Open Access

Jordan Homomorphism on ΓM- Modules

Sind K. Ibrahim

University Of Anbar - College of Science

ARTICLE INFO

Received: 19 / 5 /2022 Accepted: 28 / 5 /2022 Available online: 19/7/2022 DOI:10.37652/juaps.2016.132709

Keywords: Jordan Homomorphism, ΓM- Modules.

ABSTRACT

The aim object of this paper is present and study the concepts of homomorphism and Jordan homomorphism on ΓM -module and prove that every Jordan homomorphism from Γ -ring M Into prime ΓM -module X is either a homomorphism from M into X or anti-homomorphism from M into X.

Introduction

The definition of Γ -ring presented by Nobusawa [1] and generalization by Barnes[2].Let M and Γ be two additive abelian groups. Suppose that there is a mapping from M× Γ ×M→M (the image of (a, α ,b) being denoted by a α b, a,b \in M and $\alpha \in \Gamma$) satisfying for all a,b,c \in M and α , $\beta \in \Gamma$:

i) $(a+b)\alpha c = a\alpha c + b\alpha c$ $a(\alpha+\beta)c = a\alpha c + a\beta c$ $a\alpha(b+c) = a\alpha b + a\alpha c$ ii) $(a\alpha b)\beta c = a\alpha(b\beta c)$

then M is called a Γ -ring. This definition is due to Barnes [2], every ring is Γ -ring. If the following condition holds for a Γ -ring M then M is called a prime Γ -ring [3], a Γ M Γ b =0 then a=0 or b=0, a,b \in M. M is called 2-torsion free if 2a=0 implies a=0 for all a \in M.

Let M be a Γ -ring and X be an additive abelian group X is a left Γ M- module if there exists a mapping $M \times \Gamma \times X \rightarrow X$ (sending (m, α, x) into m αx where $m \in M$, $\alpha, \beta \in \Gamma$ and $x \in X$) satisfying for all $m, m_1, m_2 \in M, \alpha, \beta \in \Gamma$ and $x, x_1, x_2 \in X$:[4] i) $(m_1+m_2) \alpha x = m_1 \alpha x + m_2 \alpha x$ ii) $m(\alpha + \beta) x = m\alpha x + m \beta x$ iii) $m(\alpha + (x_1+x_2)) = m\alpha x_1 + m\alpha x_2$

iv) $(m_1 \alpha m_2) \beta x = m_1 \alpha (m_2 \beta x)$

.E-mail address:

X is called a right ΓM - module if there exists a mapping $X \times \Gamma \times M \rightarrow X$, X is called ΓM - module if X is both left and right ΓM - module, X is called a left prime (right prime) if $a\Gamma M\Gamma b = 0$ then a=0 or b=0, $a \in M, b \in X$ ($a \in X, b \in M$) respectively and X is prime if its both left and right prime. X is called 2-torsion free if 2x=0 imples x=0 for all $x \in X$. [5]

In this paper the research extend the results of Herstien [6],[7] to Γ M- module by introduce the concepts of homomorphism and Jordan homomorphism on Γ M-module and prove that every Jordan homomorphism from Γ -ring M into prime Γ M-module X is either a homomorphism from M into X or anti-homomorphism from M into X.

1. Homomorphism on *FM*-module:

In this section the research introduce the concepts of homomorphism and Jordan homomorphism on Γ M-module. We begin by the following definition:

Definition 1.1:

Let M be Γ -ring and X be Γ M-module $\theta: M \rightarrow X$ be an additive map then θ is called homomorphism on X if

 $\theta(a\alpha b) = \theta(a)\alpha\theta(b)$ for all $a, b \in M$ and $\alpha \in \Gamma$.

Now we introduce the definition of Jordan homomorphism on $\Gamma M\mbox{-module}$:

Definition 1.2:

Let θ be an additive mapping of Γ -ring M into Γ Mmodule X then θ is called Jordan homomorphism if

 $\theta(a\alpha a) = \theta(a)\alpha\theta(a)$ for all $a \in M$ and $\alpha \in \Gamma$.

Definition 1.3:

Let θ be an additive mapping of Γ -ring M into Γ Mmodule X then θ is called

^{*} Corresponding author at: University Of Anbar – College of Science

 $\theta(a\alpha b\beta a) = \theta(a)\alpha\theta(b)\beta\theta(a)$ Jordan triple homomorphism if

for all $a, b \in M$ and $\alpha, \beta \in \Gamma$.

Definition 1.4:

Let θ be an additive mapping of Γ -ring M into Γ Mmodule X then θ is called anti- homomorphism if

 $\theta(a\alpha b) = \theta(b)\alpha\theta(a)$ for all $a, b \in M$ and $\alpha \in \Gamma$. In the following lemma we present the properties of

In the following lemma we present the properties of homomorphism on Γ M-module

Lemma 1:

Let θ be a Jordan homomorphism of Γ -ring M into Γ M-module X, then for all a,b,c \in M and $\alpha, \beta \in \Gamma$. i) $\theta(a\alpha b + b\alpha a) = \theta(a)\alpha\theta(b) + \theta(b)\alpha\theta(a)$ ii) $\theta(a\alpha b\beta a + a\alpha b\beta a) = \theta(a)\alpha \theta(b)\beta \theta(a)$ $+\theta(a)\beta\theta(b)\alpha\theta(a)$ iii) θ (a α b α a) = θ (a) α θ (b) α θ (a) iv) $\theta(a\alpha b\alpha c + c\alpha b\alpha a) = \theta(a)\alpha \theta(b)\alpha \theta(c)$ $+\theta(c)\alpha \theta(b)\alpha \theta(a)$ v) $\theta(a\alpha b\beta c+c\alpha b\beta a) = \theta(a)\alpha \theta(b)\beta \theta(c)$ $+\theta(c)\beta\theta(b)\alpha\theta(a)$ proof: i) $\theta((a+b)\alpha(a+b)) = \theta(a+b)\alpha\theta(a+b)$ $\theta(a) \alpha \theta(a)$ $+\theta(a) \alpha \theta(b) + \theta(b) \alpha \theta(a) + \theta(b) \alpha \theta(b)$...(1) On the other hand θ ((a+b) α (a+b))= θ (a α a+a α b+b α a+b α b) $\theta(a) \alpha \theta(a) + \theta(b) \alpha \theta(b) + \theta(c)$ _ $a \alpha b + b \alpha a$...(2) Compare (1) and (2) we get $\theta(a\alpha b + b\alpha a) = \theta(a)\alpha\theta(b) + \theta(b)\alpha\theta(a)$ ii) Replace a β b+b β a for b in (1) we get θ (a α (a β b+b β a)+ $(a \beta b+b \beta a) \alpha a)$ $=\theta(a)\alpha \theta(a\beta b+b\beta a) + \theta(a\beta b+b\beta a)\alpha \theta(a)$ $= \theta(a) \alpha (\theta(a) \beta \theta(b) + \theta(b) \beta \theta(a)) + (\theta(a) \beta)$ θ (b)+ θ (b) $\beta \theta$ (a)) $\alpha \theta$ (a) On the other hand θ (a α (a β b+b β a) $(a \beta b+b \beta a) \alpha a)$ + $= \theta (a \alpha a \beta b + a \alpha b \beta a + a \beta b \alpha a + b \beta a \alpha a)$ $=\theta(a) \alpha \theta(a) \beta \theta(b) + \theta(b) \beta \theta(a) \alpha \theta(a) +$ θ (a α b β a+a β b α a) Compare (1) and (2) we get θ (a α b β a+ $a \alpha b \beta a$ $=\theta$ a) $\alpha \theta$ (b) $\beta \theta$ (a) $+\theta$ (a) $\beta \theta$ (b) $\alpha \theta$ (a)

iii) Replace α for β in (ii) and since X is 2-torsion free we get the require result. iv) Replacing a+c for a in (iii) we get: θ ((a+c) α b α (a+c)) = θ (a+c) α θ (b) α θ (a+c) θ (a) $\alpha \theta$ (b) $\alpha \theta$ (a)+ θ (a) $\alpha \theta$ (b) $\alpha \theta$ (c)+ θ (c) $\alpha \theta$ (b) $\alpha \theta$ (a)+ $\theta(c) \alpha \theta(b) \alpha \theta(c)$...(1) On the other hand θ ((a+c) α b α (a+c)) $= \theta (a \alpha b \alpha a + a \alpha b \alpha c + c \alpha b \alpha a + c \alpha b \alpha c)$ $=\theta(a)\alpha \theta(b)\alpha \theta(a)+\theta$ (c) $\alpha \theta$ (b) $\alpha \theta$ (c)+ θ (a α b α c+c α b α a)...(2) Compare (1) and (2) we get θ (a α b α c+ c α b α a) = θ (a) α θ (b) α θ (c) $+\theta(c)\alpha \theta(b)\alpha \theta(a)$ v) Replace a+c for a in definition 1.3 θ ((a+c) α b β (a+c)) = θ (a+c) α θ (b) β θ (a+c) = θ (a) $\alpha \theta$ (b) $\beta \theta$ (a) + θ (a) $\alpha \theta$ (b) $\beta \theta$ (c)+ θ (c) $\alpha \theta$ (b) $\beta \theta$ (c) $+\theta(c)$ $\alpha \theta$ (b) $\beta \theta$ (c) ...(1) On the other hand θ ((a+c) α b β (a+c))= θ (a α b β a+ $a \alpha b \beta c + c \alpha b \beta a + c \alpha b \beta c$) $\alpha \theta$ (b) $\beta \theta$ (a)+ θ (c) $\alpha \theta$ (b) $\beta \theta$ = θ (a) (c)+ θ (a α b β c+c α b β a) ...(2) Compare (1) and (2) we get θ (a) $\alpha \theta$ (b) $\beta \theta$ (c) θ (a α b β c+c α b β a) = $+\theta(c)\alpha \theta(b)\beta \theta(c)$ **Definition 1.5**: Let θ be Jordan homomorphism of Γ -ring M into Γ M-module X then we define $\psi: M \times \Gamma \times M \to X$ by:

$$\Psi(a,b)_{\alpha} = \theta(a \alpha b) - \theta(a) \alpha \theta(b)$$
, for all $a, b \in M$ and $\alpha \in \Gamma$.

In the following lemma the research present the properties of $\psi(a,b)_{\alpha}$

Lemma 2 :

If θ be Jordan homomorphism of Γ -ring M into Γ Mmodule X then for all a,b,c \in M and α , $\beta \in \Gamma$:

i) $\psi(a+b,c)_{\alpha} = \psi(a,c)_{\alpha} + \psi(b,c)_{\alpha}$ ii) $\psi(a,b+c)_{\alpha} = \psi(a,b)_{\alpha} + \psi(a,c)_{\alpha}$ iii) $\psi(a,b)_{\alpha+\beta} = \psi(a,b)_{\alpha} + \psi(a,b)_{\beta}$

Proof:

i) $\psi(a+b,c)_{\alpha} = \theta((a+b)\alpha c) - \theta(a+b)\alpha \theta(c)$ = $\theta(a\alpha c + b\alpha c) - \theta(a) \alpha \theta(c) - \theta(b)$ $\alpha \theta(c)$ = $\theta(a\alpha c) - \theta(a) \alpha \theta(c) + \theta(b\alpha c) \theta$ (b) $\alpha \theta$ (c) $= \psi(a,c)_{\alpha} + \psi(b,c)_{\alpha}$ ii) $\psi(a, b+c)_{\alpha} = \theta(a \alpha (b+c)) - \theta(a) \alpha \theta(b+c)$ = $\theta(a\alpha b + a\alpha c)$ - $\theta(a) \alpha \theta(b)$ - $\theta(a) \alpha \theta(c)$ = $\theta(a\alpha b)$ - $\theta(a) \alpha \theta(b) + \theta(a\alpha c)$ - $\theta(a) \alpha \theta(c)$ $= \psi(a,b)_{\alpha} + \psi(a,c)_{\alpha}$ iii) $\psi(a,b)_{\alpha+\beta} = \theta(a(\alpha+\beta)b) - \theta(a)(\alpha+\beta)\theta(b)$ θ (a α b+a β b) - θ (a) α θ (b)-= θ (a) $\beta \theta$ (b) = $\theta(a \alpha b)$ - $\theta(a) \alpha \theta(b)$ + $\theta(a \beta b)$ - θ (a) $\beta \theta$ (b) $= \psi(a,b)_{\alpha} + \psi(a,b)_{\beta}$ Not that θ is homomorphism from Γ -ring M into Γ M-

Not that θ is noncomprism from 1-ring M into 1 Mmodule X if and only if $\psi(a,b)_{\alpha} = 0$ for all $a,b \in M$ and $\alpha \in \Gamma$.

Now, we present the following lemma:

Lemma 3:

Let θ be a Jordan homomorphism of 2-torsion free Γ -ring M into 2-torsion free Γ M-module X then for all $a,b,m \in M$ and $\alpha, \beta \in \Gamma$.

i) $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(b,a)_{\alpha} + \psi(b,a)_{\alpha} \beta \theta(m) \beta \psi(a,b) = 0$

$$\psi(b,a)_{\alpha} \not p \ \theta(\mathbf{m}) \not p \ \psi(a,b)_{\alpha} = 0$$

ii)
$$\psi(a,b)_{\alpha} \alpha \theta(m) \alpha \psi(b,a)_{\alpha} +$$

 $\psi(b,a)_{\alpha} \alpha \theta(\mathbf{m}) \alpha \psi(a,b)_{\alpha} = 0$

iii)
$$\psi(a,b)_{\beta} \alpha \theta(m) \alpha \psi(b,a)_{\beta} +$$

 $\psi(b,a)_{\beta} \alpha \theta(\mathbf{m}) \alpha \psi(b,a)_{\beta} = 0$

Proof :

Let $w = a \alpha b \beta m \beta b \alpha a + b \alpha a \beta m \beta a \alpha b$ Since θ is a Jordan homomorphism, then $\theta(w) = \theta(a \alpha b \beta m \beta b \alpha a + b \alpha a \beta m \beta a \alpha b)$ $= \theta(a) \qquad \alpha \theta(b \beta m \beta b) \alpha \theta(a) + \theta(b) \alpha \theta(a \beta m \beta a) \alpha \theta(b)$ $= \theta(a) \qquad \alpha \theta(b \beta m \beta b) \alpha \theta(a) + \theta(b) \alpha \theta(a) \beta \theta(m)$

 $\beta \theta$ (a) $\alpha \theta$ (b) ...(1)

On the other hand θ (w) = θ ((a α b) β m β (b α a)+ (b α a) β m β (a α b)) θ (a α b) β θ (m) β θ (b α a)+ θ (b α a) β θ (m) β θ (a α b) $= \theta(a\alpha b)\beta \theta(m)\beta(\theta(a)\alpha \theta(b) +$ θ (b) $\alpha \theta$ (a)- $\theta($ $a\alpha b))+(-\theta (a\alpha b)+$ θ (a) $\alpha \theta$ (b)+ θ (b) $\alpha \theta$ (a)) $\beta \theta$ (m) $\beta \theta$ (a α b) = $-\theta(a\alpha b)\beta \theta(m)\beta(\theta(a\alpha b) - \theta(a)\alpha \theta(b))$ - θ (a α b) β θ (m) β (θ (a α b)- θ (b) $\alpha \theta$ (a))+ θ (a) $\alpha \theta$ (b) $\beta \theta$ (m) $\beta \theta$ (a α b)+ θ (b) $\alpha \theta$ (a) $\beta \theta$ (m) $\beta \theta$ (a α b) ...(2) By comparing (1) and (2), we get: 0 = $-\theta(a\alpha b)\beta \theta(m)\beta \psi(a,b)_{\alpha}$ - θ (a α b) β θ (m) β ψ (b,a)_{α} + θ (a) $\alpha \theta$ (b) $\beta \theta$ (m) β θ (a α b)+ θ (b) $\alpha \theta$ (a) $\beta \theta$ (m) $\beta \theta$ (a α b)- θ (a) $\alpha \theta$ (b) $\beta \theta$ (m) $\beta \theta$ (b) $\alpha \theta$ (a)- θ (b) α θ (a) $\beta \theta$ (m) $\beta \theta$ (a) $\alpha \theta$ (b) =- $\theta(a\alpha b)\beta \theta(m)\beta \psi(a,b)_{\alpha}$ - θ (a α b) $\beta \theta$ (m) $\beta \psi(b,a)_{\alpha}$ + θ (a) $\alpha \ \theta$ (b) $\beta \ \theta$ (m) $\beta \ \psi(b,a)_{\alpha} + \theta$ (b) $\alpha \ \theta$ (a) $\beta \ \theta$ (m) β $\psi(a,b)_{\alpha}$ = -($\psi(a,b)_{\alpha} - \theta(b) \alpha \theta(a)$) $\beta \theta(m) \beta \psi(a,b)_{\alpha}$ -

 $(\psi(a,b)_{\alpha} - \theta(a) \alpha \ \theta \ (b)) \theta(a) \ \alpha \ \theta(b)$

Thus we have:

 $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(b,a)_{\alpha} +$

 $\psi(b,a)_{\alpha} \beta \theta(m) \beta \psi(a,b)_{\alpha} = 0$

ii) Replace β by α in (i) and proceeding in the same way as in the proof of (i) by the similar arguments, we get (ii).

iii) Interchanging α and β in (i), we get (iii).

The research needs the following lemma:

Lemma 4:[5]

Let M be Γ -ring and X a 2-tortion free semiprime Γ M-module and a,b the elements of X. Then the following conditions are equivalent:

i) aΓMΓb=(0) ii) bΓMΓa=(0)

iii) $a\Gamma M \Gamma b + b\Gamma M \Gamma a = (0)$

If one of these conditions are fulfilled then $a\Gamma b=b\Gamma a=(0)$.

Lemma 5:

Let θ be a Jordan homomorphism of 2-torsion free Γ -ring M into 2-torsion free Γ M-module X then for all $a,b,m \in M$ and $\alpha, \beta \in \Gamma$.

i) $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(b,a)_{\alpha} =$	$\psi(b,a)_{\alpha}$
β (m) $\beta \psi(a,b)_{\alpha} = 0$	
ii) $\psi(a,b)_{\alpha} \alpha \theta(m) \alpha \psi(b,a)_{\alpha} =$	$\psi(b,a)_{\alpha}$
$\alpha \ \theta(\mathbf{m}) \alpha \ \psi(a,b)_{\alpha} = 0$	
iii) $\psi(a,b)_{\beta} \alpha \theta(m) \alpha \psi(b,a)_{\beta} =$	$\psi(b,a)_{\beta}$
$\alpha \theta(\mathbf{m}) \alpha \psi(b,a)_{\beta} = 0$	
Proof: (i) By lemma 3 (i) we get: $\psi(a,b) = \beta \theta(m) \beta \psi(b,a) + \phi(b,a)$	
$\psi(b,a) = \beta \theta(m) \beta \psi(a,b) = 0$	
By lemma 4 we get:	
$\psi(a,b)_{\alpha} \beta \theta(\mathbf{m}) \beta \psi(b,a)_{\alpha} =$	
$\psi(b,a)_{\alpha} \beta \theta(m) \beta \psi(a,b)_{\alpha} = 0$	
ii) By lemma 3 (ii) we get:	
$\psi(a,b)_{\alpha} \alpha \theta(\mathbf{m}) \alpha \psi(b,a)_{\alpha} +$	
$\psi(b,a)_{\alpha} \alpha \theta(\mathbf{m}) \alpha \psi(a,b)_{\alpha} = 0$	
By lemma 4 we get:	
$\psi(a,b)_{\alpha} \alpha \theta(\mathbf{m}) \alpha \psi(b,a)_{\alpha} =$	
$\psi(b,a)_{\alpha} \alpha \theta(\mathbf{m}) \alpha \psi(a,b)_{\alpha} = 0$	
iii) By lemma 3 (iii) we get:	
$\psi(a,b)_{\beta} \alpha \theta(\mathbf{m}) \alpha \psi(b,a)_{\beta} +$	
$\psi(b,a)_{\beta} \alpha \theta(\mathbf{m}) \alpha \psi(b,a)_{\beta} = 0$	
By lemma 4 we get:	
$\psi(a,b)_{\beta} \alpha \theta(\mathbf{m}) \alpha \psi(b,a)_{\beta} =$	
$\psi(b,a)_{\beta} \alpha \theta(\mathbf{m}) \alpha \psi(b,a)_{\beta} = 0$	
2) The Main Results:	

In this section the research introduce the main results and we begin by the following theorem:

Theorem 6:

Let θ be a Jordan homomorphism from Γ -ring M into prime Γ M-module X then for all a,b,c,d,m \in M and α , $\beta \in \Gamma$:

i) $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(d,c)_{\alpha} = 0$ ii) $\psi(a,b)_{\alpha} \alpha \theta(m) \alpha \psi(d,c)_{\alpha} = 0$ iii) $\psi(a,b)_{\beta} \alpha \theta(m) \alpha \psi(d,c)_{\beta} = 0$

Proof: Replace a+c for a in lemma 5(i) $\psi(a+c,b)_{\alpha} \beta \theta(m) \beta \psi(b,a+c)_{\alpha} = 0$

 $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(b,a)_{\alpha} +$ $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(b,c)_{\alpha} +$ $\psi(c,b)_{\alpha} \beta \theta(m) \beta \psi(b,a)_{\alpha} +$ $\psi(c,b)_{\alpha} \beta \theta(m) \beta \psi(b,c)_{\alpha} = 0$ By lemma 5 $\psi(a,b)_{\alpha} \beta \theta(\mathbf{m}) \beta \psi(b,c)_{\alpha} +$ $\psi(c,b)_{\alpha} \beta \theta(m) \beta \psi(b,a)_{\alpha} = 0$ Therefore, we get: $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(b,c)_{\alpha} \beta m \beta \psi(a,b)_{\alpha} \beta \theta(m)$ $\beta \psi(b,c)_{\alpha} = 0$ $\psi(a,b)_{\alpha} \beta \theta(\mathbf{m}) \beta \psi(b,c)_{\alpha} \beta \mathbf{m} \beta \psi(c,b)_{\alpha} \beta \theta(\mathbf{m})$ $\beta \psi(b,a)_{\alpha} = 0$ Hence, by the primness of X: $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(b,c)_{\alpha} = 0$...(1) Now, replacing b+d for b in lemma 5(i) $\psi(a, b+d)_{\alpha} \beta \theta(m) \beta \psi(b+d, a)_{\alpha} = 0$ $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(b,a)_{\alpha} +$ $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(d,a)_{\alpha}$ + $\psi(a,d)_{\alpha} \beta \theta(m) \beta \psi(b,a)_{\alpha} +$ $\psi(a,d)_{\alpha} \beta \theta(m) \beta \psi(d,a)_{\alpha} = 0$ By lemma 5 $\psi(a,b)_{a} \beta \theta(\mathbf{m}) \beta \psi(d,a)_{a} +$ $\psi(a,d)_{\alpha} \beta \theta(m) \beta \psi(b,a)_{\alpha} = 0$ Then the research get $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(d,a)_{\alpha} \beta \theta(m) \beta$ $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(d,a)_{\alpha}$ $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(d,a)_{\alpha} \beta \theta(m) \beta \psi(a,d)_{\alpha} \beta$ θ (m) $\beta \psi(b,a)_{\alpha} = 0$ Since X is prime Γ M-module, then $\psi(a,b)_{\alpha} \beta \theta(\mathbf{m}) \beta \psi(d,a)_{\alpha} = 0$...(2) Thus $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(b+d,a+c)_{\alpha} = 0$ $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(b,a)_{\alpha} +$ $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(b,c)_{\alpha} +$ $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(d,a)_{\alpha} +$ $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(d,c)_{\alpha} = 0$

By (1) and (2) and lemma 5(i) the research get $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(d,c)_{\alpha} = 0$ ii) Proceeding in the same way as before by similar replacements in lemma 5(ii), the research obtains (ii). iii) Finally, replacing $\alpha + \beta$ for α in (ii), the research get : $\psi(a,b)_{\alpha+\beta} \beta \theta(\mathbf{m}) \beta \psi(d,c)_{\alpha+\beta} = 0$ $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(d,c)_{\alpha} +$ $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(d,c)_{\beta} +$ $\psi(a,b)_{\beta} \beta \theta(m) \beta \psi(d,c)_{\alpha} +$

 $\psi(a,b)_{\beta} \beta \theta(m) \beta \psi(d,c)_{\beta} = 0$

By (i) and (ii) the research get $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(d,c)_{\beta} +$

 $\psi(a,b)_{\theta} \beta \theta(m) \beta \psi(d,c)_{\alpha} = 0$

$$\psi(a,b)_{\beta} p \theta(b)$$

Therefore

 $\psi(a,b)_{\alpha} \beta \theta(m) \beta \psi(d,c)_{\beta} \alpha$

$$\theta(\mathbf{m}) \alpha \psi(a,b)_{\alpha} \beta \theta(\mathbf{m}) \beta \psi(d,a)$$

 $\theta(\mathbf{m}) \alpha \psi(a,b)_{\alpha} \beta \theta(\mathbf{m}) \beta \psi(d,c)_{\beta}$ =- $\psi(a,b)_{\alpha} \beta \theta(\mathbf{m}) \beta \psi(d,c)_{\beta} \alpha \theta(\mathbf{m}) \quad \alpha \psi(a,b)_{\beta}$

 $\beta \theta(\mathbf{m}) \beta \psi(d,c)_{\alpha} = 0$

Since X is prime Γ M-module, then

 $\psi(a,b)_{\beta} \alpha \theta(m) \alpha \psi(d,c)_{\beta} = 0$

Now, the research able to prove the main result in this paper.

Theorem 7:

Every Jordan homomorphism from Γ-ring M into prime ITM-module X is either a homomorphism from M into X or anti-homomorphism from M into X. **Proof:**

Let θ be Jordan homomorphism of Γ -ring M into prime Γ M-module X. Since X is prime therefore by theorem 6 (i) , $\psi(a,b)_{\alpha} = 0$ or $\psi(d,c)_{\alpha} = 0$ for all a,b,c,d \in M and $\alpha \in \Gamma$.

If $\psi(d,c)_{\alpha} \neq 0$ for all $c,d \in M$ and $\alpha \in \Gamma$ then $\psi(a,b)_{\alpha} = 0$ for all $a,b \in M$ and $\alpha \in \Gamma$ and hence θ is homomorphism of Γ -ring M into prime Γ M-module X.

But if $\psi(d,c)_{\alpha} = 0$ for all $c,d \in M$ and $\alpha \in \Gamma$ then θ is anti-homomorphism from M into X.

References

1)N.Nobusawa.(1964).On a generalization of the ring theory. Osaka J. Math., Vol. 1, pp. 81-89.

2)W.E.Barnes.(1966).On the Γ-rings of Nobusawa. Pacific J.Math. Vol. 18, pp. 411-422.

3) S.Kyuno.(1978).On prime gamma rings.pasific J.Math.Vol.75,pp.185-190.

A.K.Halder.(2009).Jordan 4) A.C.Paul and left ΓM -Modules. J. of derivations of two torsion free Physical Sciences, Vol. 13, pp. 13-19.

5) S.M.Salih.(to appear).Orthogonal Derivations and Orthogonal Generalized Derivations on ΓM-Modules.

6)H.Herstien.(1956). Jordan homomorphism. Trans.Amer. Math.Soc., Vol.81, pp. 331-351.

7)H.Herstien.(1969).Topic in ring theory.Univ. of Chicago press.

ΓM -تشاكل جوردان للمقاسات من النمط

سند خليل ابراهيم

E.mail:

الخلاصة

الهدف الاساسي من العمل تقديم ودراست المفاهيم التالية التشاكل وتشاكل جوردان على المقاسات X 🛛 من النمط– ΓM وقد أثبتنا أن كل تشاكل . X جوردان من الحلقة M من النمط– Γ الى المقاس X من النمط– M هو تشاكل من M الى X .