′′(x)dx+ k2R{ψ(x)}= 0

q3[
∫ L

0
e−qx

ψ
′′(x)dx+

∫
∞

L
e−qx

ψ
′′(x)dx]+k2Rψ(x) = 0 (15)

As 0 < x < L, therefore,
∫

∞

0 e−qxψ ′′(x) dx = 0.
Thus:

q3
∫ L

0
e−qx

ψ
′′(x)dx+ k2R{ψ(x)}= 0

q3[e−qL
ψ

′(L)−ψ
′
(0)+q

∫ L

0
e−qx

ψ
′(x)dx]+k2R{ψ(x)}= 0

q3[e−qL
ψ

′(L)−ψ
′(0)+qe−qL

ψ(L)−qψ(0)

+q2
∫ L

0
e−qx

ψ(x)dx]+ k2R{ψ(x)}= 0

q3e−qL
ψ

′(L)−q3
ψ

′(0)+q4e−qL
ψ(L)−q4

ψ(0)

+q2Rψ(x)+ k2R{ψ(x)}= 0
(16)

Put ψ(0) = 0, ψ (L) = 0, ψ
′

(0) = A (a constant), and ψ
′

(L)
= B (a constant), the equation 16 becomes:

q3e−qLB−q3A+q2R{ψ(x)}+ k2R{ψ(x)}= 0

R{ψ(x)}(q2 + k2) =−q3e−qLB+q3A

R{ψ(x)}= −q3e−qLB
q2 + k2 +

q3A
q2 + k2 (17)

Taking inverse Rohit transform of equation 17, we get

ψ(x) =−B
k

sink(x−L)U(x−L)+
A
k

sin(kx) (18)

Now for 0 < x < L, U(x-L) = 0.

Thus,

ψ(x) =
A
k

sin(kx) (19)

Put ψ(L) = 0, equation 18 or 19 gives sin (k L) = 0
Or
kL = n π , where n is a positive integer.
Or

k =
nπ

L
(20)

Comparing the values of k, we have

2mE
h̄2 =

(
nπ

L

)2

Simplifying, we get

E =
n2π2h̄2

2mL2 (21)

This equation gives the eigen energy values for a particle
inside the infinitely high potential well. Substituting equation
20 in equation 20, we have

ψ(x) =
A
nπ

L
sin

(
nπ

L
x
)

(22)

Applying normalization condition, we have
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∫ x=L

x=0
ψ(x)ψ∗(x)dx = 1 (23)

Where ψ∗ (x) is the complex conjugate of ψ(x). Using equa-
tion 22 in equation 23 and simplifying, we have

A =
nπ

L

√
2
L

(24)

Using equation 24 in equation 19, we have

ψ(x) =

√
2
L

sin
(

nπ

L
x
)

(25)

This equation gives the eigen functions for a particle inside
the infinitely high potential well.

3. Conclution:
The quantum mechanical formalism is employed to deter-

mine the total scattering cross-section for low energy particles
caused by a perfectly rigid sphere. This is achieved by utiliz-
ing the integral Rohit transform. In the case of low energy
limit, the total scattering cross-section for low energy particles
due to a perfectly rigid sphere, as determined through quan-
tum mechanics, is equivalent to the geometrical cross-section
of said sphere. This geometrical cross-section is four times
greater than the classical scattering cross-section for a rigid
sphere of identical radius. Additionally, the energy values that
the particle can possess within a one-dimensional infinitely
high potential well demonstrate that the energy of said particle,
when confined within this potential well, is quantized. The
minimum energy of the particle occurs when n = 1 because if
n = 0, then the particle’s wave function is equal to zero, imply-
ing that the particle does not exist within the one-dimensional
infinitely high potential well. Consequently, the energy E =
0 is not permissible. This indicates that the particle cannot
possess zero total energy inside the one-dimensional infinitely
high potential well and therefore, cannot be at rest within it
according to quantum mechanics. As a result, the ground state
(also referred to as zero-point energy) of a particle within the
one-dimensional infinitely high potential well is expressed as

E1 =
π2h̄2

2mL2 .

In this paper, the successful application of the integral
Rohit Transform has been demonstrated in solving the one-
dimensional time-independent Schrodinger’s equation. This
application has yielded results that include the determination
of eigen energy values and eigen functions for a particle con-
fined within an infinitely high potential well, as well as the

calculation of the total scattering cross-section for low energy
particles interacting with a perfectly rigid sphere. The ob-
tained solutions serve as a testament to the accuracy of the
proposed method, highlighting its superiority when compared
to existing approaches documented in the literature [1], [2],
[3], [4], [5], [6], [13], [14], [11], [12], [15], [16], [17], [18],
[19], [20].

Consequently, these findings provide compelling evidence
for the capability and effectiveness of the proposed method
in addressing various quantum mechanics problems. Notably,
this includes the investigation of low energy particle scattering
by a perfectly rigid sphere, as well as the study of particle
behavior within a one-dimensional infinitely high potential
box, such as an electron in a one-dimensional crystal.

Future Scope of Rohit Transform
The future scope of the Rohit transform (RT) holds promise

across various domains, including signal processing, image
processing, data compression, and cryptography.

Funding: None.

Data Availability Statement: All of the data supporting the
findings of the presented study are available from correspond-
ing author on request.

Declarations:
Conflict of interest: The authors declare that they have no
conflict of interest.

Ethical approval: The manuscript has not been published or
submitted to another journal, nor is it under review.

References
[1] David J. Griffiths. Introduction to Quantum mechanics.

Cambridge University Press, 2ed edition, 2017.
[2] P.A.M. Dirac. Principles of Quantum Mechanics. Igal

Meirovich, 4th edition, 2012.
[3] B.N. Srivastava and R.M. Richaria. Quantum Mechanics.

Pragati Prakashan, 16th edition, 2017.
[4] M. A. Wahab. Solid State Physics. Alpha Science Inter-

national, 2ed edition, 2002.
[5] R. K. Puri and V. K. Babber. Solid State Physics and

Electronics. S. Chand, 1st edition, 2010.
[6] S. Chander and S. B. Jha. Engineering Physics and Chem-

istry. Jain Brothers, 5th edition, 2013.
[7] Rohit Gupta. On novel integral transform: Rohit trans-

form and its application to boundary value problems.

Kirkuk J. Sci. Vol. 19, Iss.4, p. 1-8, 2024



Solving Quantum Mechanics Problems... 7

Journal of Chemistry, Physics, Mathematics and Applied
Sciences, 4(1): 8–13, 2020, doi:06.2020-62339259.

[8] Rohit Gupta. Inderdeep singh, and ankush sharma,
response of an undamped forced oscillator via ro-
hit transform. International Journal of Emerging
Trends in Engineering Research, 10(8): 396–400, 2022,
doi:10.30534/ijeter/2022/031082022.

[9] Rohit Gupta. Mechanically persistent oscillator sup-
plied with ramp signal. Al-Salam Journal for
Engineering and Technology, 2(2): 112–115, 2023,
doi:10.55145/ajest.2023.02.02.014.

[10] Rohit Gupta, Rahul Gupta, and Dinesh Verma. Solving
general differential equations of fractional orders via ro-
hit transform. Kirkuk Journal of Science, 19(2): 1–16,
2024, doi:10.32894/kujss.2024.146592.1137.

[11] Rohit Gupta, Rahul Gupta, and Dinesh Verma. Eigen en-
ergy values and eigen functions of a particle in an infinite
square well potential by laplace transforms. International
Journal of Innovative Technology and Exploring Engi-
neering, 8(3): 6–9, 2019.

[12] Rohit Gupta and Rahul Gupta. Matrix method for solving
the schrodinger’s time-independent equation to obtain
the eigen functions and eigen energy values of a parti-
cle inside the infinite square well potential. Journal of
Applied Physics, 10(5): 1–05, 2018, doi:10.9790/4861-
1005010105.

[13] Rohit Gupta, Tarun Singhal, and Dinesh Verma. Quan-
tum mechanical reflection and transmission coefficients
for a particle through a one-dimensional vertical step
potential. International Journal of Innovative Technol-
ogy and Exploring Engineering, 8(11): 2882–2886, 2019,
doi:10.35940/ijitee.K2424.0981119.

[14] R. Gupta, R. Gupta, and D. Verma. Eigenenergy values
and eigenfunctions of one-dimensional quantum mechan-
ical harmonic oscillator. Journal of Engineering, 9(1):
17–21, 2024.

[15] K. Konishi and G. Paffuti. Quantum Mechanics. A New
Introduction. Oxford University Press: New York, NY,
USA, 2009.

[16] S.H. Dong. Factorization Method in Quantum Mechanics.
Springer: Dordrecht, The Netherlands, 2007.

[17] J. Benbourenane and Eleuch. Exactly solvable
new classes of potentials with finite discrete en-
ergies. Results in Physics, 17: 103034, 2020,
doi:10.1016/j.rinp.2020.103034.

[18] H. Eleuch and M. Hilke. Ers approximation
for solving schrödinger’s equation and applica-
tions. Results in Physics, 11: 1044–1047, 2018,
doi:10.1016/j.rinp.2018.11.004.

[19] H. Eleuch, Y.V. Rustovtsev, and M. Scully. New analytic
solution of schrödinger’s equation. Europhysics Letters,
89: 50004, 2010, doi:10.1209/0295-5075/89/50004.

[20] W.T. Reid. Ricatti Differential Equations. Academic
Press: New York, NY, USA; London, UK, 1st edition,
1972.

Kirkuk J. Sci. Vol. 19, Iss.4, p. 1-8, 2024

http://doi-ds.org/doilink/06.2020-62339259/
 http://doi.org/10.30534/ijeter/2022/031082022
https://doi.org/10.55145/ajest.2023.02.02.014
https://doi.org/10.32894/kujss.2024.146592.1137
https://doi.org/10.9790/4861-1005010105
https://doi.org/10.9790/4861-1005010105
https://doi.org/10.35940/ijitee.K2424.0981119
https://doi.org/10.1016/j.rinp.2020.103034
https://doi.org/10.1016/j.rinp.2018.11.004
https://doi.org/10.1209/0295-5075/89/50004


Solving Quantum Mechanics Problems...8

ú


ÎÓA¾

�
JË @

�
IJ
ëðP ÉK
ñm

�
�
' �
�K
Q£

	á« ÕºË@ A¾J

	
K A¾J
Ó É



KA�Ó Ég

3
AÓQ�


	
¯

�
��


	
JK
X ,

2
A
�
JK. ñ

	
« Èñë@P ,

1∗
A
�
JK. ñ

	
«

�
IJ
ëðP

. Y
	
JêË @ , Q�
Ò

�
�»ð ñÓAg. , ñÓAg. , AJ
k. ñËñ

	
Jº

�
JË @ð

�
é�Y

	
JêÊË @Y

	
KA
	
K A
	
«ñK


�
éJ
Ê¿ ,(ZAK


	Q�

	
®Ë @)

�
éJ

�
®J
J.¢

�
JË @ ÐñÊªË@ Õæ�

�
¯

1∗

. Y
	
JêË @ , Q�
Ò

�
�»ð ñÓAg. ,ñÓAg. ,

�
éÓAªË@ A¾

	
JK
ñk. ø



X ú



k
.

�
é�PYÓ , ZAK


	Q�

	
®Ë @ Õæ�

�
¯

2

. Y
	
JêË @ , A

	
K AK
PAë , ÈA

�
JJ
» , ÕÎJ


	
K
�
éªÓAg. ,

�
HAJ


	
�AK
QË @ Õæ�

�
¯

3

guptarohit565@gmail.com : Èð


ñ�ÖÏ @

�
IkAJ. Ë @

∗

�
é�C

	
mÌ'@

AÓ
�
èXA« . AêË

�
é
�
®J

�
¯YË@ ÈñÊmÌ'@ XAm.

�'

 @ð ÕºË@ ZAK


	Q�

	
¯ É



KA�Ó

�
é�@PYË ú



ÎÓA¾

�
JË @

�
IJ
ëðP ÉK
ñm

�
�
' ù



ëð

�
èYK
Yg.

�
é
�
®K
Q£

�
IjJ. Ë @ @

	
Yë ÐY

�
®K


hQ��
�
®ÖÏ @ i. î

	
DË @

�
éJ
ËAª

	
¯ð

�
HA

	
KA¾Ó@



	á�
J.
�
K

�
IjJ. Ë @ @

	
Yë l .

�


'A
�
J
	
K . ÕºË@ A¾J


	
K A¾J
Ó

�
HC¾

�
�Ó ÉmÌ ÉÓA¾

�
JË @ð É

	
�A

	
®
�
JË @ H. A�k i. î

	
E Ð@Y

	
j
�
J�@ Õ

�
æK


�
�ðY

	
J� ú




	
¯

�
HAÒJ
�m.

Ì'@ ¼ñÊ�ð
�
éJ. Ê�

�
èQ»

�
é¢�@ñK.

�
é
�
¯A¢Ë@

�
é
	
�

	
®
	
j
	
JÓ

�
HAÒJ
�m.

Ì'@
�
I

�
�
�
�
�
� É

�
JÓ ÕºË@ ½J


	
K A¾J
Ó

�
HC¾

�
�Ó úÎ« I. Ê

	
ª
�
JÊË

�
éJ

�
K @
	
YË @

�
é
�
¯A¢Ë@ Õæ




�
¯ YK
Ym

�
�
' 	áÒ

	
�
�
J
�
K l .

�


'A
�
J
	
K 	á«

�
�J
J.¢

�
JË @ @

	
Yë Q

	
®�@ Y

�
¯ð . ú



ÎÓA¾

�
JË @

�
IJ
ëðP ÉK
ñm

�
�
' Ð@Y

	
j
�
J�AK. Yêm.

Ì'@ ú


ÍA« YªJ. Ë @ ø



XAg



@

�
HAÒJ
�j. ÊË ú



Î¾Ë@

�
I

�
�
�
�
�
�ÊË ú



æ
	
�QªË@ ©¢

�
®ÖÏ @ H. A�k 	á« C

	
�
	
¯ , XðYg CK. ú



ÍA« Yêk.

Q


�K. É

	
g@X Pñ�m× Õæ



�m.
Ì �

éJ

�
K @
	
YË @ AêË @ðXð

�
HAÒJ
�j. ÊË ú



Î¾Ë@

�
I

�
�
�
�
�
�ÊË ú



æ
	
�QªË@ ©¢

�
®ÖÏ @

	
àA

	
¯ ,

�
é
	
�

	
®
	
j
	
JÖÏ @

�
é
�
¯A¢Ë@ Yg

�
éËAg ú




	
¯ð .

�
éJ. Ê�

�
èQ» ©Ó É«A

	
®
�
J
�
K ú




�
æË @

�
é
�
¯A¢Ë@

�
é
	
�

	
®
	
j
	
JÓ

.
�
èPñ»

	
YÖÏ @

�
èQºÊË ú



æ�Y

	
JêË @ ú



æ
	
�QªË@ ©¢

�
®ÖÏ @ ÈXAªK
 , ÕºË@ A¾J


	
K A¾J
Ó ÈC

	
g 	áÓ èYK
Ym

�
�
' Õç

�
' AÒ» ,

�
éJ. Ê�

�
èQ» I. �.��.

�
é
�
¯A¢Ë@

�
é
	
�

	
®
	
j
	
JÓ

�
é
�
¯A£

	
à


@

�
IJ.

�
�
�
K YªJ. Ë @ ø



XAg



@ XðYg CK. ú



ÍA« Yêk.

Q


�K. É

	
g@X Õæ



�m.
Ì'@ AêºÊ

�
JÖß


	
à


@ 	áºÖß
 ú




�
æË @

�
é
�
¯A¢Ë@ Õæ




�
¯

	
àA

	
¯ , ½Ë

	
X úÍ@




�
é
	
¯A

	
�B


AK.

. Yêm.
Ì'@ Q



�K. É

	
g@X @Pñ�m×

	
àñºK
 AÓY

	
J« , AîE. A�k 	áºÖß
 Pñ»

	
YÖÏ @ Õæ



�m.
Ì'@

. ù





KAî

	
ECË@ Yêm.

Ì'@ Q


�K. , AJ
Ê¿

�
éJ. Ê�

�
èQ» ,ÉÓA¾

�
JÖÏ @

�
IJ
ëðP ÉK
ñm

�
�
' , ÕºË@ A¾J


	
K A¾J
Ó É¿ A

�
�Ó :

�
éË @YË@

�
HAÒÊ¾Ë@

. Yg. ñK
B : ÉK
ñÒ
�
JË @

. Èð


ñ�ÖÏ @

	
­Ë



ñÖÏ @ 	áÓ AîD

.
Ê£ 	áºÖß


�
éÓY

�
®ÖÏ @

�
é�@PYË@ l .

�


'A
�
J
	
JË

�
éÔ«@YË@

�
HA

	
KAJ
J. Ë @ ©J
Ô

g
.
:
�
HA

	
KAJ
J. Ë @ Q

	
¯ñ
�
K

	
àAJ
K.

:
�
H@P@Q

�
¯@

. lÌ'A�ÖÏ @ ú



	
¯ H. PA

	
�
�
� ÑîE
YË ��
Ë é

	
K


@
	
àñ

	
®Ë


ñÖÏ @ Q

�
®K
 : lÌ'A�ÖÏ @ H. PA

	
�
�
�

.
�
éªk. @QÖÏ @ YJ


�
¯

�
I��
Ë Aî

	
E


@ AÒ» ,øQ

	
k


@
�
éÊj. ÖÏ AêÖß
Y

�
®
�
K ð



@
�
é£ñ¢

	
jÖÏ @ Qå

�
�
	
� Õ

�
æK
 ÕË :

�
éJ

�
¯C

	
g


B@

�
é
�
®
	
¯ @ñÖÏ @

Kirkuk J. Sci. Vol. 19, Iss.4, p. 1-8, 2024


	Introduction:
	Material and Method:
	Scattering of Low Energy Particles i.e. S-Wave by Perfectly Rigid Sphere:
	Particle in A One-Dimensional Infinitely High Potential Box:

	Conclution:
	References

