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Abstract 

In this paper, the Artificial Neural Network (ANN) is trained on the patterns of the normal 

component to tangential component ratios at the time of slippage occurrence, so that it can be able to 

distinguish the slippage occurrence under different type of load (quasi-static and dynamic loads), and then 

generates a feedback signal used as an input signal to run the actuator. This process is executed without the 

need for any information about the characteristics of the grasped object, such as weight, surface texture, 

shape, coefficient of the friction and the type of the load exerted on the grasped object. For fulfillment this 

approach, a new fingertip design has been proposed in order to detect the slippage in multi-direction 

between the grasped object and the artificial fingertips. This design is composed of two under-actuated 

fingers with an actuation system which includes flexible parts (compressive springs). These springs operate 

as a compensator for the grasping force at the time of slippage occurrence in spite of the actuator is in 

stopped situation. The contact force component ratios can be calculated via a conventional sensor 

(Flexiforce sensor) after processed the force data using Matlab/Simulink program through a specific 

mathematical model which is derived according to the mechanism of the artificial finger. 

Key words: Slippage detection, Neural network algorithm, Artificial hand, Normal and Tangential force, 

Tactile sensors. 
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1. Introduction  

The interest of tactile sensing has been increased in the field of robotics. It allows 

for the robots to interact with an environment physically and adjust it by improving the 

essential capabilities. These capabilities are represented by touching, collisions and 

detecting slippage. Advanced capabilities are represented by manipulation of object and 
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grasping (Fernandez et.al., 2014). One of these characteristics that must be improved is 

the detection of the slip. The slippage recognition between two surfaces regards necessary 

sensing should operate at the slippage time occurrence. To fulfil of the slippage sensing 

operation, it is needed to use a multi-sensory system to acquire an indication of the first 

stage of slip. On the other hand, the incipient slippage should be prevented by 

interpreting the signal of a multi-sensory system (the signal of slip) and send it to the 

actuator as a feedback signal to increase the magnitude of the grasping force. The 

artificial intelligent algorithm plays an essential role in this operation through obtaining a 

slipping signal that is considered as input information and generating the feedback signal 

(Somer et.al., 2016). 

In the field of the slippage control via artificial intelligence, there are many of the 

studies. Some of the previous studies, (Fusjimoto et.al., 2003) proposed a method to 

realize the sensation of static friction using an artificial finger skin piece for robotic hand, 

where this hand contains two embedded strips of PVDF film to detect slip via ANN. 

(Ikeda et.al., 2004) presented a method of controlling gripping forces of an elastic-object 

based on the feedback of a visual slip margin; however, to embrace that a one degree of 

freedom gripper composed of a force sensor and camera was used. The grip forces were 

controlled via a direct feedback of margin to provide the desired value of gripping force. 

(Chen et.al., 2006) introduced a method for grasping control of artificial hand by means 

of partially linearized ANN and possibility theory to detect the slip onset between the 

artificial hand and the held object. The artificial hand contains Double-Octagon tactile 

sensor which is used to measure the grasping forces. (Mazid and Fakhrul, 2008) 

introduced mathematical relationships for computing the vibration scattered energy. 

These vibrations were sensed via the stylus at the period of slippage occurrence. The 

ANN is employed to provide an optimal force for grasping the object depending on its 

Physio-mechanical characteristics. (Herrera, 2011) suggested a model of tactile control 

for lifting the objects which were not defined in controller, where this process being in a 

stable status of grasp and similar to the behavior of the human grasp. The process has 

been done with the aid of ANN algorithm which was used to determine the coefficient of 

friction and to detect the initial slip. (Robert et.al., 2012) presented a method to recognize 

incipient slippage in high-speed, by utilizing the resistive sensing principle, which 

represented by piezo-resistive tactile sensor. It was noticed through tests that each surface 

texture generates different frequency spectra. To estimate the velocity of slippage in 

different object with different texture an ANN is trained to classify the frequency spectra. 

(Joonhee et.al., 2012) presented an attempt to control a grasping force by controlling the 

robot's hand velocity using Force/Torque sensor (FTS) which produces a command 

torque, which then converted via the velocity-torque transformer into the input velocity of 

the system of the artificial hand for providing a stable holding with the desired forces of 

grasping. (ShouheiShirafuji and KohHosoda, 2014) displayed a description of a specific 

technique by which the robotic hand can be controlled by depending on the previous 

experience of the grasped object's slippage. To achieve this, it has been used two sensors. 

The first sensor is PVDF films which are used to detect the changes of the pressure i.e. 

they used for detecting slippage. The second sensor is strain gauges which are used to 

determine the stresses. The determined stresses were utilized as input data for ANN 

which controls the robotic actuation system. (Kobayashi et.al., 2014) used force/torque 

sensor, which measures pressure distribution to detect slip. Rather than increasing 

http://www.sciencedirect.com/science/article/pii/S0921889012001200#!
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gripping force, it was proposed more fingers to be applied in order to stop slipping. 

(Abdulrahman et.al., 2016) developed intelligent of robotic hand, including optimum 

force of gripping and analysis of slippage. Two FSR sensors had been used to measure 

the continuous force of gripping between the object and the robotic hand. In addition, the 

rotary encoder device was used to apply the automatic feedback response. The feedback 

response was applied to prevent the slip continuity status.  

As a summary, a lot of researchers studied the problem of controlling the slippage 

which is produced by acting of the external loads that presented as quasi-static or static 

load exerted upon the grasped object and in one direction of slippage occurrence. This is 

due to the utilized sensors or the techniques of the slip detection. These sensors unable to 

distinguish between the variance in the signal that caused by the effect of the external 

disturbances upon the grasped object or that caused by the effect of slipping. In the 

present work, The proposed design deals with the conventional sensors that have the 

ability to measure only the applied forces in the normal direction, but in this work, they 

employed to measure the three components of the contact forces by processed the signals 

through a mathematical model. Also, the advantage of the proposed system is detecting 

the slip without knowing any characteristic of the grasped object such as weight, 

coefficient of friction, shape, surface texture and the excitation type that exerted upon the 

grasped object. 

2. Mathematical Model 

Figure (1) shows a fingertip mechanism of artificial hand, which is designed as a 

dome-shape that represents the area of contact with the grasped object. Also, it is 

connected with the finger links by ball joint. The figure (2) represents the installation of 

the flxiforce sensors and the compressive springs within the robotic fingertip structure.  

The fingertips were covered with a soft material, which have a ridged surface, in 

order to overcome the problems that arise in rigid fingertips, which include: (1) the 

impact force which is generated at the instant of grasping the rigid object. Tact force may 

affect the fingertip sensors functioning. (2) The artificial hand with rigid fingertips cannot 

provide securely grasp object which contains uneven surfaces because of the poor 

conformability of the artificial fingertips. (3) The repetitive strains which are generated in 

the fingertips throughout the manipulation tasks (Elango and Faudzi, 2015). 

The mathematical model of the artificial fingertips has been derived to create the 

relationship between the components of the contact force and the forces exerted on the 

force sensors. 
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For simplicity, it is assumed that there is no relative motion between the fingertip 

and the grasped object before slip occurrence; also, the ball joint friction and the inertia 

of the fingertip are neglected (Mark, 1989). Figure (3) represents the distribution of the 

contact force components, forces exerted on the sensors and springs forces, where these 

forces can be analyzed statically to find both normal and tangential force component w.r.t 

force sensors.  

Figure (2): FlexiForce Sensors and springs setup with the Fingertip. 
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By summation of the forces in y-axis it can be found the normal force𝐹𝑛
𝑅: 

+ ∑ 𝐹𝑦 = 0        

𝐹𝑛
𝑅 = 𝐹𝑠1

𝑅 + 𝐹𝑠2
𝑅 + 𝑓1

𝑅 + 𝑓2
𝑅                                                                                               (1) 

From the moment equilibrium equations of the fingertip for three axes in a vector 

notation about its ball joint the two tangential force components can be determined as 

follows:  

(𝑟2𝑗 × 𝐹𝑡2
𝑅 𝑘) + (𝑟2𝑗 × 𝐹𝑡1

𝑅 𝑖) + ((−𝑟1)𝑖 × 𝑓1
𝑅𝑗) + ((−𝑟1)𝑘 × 𝑓2

𝑅𝑗) + (𝑟1𝑖 × 𝐹𝑠1
𝑅𝑗) + (𝑟1𝑘 × 𝐹𝑠2

𝑅𝑗) = 0       (2)       

For 𝑖 = 𝑖 & 𝑘 = 𝑘, and after mathematical simplification, gives: 

 𝐹𝑡1

𝑅 =
𝐹𝑠1

𝑅 ∗𝑟1−𝑓1
𝑅∗𝑟1 

𝑟2
                                                                                                        (3) 

And, 

𝐹𝑡2

𝑅 =
𝐹𝑠2

𝑅 ∗𝑟1−𝑓2
𝑅∗𝑟1 

𝑟2
                                                                                                         (4) 

By the same way, the normal and tangential force components of the left finger will 

be obtained as: 

𝐹𝑛
𝐿 = 𝐹𝑠1

𝐿 + 𝐹𝑠2
𝐿 + 𝑓1

𝐿 + 𝑓2
𝐿                                                                                                 (5) 
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Figure (3): Fingertip Free Body Diagram. 
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𝐹𝑡1

𝐿 =
𝐹𝑠1

𝐿 ∗𝑟1−𝑓1
𝐿∗𝑟1 

𝑟2
                                                                                                        (6) 

And,    

 𝐹𝑡2

𝐿 =
𝐹𝑠2

𝐿 ∗𝑟1−𝑓2
𝐿∗𝑟1 

𝑟2
                                                                                                      (7) 

Now, dividing the two tangential forces of each finger on their normal forces in 

order to obtain the ratios of contact force components in X-Y plane and Z-Y plane as 

follows: 

 

In X-Y plane: 

 

𝐹𝑡1

𝑅

𝐹𝑛
𝑅⁄ =

𝐹𝑠1
𝑅 ∗𝑟1−𝑓1

𝑅∗𝑟1

(𝐹𝑠1
𝑅 +𝐹𝑠2

𝑅 +𝑓1
𝑅+𝑓2

𝑅)∗𝑟2
, 
𝐹𝑡1

𝐿

𝐹𝑛
𝐿⁄ =

𝐹𝑠1
𝐿 ∗𝑟1−𝑓1

𝐿∗𝑟1

(𝐹𝑠1
𝐿 +𝐹𝑠2

𝐿 +𝑓1
𝐿+𝑓2

𝐿)∗𝑟2
                              (8) 

 

And in Z-Y plane: 

 

𝐹𝑡2

𝑅

𝐹𝑛
𝑅⁄ =

𝐹𝑠2
𝑅 ∗𝑟1−𝑓2

𝑅∗𝑟1

(𝐹𝑠1
𝑅 +𝐹𝑠2

𝑅 +𝑓1
𝑅+𝑓2

𝑅)∗𝑟2
   ,   

𝐹𝑡2

𝐿

𝐹𝑛
𝐿⁄ =

𝐹𝑠2
𝐿 ∗𝑟1−𝑓2

𝐿∗𝑟1

(𝐹𝑠1
𝐿 +𝐹𝑠2

𝐿 +𝑓1
𝐿+𝑓2

𝐿)∗𝑟2
                         (9) 

From the stability of the grasp status and the friction cone definition, the contact 

force component ratio must be within the friction cone, 

𝐹𝑡𝑖

𝐹𝑛𝑖

≤  𝜇𝑖                                                                                                                      (10) 

But, the texture of the grasped object surface and the coefficient of friction are 

unknown. In this case, the slippage cannot be distinguished by using equation (10). So, 

the slip detection should be done through monitoring the variation in the result of an 

equation (9) with real time. 

3. System Description  

3.1 Robotic gripper 

An artificial two-finger gripper is set up at the end of four degrees of freedom 

artificial robotic arm. The robotic gripper is under-actuated, as shown in the figure (4), 

where it consists of DC geared motor which is connected to power screw in order to 

convert the motion from rotational at the DC motor to linear at constrained nut. The nut is 

connected with three springs that transmit the linear motion to cylindrical part which 
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associated with the links which form the finger structure. Connection the springs between 

the nut and the cylindrical part allows the artificial hand to adapt the grasping force in 

spite of the actuator is in a stationary status.   

3.2 Sensors  

A FlexiForce sensor model A301 (https://www.tekscan.com/products-solutions/force-

sensors/a301) has been used in this work. It is mounted within the fingertip as shown in 

figure (2). It can measure the applied force on its sensing area in one direction, but in this 

work it is used to measure all the contact force components with 445 N range of force. Also, 

a hall-effect sensor 49E model (https://chioszrobots.com/2015/03/26/hall-magnetic-standard-

linear-module-arduino-projects-robots-new/) has been used to give an indication of the 

slippage situation by observing the variation in relative motion between the palm of the 

gripper and the grasped object, as clarified in figure (4). The signal of the hall-effect device 

was not calibrated because it is used only for slip monitoring. All the mentioned sensors 

generate an analog signal that is transformed to digital signal from a data acquisition device 

(National Instruments USB-6009), and then the digital signal is transmitted to a PC in order 

to process it by Matlab-Simulink program. 

3.3 Grasped Object 

The grasped object is designed in a cuboid shape with two disturbance generators 

(unbalance DC motors) embedded within the grasped object as clarified in Figure (5)) to 

generate an excitation that is used as an external dynamic load. Each two corresponding 

layer at the contact zone of the grasped object with the fingertip is covered by one type of 

the typical material, namely, glass and wood layers as the test requires as shown in 

figures (5).   

https://www.tekscan.com/products-solutions/force-sensors/a301
https://www.tekscan.com/products-solutions/force-sensors/a301
https://chioszrobots.com/2015/03/26/hall-magnetic-standard-linear-module-arduino-projects-robots-new/
https://chioszrobots.com/2015/03/26/hall-magnetic-standard-linear-module-arduino-projects-robots-new/
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4. Control System structure 

This section introduces the control system which is represented by the Artificial 

Neural Network. During the period in which the slippage occurs, all the variables that 

mentioned in section (2) must be monitored in order to recognize the moment of the 

slippage occurrence. Therefore, an artificial intelligence algorithm has been configured to 

state the onset of slippage. This algorithm has been made by using the pattern recognition 

in Neural Network - Matlab. This software is based on a feedforward and 

backpropagation neural network algorithm, which composed of an input layer, two 

hidden layers each has ten neurons and output layer with two neurons, as depicted in 

figures (6) and (7). 

 

 

 

 

 

 

 

 

 

 

Figure (6): Neural Network Simulink diagram. 



Journal of University of Babylon, Engineering Sciences, Vol.(26), No.(5): 2018.  

184 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Results and Discussion 

5.1 Data set for Artificial Neural Network Training 

There are three groups of experiments to force the grasped object to slip. After that, 

the slippage data are acquired by the sensory system. The objective of these experiments 

is to demonstrate the effectiveness of the proposed system to detect slipping in multi-

direction under different types of loads. The experiments will be explained as follows:  

 

 

 

Figure (7): Structure of Neural Network Layers. 

(C) Output Layer 

(B) Hidden Layer 2 

(A) Hidden Layer 1 
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5.1.1 First Experiments Group: grasping the object under the effect of external pulling 

(quasi-static load).  

This group of experiments is performed as in the following sequence:  

(1) Grasping the object by means of turning-on the robotic gripper actuator until it 

reaches the stable status of grasp.  

(2) Start recording the signals of the sensory system at the moment when the grasping 

reaches the stable status.  

(3) Pulling the grasped object manually until it starts to slip;  

(4) Restarting the previous steps, but in a different slippage direction.  
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 From the results of the first experiment group, one can observe that the signal 

behavior of the contact force component ratio in real time starts with a certain ratio of 

initial grasping force. This force ratio varies from one to another experiment due to the 

effect of the compressive springs in the fingertip structure, and then this signal will vary 

as a jump from the initial value at the moment of slip occurrence. Also at this time, the 

variation in the Hall-effect sensor signal will be occurred approximately similar to the 

variation in the signal of force ratio, this means the beginning of the grasped object 

slippage. Furthermore, it was observed that the variation in the signal of ratios (Fti
/Fni

) 

changes according to the angle of slippage occurrence. When the slippage angle is 0 deg, 

the variation in the signal just occurs in the force ratios that oriented towards z-axis, when 

the slippage angle is 40 deg, the jump in the signal occurs at the force ratios in both x-

axis and z-axis in a similar behavior, and when the slippage angle is 90deg, the variation 

in signal just occurs in the force ratios that oriented towards the x-axis. 

 

5.1.2 Second Experiments Group: grasping the object under the effect of external 

disturbance (dynamic load). 

These experiments are performed as in the previous sequence as mentioned in the 

first group of experiments except step. 3; However, in these experiments the unbalance 

motors have been used as disturbance generators in order to generate slippage between 

the grasped object and the fingertip at the moment of its turning-on. The results of this 

group will be listed and presented in figures (11) to (13): 
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In these experiments, as the dynamic load is applied, the object begins to slip, also 

at this moment; the signal of force ratio is starting to change into a form of an alternative 

sequence, this change is due to the instantaneous variation that occurs in the magnitude 

and direction of the components of the contact forces. Subsequently, the friction cone 

condition cannot be satisfied because of the variation range of force ratio will be raised 

during the period of slippage occurrence in comparison with the drop in friction 

coefficient from static (𝜇𝑠) to dynamic (𝜇𝑑). Also, it was observed that the response of 

the contact force component ratios varies depending on the angle of slip, namely, only the 

ratio that is towards the angle of slip will get the variation in its signal as explained in the 

first group of experiments. 

The training of the artificial neural network has been done by means of importing a 

data from the experimental results of equations (7) and (8), in other words, the signals of 

the components of the contact forces under quasi-static and dynamic loads. These data 

are randomly shuffled to increase the depth of learning for this algorithm so that it can 

recognize the occurrence of the slippage at any time. The collected data are divided into 

specific time interval. Afterwards, these data are converted into a vector form by passing 

thought a buffer block in Matlab-Simulink program. This block makes the signal is 

divided to be an input vector of artificial neural network. The following figure shows the 

schematic diagram of the buffering process: 

 

 

      

 

 

After buffering the ratio signals (𝐹𝑡𝑖
/𝐹𝑛𝑖

), the output vector (target vector) of the 

trained algorithm is in the form of a binary system (0 , 1) based on recognizing the signal 

behavior of the ratios of contact force components, when the target vector value is 

[0 1]𝑇,this means that there is no slippage. While when the target vector value is[1 0]𝑇, 

this means that there is a slippage. In the case of the slippage occurrence, the signal of 

force ratios will jump. The training has been done in different grasping force levels and 

for two different materials (glass and wood). Figures (15) and (16) display the ability of 

the artificial neural network to recognize the behavior of the contact forces ratios signal at 

the duration of the slip under different loads (quasi-static and dynamic) with (10) hidden 

layer neurons and (10) input layer size. 

 

 

 

 

Figure (14): the buffering process schematic diagram 
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5.2 Enhancement of Performance of Artificial Neural Network by Using Input 

Normalization 

As clarified in figures (15) and (16), the neural network was responding with a poor 

ability of training; therefore, the signals of contact force component ratio are normalized. 

The normalization process is done through subtracting the signals of force ratio from their 

instantaneous mean values for minimizing the diversity from one sample to another. To 

fulfil this process, a special model by using Matlab-Simulink program was built as 

clarified in figure (17).   

 

   

Figure (15): The performance of ANN 

with (10) input layer size, (10) hidden 

layer neurons and two hidden layers, 

under quasi-static load. 

Figure (16): The performance of ANN 

with (10) input layer size, (10) hidden 

layer neurons and two hidden layers, 

under dynamic load. 

Figure (17): The Normalization process block diagram.  
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This aids the neural network algorithm to reach the best performance, as displayed 

in figures (18) and (19). 

 

From the previous figures (18 & 19), one can notice, at the quasi-static case, the 

Artificial Neural Network cross entropy became (9.2994e-06) at best validation 

performed and 155 epoch as shown in figure (18), while at the dynamic case, the cross 

entropy became (0.001394) at best validation performed and 855 epoch as shown in 

figure (19). 

5.3 ANN Experiments for detecting and controlling slippage 

The experiments are done for different contact material of the grasped object (glass 

and wood) and for different grasping force levels. When the neural network trains under 

different conditions of grasping, the control system appears a high ability to distinguish 

the behavior of the signal at the slippage occurrence period. The output of the control 

system will be in the form of two vectors; [1 0] this denotes the stable grasping situation, 

while [0 1] denotes slippage situation and sending an order to turning-on the hand's 

actuator. The tests to control the slippage will be divided into two groups and 

summarized as follows:  

 

 

 

Figure (18): The performance of ANN 

after Normalization with (10) input layer 

size, (10) hidden layer neurons and two 

hidden layer, under quasi-static load. 

Figure (19): The performance of ANN 

after Normalization with (10) input layer 

size, (10) hidden layer neurons and two 

hidden layer, under dynamic load. 
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5.3.1 First group of experiments: Control the slippage under quasi-static load cases. 

To evaluate the Artificial Neural Network performance for detecting slippage, the 

controlling system is examined experimentally by monitoring the moment of system 

response when a variation in the normalized signal of force ratio occurs under quasi-static 

load cases. The process of these experiments has been begun by grasping the object just 

under the object weight effect (stable grasping conditions). Afterwards, the grasped 

object was pulled manually to force it to slip.   

These experiments have been conducted in different angles of slippage for three 

times, and then repeating these experiments again, but with a pair of contact material of 

the grasped object (wood, glass). The results of these experiments will be listed as 

subfigures within figures (20) (20) (22) and (23): 
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Figure (20): The system control response under quasi-static load and different 

slippage angles, glass layer. 
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Figure (21): The normalized force ratios under quasi-static load and 

different slippage angles, glass layer. 
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Each experiments graph in figure (20) and (22) clarify the feedback response of 

artificial neural network with time for different slippage angles and different contact 

materials in comparison with the signal of the hall-effect sensor (HES). One can observe 

any variation in the magnitude of its signal when there is any relative motion between the 

grasped object and the fingertips (slippage occurrence). From these experiments, it can be 

noticed, that the artificial neural network gives an excellent response with different 

slippage angles. This means that the controller does not need to know the slippage at any 

angle happened in order to detect and control it. Also, it was observed, when the 

contacting occurs between the soft layers of the fingertips and the pair of glass layers of 

the grasped object, the grasping process is more stable and the results of experiments of 

this case show better responses to the slippage occurrence due to the mechanism of 

adhesion friction (Carbone et.al., 2009). But when the contacting occurs between the 

fingertips soft layers and the pair of wood layers of the grasped object, the experimental 

results of this case of contact show noise and unclear responses. This is due to the variety 

in the mechanism of friction of soft with wood. As a summary, the present approach can 

detect the onset of slip of the grasped object with different roughness i.e. smooth layer 

(glass) and rough layer (wood). 

Figures (21 and (23) is divided into five subfigures, each subfigure display the 

normalized ratios components of contact forces with specific slippage angle (0° or 45°or 

90°) and with a specific contact material (glass or wood). By monitoring the behavior of 

the normalized ratios of components of contact forces, one can notice that the overall 

signals of the normalized ratios have the same behavior almost at the slippage occurrence 

period which is interpreted as a jumping off from the initial value of the ratio. It also 
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notes that there exists a slight diversity in the onset of slippage at each contact force ratio 

( 𝐹𝑡/𝐹𝑛(1𝑅) ,𝐹𝑡/𝐹𝑛(2𝑅), 𝐹𝑡/𝐹𝑛(1𝐿), 𝐹𝑡/𝐹𝑛(2𝐿)). This is due to the mismatch of the grasp 

area in both fingers on the two sides of the grasped object; moreover, it is not ensured 

that the external load which is applied to generate the slip will be in the tangential 

direction of the angle of the slippage occurrence. This diversity can be considered as a 

special feature added to the features of the controlling system because the controller can 

detect the slip at any time and direction. 

5.3.2 Second group of experiments: Control the slippage under dynamic load cases. 

 

     As mentioned in subsection (5.1.2), the grasped object in this group is under the effect 

of localized disturbance (dynamic load). This load is generated by means of two 

disturbance generators (unbalance DC motors) embedded within the grasped object. In 

these experiments, the object will be grasped just under its weight until it reaches the 

stable status of grasp. Then, the overall signals of the sensory system will be recorded, 

afterwards turning-on the two unbalance DC motor simultaneously to generate an 

excitation in the grasped object till the object begins to slip. Finally, recording the 

response of neural network, which operates on stopping the slippage by increasing the 

grasping force, the results of this group will be listed as follows: 
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Figure (24): The system control response under dynamic load and different slippage 

angles, glass layer. 
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Figure (25): The normalized force ratios under dynamic load and different 

slippage angles, glass layer. 
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Figure (26): The system control response under dynamic load and different 

slippage angles, wood layer. 
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Figures (24) and (26) show the response of the controlling system under dynamic 

load effect in comparison with the hall-effect sensor signal. The artificial neural network 

in this group of experiments has been tested. It is capable of distinguishing the slippage 

and gives its response at this moment, where these experiments are conducted with multi-

direction slip occurrence and with two types of contact material (glass and wood). The 

control system has demonstrated similar behavior to that of the first group of 

experiments, i.e. the neural network can give a response to the occurrence of slippage 

regardless of the type of the load that causes the slippage. 

Each subfigure in figures (25) and (27) clarifies the signals of normalized ratios of 

contact force components with a certain direction to slip and with a certain contact 

material. The control system showed its ability to give a good response to the variety in 

the signals of the normalized ratios which happened because of the effect of slipping. In 

other words, the experimental results of this group revealed that the control system able 

to distinguish between the variation of the normalized ratios caused by the effect of the 

dynamic load and the variation caused by the effect of slipping. The experiments also 

showed that there was diversity between each normalized ratio and other. This happened 

as a result of the moment of slippage occurrence, the diversity in the situation of the 

grasping, the non-asymmetry in the two unbalance DC motor operating and the difference 

in the friction coefficient for each contact material (glass and wood) which leads to 

different behavior of the signal of the normalized ratios. Eventually, the flexible parts 

(compressive springs) in the fingertip mechanism may affect the overall type of tests 
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Figure (27): The normalized force ratios under dynamic load and different slippage 

angles, wood layer. 
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(first and second groups of experiments). This has been caused the diversity in the normal 

component and the two tangential components. 

6. Conclusion  

The artificial gripper has been controlled in order to provide a stable grasp 

situation. In other words, making and optimization process of grasping forces by the 

detection of slip between the grasped object and artificial fingers. Whether the grasping 

forces are slight, this leads to slip and whether the grasping forces are high, this leads to a 

breakdown of the grasped object. For this purpose, the ANN has been exploited by 

training on the detection of the slip by distinguishing the pattern of the slippage signals 

which are represented by the contact force components ratio signals (𝐹𝑡𝑖
/𝐹𝑛𝑖

). This 

operation has been done by helping of Matlab/Simulink program. The problems that 

associate with the noise of the FlexiForce sensors and the pairing of contact material 

(glass and wood) of the object have been eliminated by means of the normalization 

process. For the future work, the present study has to be developed by enhancing the 

performance of the neural network algorithm to be able to train online i.e. the weights and 

bias functions will be updated when the grasping being in real environment.  

7. Nomenclature 

𝑭𝒔𝒊 
𝑳 , 𝑭𝒔𝒊

𝑹    Forces measured by Flexiforce sensors for left and right finger respectively  

𝒇𝒊
𝑳, 𝒇𝒊

𝑹  Springs forces at fingertips for left and right finger respectively 

𝑭𝒏
𝑳 , 𝑭𝒏

𝑹  Normal components of contact forces for left and right finger respectively 

𝑭𝒕𝒊
𝑳 , 𝑭𝒕𝒊

𝑹   Tangential components of contact forces for left and right finger respectively 

𝑭𝒕𝒊
/𝑭𝒏𝒊

  Ratio of tangential force to normal force 

𝝁𝒔         Static coefficient of friction 

𝝁𝒅         Dynamic coefficient of friction 
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