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Abstract:

Based on the Dai-Laio and Powell symmetric methods, we developed
a new three — term conjugate gradient method for solving large-scale
unconstrained optimization problem. The suggested method satisfies both
the descent condition and the conjugacy condition. For uniformly convex
function, under standard assumption the global convergence of the
algorithm is proved. Finally, some numerical results of the proposed
method are given.
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1. Introduction

Conjugate Gradient (CG) method comprise a class of unconstrained
optimization algorithms characterized by low memory requirements and
strong global convergence properties [3] which made them popular for
engineers and mathematicians engaged in solving large-scale problems in
the following form:

minf (x), x eR" (2)
Where f:R" —Ris a smooth nonlinear function and its gradient is

available. The iterative formula of a CG method is given by

Xy =X +S, S =ad,, k=12,.., (2)
in which ¢, is a step-length to be computed by a line search procedure
and d, is the search direction defined by

dlz_gl1 dk+1 =—0\u +ﬂkdkl k=12,.., (3)
where g, =Vf(x,) and g, is a parameter called the conjugacy condition .

The step-length «, is usually chosen to satisfy certain line search
conditions [15].

For general nonlinear functions, different choices of g, lead to
different conjugate gradient methods. Well-known formulas for g, are
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called the Fletcher-Reeves (FR) [7], Hestenes -Stiefel (HS) [8], and
Polak-Ribiere (PR) [12]. are given by

2 . .
ﬂkFR _ ||gk+1|| ﬂkHS _ Y Vi ﬂkPR _ G ¥

||9k||2 de ¥y o]
where y, =g,,, -9, and | .| denotes to ¢, norm.

The line search in conjugate gradient algorithms is often based on the
standard Wolfe Conditions (WC) [16]:

f(xk +a,d )_ f(xk)gpakg:dk , (4)
9140 > 09} d,, ()
Where d, is a descent direction and 0<p<o<1. However, for some

conjugate gradient algorithms, a Stronger version of the Wolfe line search
Conditions (SWC) given by (4) and

‘ngdk‘S_OgIdk , (6)
Is needed to ensure the convergence and to enhance the stability.

The pure conjugacy condition is represented by[11] the form

dl:+1yk =0 (7)
for nonlinear conjugate gradient methods. The extension of the conjugacy
condition was studied by Perry [11]. He tried to accelerate the conjugate
gradient method by incorporating the second-order information into it.
Specifically, he used the secant condition

HiaYi =Sy (8)
g
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of quasi-Newton methods, where a symmetric matrix H,, is an

approximation to the inverse Hessian. For quasi-Newton methods, the
search direction d,,, can be calculated in the form

dk+l = _Hk+1gk+l (9)
By (8) and (9), the relation

dlLlyk = _(Hk+lgk+1)T Y = _g-kr+1(Hk+lyk) = _g:ﬂsk

Holds. By taking this relation into account, Perry replaced the conjugacy
condition (7) by the condition

dkT+1yk = _g-kr+1sk . (10)
Dai and Liao [5] generalized the condition (10) to the following

deaYi =195 (11)

where t>ois a scalar. The case t =0, (11) reduces to the usual conjugacy
condition (7). On the other hand, the case t=1, (11) becomes Perry’s
condition (10). To ensure that the search direction d, satisfies condition

(11), by substituting d, ., =-g,., + 8.d, into (11), they had

— OraYi + Beadi Vi = 19,45 -
This gives the Dai-Liao formula
DL _ g;—l(yk _tsk) (12)
k dy ¥,
We note that the case t =1 reduces to the Perry formula
ﬂP _ g:+l(yk _Sk)
Ay (13)
Furthermore, if t=o0, then B" reduces to the g™ . The approach of Dai
and Liao (DL) has been paid special attention to by many researches. In
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several efforts, modified secant equations have been applied to make
modifications on the DL method. It is remarkable that numerical
performance of the DL method is very dependent on the parameter t for
which there is no any optimal choice [2] .

This paper is organized as follows. In section 2 we briefly review the
Three-terms conjugate gradient methods. In section 3, the proposed
algorithm is stated. The properties and convergent results of the new
method are given in in Section 4. Numerical results and conclusion are
presented in Section 5 and in Section 6, respectively.

2. Three-terms conjugate gradient (CG) methods

Recently many researchers have been studied three- term conjugate
gradient methods. For example Narushima, Yab and Ford [10] have
proposed a wider class of three term conjugate gradient methods (called
3TCG) which always satisfy the sufficient descent condition. Shanno in
[14] used the well-known BFGS quasi-Newton method to obtain the
following three-term CG method.

2
ngyk ”yk” gIJrlSk g;—+lsk
g =0 + -1+ S, +
k+1 gk+l [ SE yk [ SE yk SI yk k SI yk yk (14)

Furthermore, Liu and Xu in [9] was generalized the Perry conjugate
gradient algorithm (13), the search directions were formulated as follows

2
s g:+lyk ”yk” g:+lsk g:+lsk
d =0, + -7, + === s, + y 15
“ “ [Ska [k Sgyk SIYk ‘ S;yk ‘ (15)

Where 7, is parameter, which is symmetric Perry three-terms conjugate

gradient methods. When z,s; y, >0, the search directions defined by (15)
satisfy the descent property

P ™
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dl-<|-+lgk+1 < 0
Or the sufficient descent property

d;.,0,.. < —c0||gk+1||2 , G, >0 (16)
Notice that if r, =1, then (15) reduces to the (14). It is remarkable that
there is no any optimal choice for r,, However different values used for
7, in [4], for example

;
= =~ Y«Y
r, =1, 7, =c, 22k

sksk

3. A modifying three-terms conjugate gradient (CG) method

The aim of this section is to develop a modified three-terms conjugate
gradient method named ( AKTCG say ) by using Powell Symmetric (PS)
method (15) and Dai and Liao (DL) CG method (3) and (12). consider the
search direction given by Dai and Liao

T T

yk gk+l _ Sk gk+l
T Sk t T

S Yk Sk Yk

5, S

T

K

DL _
dk+1 ==0nt

S (17)

Letting t ==~ in equation (17) we get

k
T STS ST

ySkTgk+l 5, — 2k kTgk+1 s, (18)
k Yk Sk Y SkYk

Now equating the equations (15) and (18) i.e

dk+1 :_gk+l+

dk+1 = dkP+S1 .
With simple algebra and with the change signal of the last termin d;°, we
get
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B S
‘ Sy Y, (19)

Substitute (19) in the equation (15) to obtain the new search direction

+ - y 20
“ SYe  (sTy ) 7 (20)
Note that, if line search is exact i.e g,.,s, =0 then the search direction

d AKTCG

AKTCG O Vi ”Sk”2 SI O Ue1S
d ==0yu t Sk —

reduces to the well-known Hestenes and Stiefel g™, furthermore if
9,.5 =0 and successive gradients are orthogonal i.e g,.,9, =0 then

.
d*™® reduces to the CD-Fletcher method defined by g° = g;*Tl—gk*l
k Ik

In the following we summarize the our AKTCG algorithm.
Algorithm (AKTCG)

Step (1):  Select a starting point x, edom f and £>0 , compute f, = f(x)
and g, = Vf (Xl). Select some positive values for 0< p <o <1. Set
number of iteration k=1 and d, =-g, .

Step (2):  Test for convergence . If |g,|. <&, then stop with x, is optimal ;

otherwise go to step (3).

Step (3):  Determine the step length «,, by using the Wolfe line search
conditions (4)-(5).

Step (4):  Update the variables as : X,,, =X, +a,d,. Compute f,, and g,,,.
Compute Y, =gy, — 0 and s, = X3 — X, .

Step (5):  Compute the search direction as: If y;s, =0 then d,,, =d/X™°

else dk+1 =0k -
Step (6): Set k=k+1 and go to step 2.

4. Convergence analysis

Assume the following.

w“‘ﬁ)uw&'%, . . . . . .
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1. The level set S={xeR": f(x)< f(x,)} is bounded, i.e. there exists
positive constant B >0 such that, forall xeS, ||x|<B.

2. In a neighborhood N of S the function f is continuously
differentiable and its gradient is Lipschitz continuous, i.e. there exists a
constant L > 0such that |Vf(x)-Vf(y) <L|x-y|, forall x,yeN.

Under these assumptions on f, there exists a constant T'>0 such that
[VE(x)<T, for all xeS. Observe that the assumption that the function f

Is bounded below is weaker than the usual assumption that the level set is
bounded. Although the search directions generated by (20) are always
descent directions, to ensure convergence of the algorithm we need to
constrain the choice of the step length «,. The following proposition

shows that the Wolfe line search always gives a lower bound for the step
length «,. Based on the above assumptions we shall show that our

method satisfies the conjugacy condition, the sufficient descent condition,
and globally convergent with Wolfe line search conditions. In the
following (theorems 1,2) we will prove that our algorithm satisfies the
sufficient descent condition and conjugacy condition.

Theorem(1): Suppose that the step-size «, satisfies the standard Wolfe
conditions, consider the search directions d, generated from (20) then the
search directions d,,, are conjugate for all k that is .

dl:—lyk = _Cog;-lsk
Where c, positive constant.

Proof:
NN . . . . . .
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d AKTCG

Yi O __Yngu +[

T S 2 S
ng+1yk _” k” gk 17k VoS, — gk;l Ve Vi
Sy Y (Sk Yk)

k Yk
2 T
T T ”Sk” Sk Gk gk 15k T
==Y G + Y Okss — T Y Yk
Sk Yk Sk Y«

HIAEIARN
- T gk+lsk
Sk Yk

By Lipschtz condition we have

Iou I +lyf (1+L)||S||

S¢ Y S Yo
Therefore d,,,y, =—¢,9,.,5, -

Theorem(2): Suppose that the step-size «, satisfies the standard Wolfe
conditions (WC), consider the search directions d, generated from (20)
then the search directions d,,, satisfies the sufficient descent condition

dl g, <—clg,|" , for all k.
Proof: The proof is by induction.

If k=1 = d, =-g, , ’ dTgl :_”91”2
know let s, g, <—c|g,| to proof for k+1, multiply (20) by g, to get

9I+1yk "Sk”2 gk+lsk gk+1 K T
de1Gis =9 + - S¢ 0. Yy O
k+1 k1 " kl” [Ska (S;yk)z k Ik+1 Skyk k Jk+1

oI5’ (0lss ) Joeal’

(SI Y )2 ||gk+l||2
2
__[1+|”Sk” Gy ]n ol

=9

|gk+l|| ( Sk Yk)

.»* "’"“‘%.
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By Couchy-Shwartiz inequality and Lipschitz condition we get

Isi [ (55 910’ . s low.alf _ Is, [ 1
lgeal Gry)® gl Gy )?  Gev)? L2

* Where c=1+i2>0 ,
L

Therefore dngk+l =—C HQM

Proposition 1 ([16,17]). Suppose that d, is a descent direction and that
the gradient Vf satisfies the Lipschitz condition [Vf(x)-Vf(x, )| < L|x—x|
for all x on the line segment connecting x, and x,,, , where L is a positive
constant. If the line search satisfies the Wolfe conditions (4) and (5), then

(L-0)|grdy|
k2o -
Ljd
Proposition 2 ([13]). Suppose that assumptions 1 and 2 hold. Consider
the algorithm (2) and (20), where d, is a descent direction and «, is
computed by the general Wolfe line search (4) and (5). Then

(21)

= (g7 d,
% Jof

< +00 , (22)

Proposition 3 ([17]). Suppose that assumptions 1 and 2 hold, and
consider any conjugate gradient algorithm (2), where d, is a descent

direction and «, is obtained by the strong Wolfe line search (4) and (6).If

1
=0
2T 23)
}“‘&Y’O‘,‘“% 3 . . . . . d
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Then lim  inf [g,]=0. (24)

For uniformly convex functions, we can prove that our (AKTCG) is
globally convergent (theorem 3) .

Theorem (3): Suppose that assumptions 1 and 2 hold, and consider the
algorithm (2) and (20), where d, is a descent direction and «, Iis

computed by the strong Wolfe line search (4) and (6). Suppose that f is
a uniformly convex function on S, i.e. there exists a constant x>0 such
that

(W (x)-VE(y)) (x—y)= ufx - VHZ forall x,yeN; then lim lo.|=0.
Proof: The prove is by Contradiction.

T
gk+lsk‘

graYe| s
< + .

T 2 T
_‘gk+1yk _"Sk” 9k+13k|
T 2 - T
‘ Sk Yk (SI yk) ‘ ‘Sk yk‘ ‘SI Yy

18] =

Since f is uniformly convex then sl y, > us,| where x>0 .

l9cal Iyl Il Il Tlgical
2 + 2 4
7 s

~B <

9cal Vel , 19l

< | 2 2
dsl ]

By assumption 2 and Lipschitz continuity, we have |y,| < L|s,|.we get

g
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r T 111
D (e =
S )

gk+1 k‘ ||gk+l|| "Sk”

| k|_|gk+lsk|_
‘ Sy Vi ‘ ‘Sk yk‘ ﬂ||3k|| ﬂ”Sk ”
cldeal <lgcal +1Bd s+ Iyl

L
crer{Ee L)L g [ J s,
R L

SF+F(£+£J+F—L = <‘U +2Lﬂ+1)

2 2

Hopt) w H
s
I~ T
Taklng the sum for both sides and considering |d|=]g,| >T

Hde <22 then

Contradiction we have lim inf |g,|=0

5. Numerical results and comparisons

In this section, we report some numerical results obtained with an
implementation of the AKTCG algorithm. The code of the AKTCG

Algorithm is written in Fortran and compiled with 77 (default compiler
settings), taken from N. Andrei web page. We selected 80

Large-scale unconstrained optimization test functions in the generalized
or extended form presented in [1]. For each test

ST
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St

function, we undertook ten numerical experiments with the number of
variables increasing as n=100, 200,..., 1000.

The algorithm implements the Wolfe line search conditions with

p=00001, 0=09 and the same stopping criterion |g,| <107,

where |||, is the maximum absolute component of a vector. In all

the algorithms we considered in this numerical study the maximum
number of iterations is limited to 1000.

The comparisons of algorithms are given in the following context. Let

fAC and £ be the optimal values found by
ALG1 and ALG2, for problem i = , 800, respectively. We say that,
in the particular problem i, the performance of ALG1

was better than the performance of ALG2 if
f_ALGl_f_ALGZ‘<10—3

and the number of iterations (iter), or the number of function-gradient
evaluations (fg) or the CPU time of ALG1 was less than
the number of iterations, or the number of function-gradient evaluations,
or the CPU time corresponding to ALG2 respectively.

Figures (1), (2) and (3) shows the Dolan and Moré [6] (iterations
(iter), function-gradient evaluations(fg) and CPU time) performance
profile of AKTCG versus Dai-Liao(DL) and Powell symmetric (PS)
conjugate gradient algorithms. In a performance profile plot, the top
curve corresponds to the method that solved the most problems in a( iter)
or (fg) or CPU time that was within a given factor of the best(( iter) or
(fg) or CPU time). The percentage of the test problems for which a
method is the fastest is given on the left axis(p-axis) of the plot. The right
side(x-axis) of the plot gives the percentage of the test problems that were
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successfully solved by these algorithms, respectively. The right is a
measure of the robustness of an algorithm. When comparing AKTCG with
the DL and PS subject (iter, fg, CPU) as in figures(1), (2) and (3) we see
that AKTCG is the top performer.

Performance based on number of iteration
T T T T T

09 T T T T T T T TS TR mr e e
f'/ p—
[
0.8 ;"f
¥
"l
= 07} !{'
06 i
0-5 _i - AKFCG
f ——— DL
ot , , ——--PS
0 01 02 03 04 05 06 07 08 09 1

Figure (1)Performance based on iteration

Perfaormance based on number offunctiongradien evaluations

=y

e T T e T T e T L |
0sl n:.--_-_—___-———-———-———-———-———:
-
08} B
A
o7t 4 |
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o U'G’_fl'_l B
5
051 i
&
I
04 -.'- 4
oy
03k —-=-- AKTCG
——==-DL
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0 01 02 0.3 0.4 045 0.6 07 0.8 0.9 1

Figure (2) Performance based on Function gradient evaluation
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Performance based on Time
1
f"':,_,__———-p—-—t——————————p———:i.—.'-:
fr="
0951 !}f E
Fr
I

09 ! B
o 085 ,i —
0.8 —I B

0.75 === AKTCG

——==-DL
- FiS
0_? 1 1 1 1 1 1 1
0 01 02 0.3 04 05 0.6 07 0.8 09 1
X

Figure (3)Performance based on Time

Table (1) shows the comparison of the algorithms AKTCG, PS and DL
with respect to the total number of iterations (iter) , toal number of

function gradient evaluations (fg) and total time for solving 800 test

problems.

Algorithm iter fg time
AKTCG 134276 226656 2342 s
PS 134652 228412 2894 s
DL 137538 231532 3346s

6. Conclusion
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In this paper, we have proposed a three —term conjugate gradient
method based on the DL and PS methods which generates sufficient
descent and conjugate directions. Our method have been shown to
converge globally. In numerical experiments, we have confirmed the
effectiveness of the proposed method by using performance profile.
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