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Abstract

In this paper, the Artificial Neural Network (ANN) is trained on the patterns of the normal
component to tangential component ratios at the time of slippage occurrence, so that it can be able to
distinguish the slippage occurrence under different type of load (quasi-static and dynamic loads), and then
generates a feedback signal used as an input signal to run the actuator. This process is executed without the
need for any information about the characteristics of the grasped object, such as weight, surface texture,
shape, coefficient of the friction and the type of the load exerted on the grasped object. For fulfillment this
approach, a new fingertip design has been proposed in order to detect the slippage in multi-direction
between the grasped object and the artificial fingertips. This design is composed of two under-actuated
fingers with an actuation system which includes flexible parts (compressive springs). These springs operate
as a compensator for the grasping force at the time of slippage occurrence in spite of the actuator is in
stopped situation. The contact force component ratios can be calculated via a conventional sensor
(Flexiforce sensor) after processed the force data using Matlab/Simulink program through a specific
mathematical model which is derived according to the mechanism of the artificial finger.

Key words: Slippage detection, Neural network algorithm, Artificial hand, Normal and Tangential force,
Tactile sensors.
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1. Introduction

The interest of tactile sensing has been increased in the field of robotics. It allows
for the robots to interact with an environment physically and adjust it by improving the
essential capabilities. These capabilities are represented by touching, collisions and
detecting slippage. Advanced capabilities are represented by manipulation of object and
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grasping (Fernandez et.al., 2014). One of these characteristics that must be improved is
the detection of the slip. The slippage recognition between two surfaces regards necessary
sensing should operate at the slippage time occurrence. To fulfil of the slippage sensing
operation, it is needed to use a multi-sensory system to acquire an indication of the first
stage of slip. On the other hand, the incipient slippage should be prevented by
interpreting the signal of a multi-sensory system (the signal of slip) and send it to the
actuator as a feedback signal to increase the magnitude of the grasping force. The
artificial intelligent algorithm plays an essential role in this operation through obtaining a
slipping signal that is considered as input information and generating the feedback signal
(Somer et.al., 2016).

In the field of the slippage control via artificial intelligence, there are many of the
studies. Some of the previous studies, (Fusjimoto et.al., 2003) proposed a method to
realize the sensation of static friction using an artificial finger skin piece for robotic hand,
where this hand contains two embedded strips of PVDF film to detect slip via ANN.
(Ikeda et.al., 2004) presented a method of controlling gripping forces of an elastic-object
based on the feedback of a visual slip margin; however, to embrace that a one degree of
freedom gripper composed of a force sensor and camera was used. The grip forces were
controlled via a direct feedback of margin to provide the desired value of gripping force.
(Chen et.al., 2006) introduced a method for grasping control of artificial hand by means
of partially linearized ANN and possibility theory to detect the slip onset between the
artificial hand and the held object. The artificial hand contains Double-Octagon tactile
sensor which is used to measure the grasping forces. (Mazid and Fakhrul, 2008)
introduced mathematical relationships for computing the vibration scattered energy.
These vibrations were sensed via the stylus at the period of slippage occurrence. The
ANN is employed to provide an optimal force for grasping the object depending on its
Physio-mechanical characteristics. (Herrera, 2011) suggested a model of tactile control
for lifting the objects which were not defined in controller, where this process being in a
stable status of grasp and similar to the behavior of the human grasp. The process has
been done with the aid of ANN algorithm which was used to determine the coefficient of
friction and to detect the initial slip. (Robert et.al., 2012) presented a method to recognize
incipient slippage in high-speed, by utilizing the resistive sensing principle, which
represented by piezo-resistive tactile sensor. It was noticed through tests that each surface
texture generates different frequency spectra. To estimate the velocity of slippage in
different object with different texture an ANN is trained to classify the frequency spectra.
(Joonhee et.al., 2012) presented an attempt to control a grasping force by controlling the
robot's hand velocity using Force/Torque sensor (FTS) which produces a command
torque, which then converted via the velocity-torque transformer into the input velocity of
the system of the artificial hand for providing a stable holding with the desired forces of
grasping. (ShouheiShirafuji and KohHosoda, 2014) displayed a description of a specific
technique by which the robotic hand can be controlled by depending on the previous
experience of the grasped object's slippage. To achieve this, it has been used two sensors.
The first sensor is PVDF films which are used to detect the changes of the pressure i.e.
they used for detecting slippage. The second sensor is strain gauges which are used to
determine the stresses. The determined stresses were utilized as input data for ANN
which controls the robotic actuation system. (Kobayashi et.al., 2014) used force/torque
sensor, which measures pressure distribution to detect slip. Rather than increasing
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gripping force, it was proposed more fingers to be applied in order to stop slipping.
(Abdulrahman et.al., 2016) developed intelligent of robotic hand, including optimum
force of gripping and analysis of slippage. Two FSR sensors had been used to measure
the continuous force of gripping between the object and the robotic hand. In addition, the
rotary encoder device was used to apply the automatic feedback response. The feedback
response was applied to prevent the slip continuity status.

As a summary, a lot of researchers studied the problem of controlling the slippage
which is produced by acting of the external loads that presented as quasi-static or static
load exerted upon the grasped object and in one direction of slippage occurrence. This is
due to the utilized sensors or the techniques of the slip detection. These sensors unable to
distinguish between the variance in the signal that caused by the effect of the external
disturbances upon the grasped object or that caused by the effect of slipping. In the
present work, The proposed design deals with the conventional sensors that have the
ability to measure only the applied forces in the normal direction, but in this work, they
employed to measure the three components of the contact forces by processed the signals
through a mathematical model. Also, the advantage of the proposed system is detecting
the slip without knowing any characteristic of the grasped object such as weight,
coefficient of friction, shape, surface texture and the excitation type that exerted upon the
grasped object.

2. Mathematical Model

Figure (1) shows a fingertip mechanism of artificial hand, which is designed as a
dome-shape that represents the area of contact with the grasped object. Also, it is
connected with the finger links by ball joint. The figure (2) represents the installation of
the flxiforce sensors and the compressive springs within the robotic fingertip structure.

The fingertips were covered with a soft material, which have a ridged surface, in
order to overcome the problems that arise in rigid fingertips, which include: (1) the
impact force which is generated at the instant of grasping the rigid object. Tact force may
affect the fingertip sensors functioning. (2) The artificial hand with rigid fingertips cannot
provide securely grasp object which contains uneven surfaces because of the poor
conformability of the artificial fingertips. (3) The repetitive strains which are generated in
the fingertips throughout the manipulation tasks (Elango and Faudzi, 2015).

The mathematical model of the artificial fingertips has been derived to create the
relationship between the components of the contact force and the forces exerted on the
force sensors.
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(A) (B) ()

Figure (1): The proposed Mechanism of the artificial fingertip.

e (A) Side view of fingertip part and its frame
e (B) Side view of Fingertip part
e (C) 3D view, fingertip part release from its frame

Frame

Compressive
springs

FlexiForce
Sensor

Figure (2): FlexiForce Sensors and springs setup with the Fingertip.

For simplicity, it is assumed that there is no relative motion between the fingertip
and the grasped object before slip occurrence; also, the ball joint friction and the inertia
of the fingertip are neglected (Mark, 1989). Figure (3) represents the distribution of the
contact force components, forces exerted on the sensors and springs forces, where these
forces can be analyzed statically to find both normal and tangential force component w.r.t
force sensors.
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Figure (3): Fingertip Free Body Diagram.

By summation of the forces in y-axis it can be found the normal forceER:

s =0
EX =F}+ FE + ff + £ 1)

From the moment equilibrium equations of the fingertip for three axes in a vector
notation about its ball joint the two tangential force components can be determined as
follows:

(r2) X FEk) + (roj X FED) + (=i X ff]) + (=r)k X ) + (ni X BYj) + (nk x Efj) =0 (2
Fori =i &k = k, and after mathematical simplification, gives:

R R
F51 *rl_fl *T

R _
Fe = - 3)
And,
R R
R _ Fsyxri—fa'xry
Fe, = I 4)

By the same way, the normal and tangential force components of the left finger will
be obtained as:

Fy=F:+F.+fl+fF (5)
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And,
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Fe, = . (7

Now, dividing the two tangential forces of each finger on their normal forces in
order to obtain the ratios of contact force components in X-Y plane and Z-Y plane as
follows:

In X-Y plane:
R L
Fy) _ F&sr—flery Ft, _ Eysm—flan (®)
ER (FR+FR +fR+fR)«ry’ EL (FE +FE +fl+ 1) «r
And in Z-Y plane:
R L
th _ F_S%*Tl—sz*rl th _ F‘SLZ *Tl—le‘*‘r'l (9)
ER ™ (FR+ER+fR+fR)sry [ EBE ™ (FL+FL+fE4fF)r,

From the stability of the grasp status and the friction cone definition, the contact
force component ratio must be within the friction cone,

ey 10
P S i (10)

But, the texture of the grasped object surface and the coefficient of friction are
unknown. In this case, the slippage cannot be distinguished by using equation (10). So,
the slip detection should be done through monitoring the variation in the result of an
equation (9) with real time.

3. System Description
3.1 Robotic gripper

An artificial two-finger gripper is set up at the end of four degrees of freedom
artificial robotic arm. The robotic gripper is under-actuated, as shown in the figure (4),
where it consists of DC geared motor which is connected to power screw in order to
convert the motion from rotational at the DC motor to linear at constrained nut. The nut is
connected with three springs that transmit the linear motion to cylindrical part which
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associated with the links which form the finger structure. Connection the springs between
the nut and the cylindrical part allows the artificial hand to adapt the grasping force in
spite of the actuator is in a stationary status.

3.2 Sensors

A FlexiForce sensor model A301 (https://www.tekscan.com/products-solutions/force-
sensors/a301) has been used in this work. It is mounted within the fingertip as shown in
figure (2). It can measure the applied force on its sensing area in one direction, but in this
work it is used to measure all the contact force components with 445 N range of force. Also,
a hall-effect sensor 49E model (https://chioszrobots.com/2015/03/26/hall-magnetic-standard-
linear-module-arduino-projects-robots-new/) has been used to give an indication of the
slippage situation by observing the variation in relative motion between the palm of the
gripper and the grasped object, as clarified in figure (4). The signal of the hall-effect device
was not calibrated because it is used only for slip monitoring. All the mentioned sensors
generate an analog signal that is transformed to digital signal from a data acquisition device
(National Instruments USB-6009), and then the digital signal is transmitted to a PC in order
to process it by Matlab-Simulink program.

Multi-turn
potentiometer Arm

\J) DC geared Gharad

motor \

Joint

motor

Hall-effect
sensor

layer

Figure (4): Robotic gripper mechanism.
3.3 Grasped Object

The grasped object is designed in a cuboid shape with two disturbance generators
(unbalance DC motors) embedded within the grasped object as clarified in Figure (5)) to
generate an excitation that is used as an external dynamic load. Each two corresponding
layer at the contact zone of the grasped object with the fingertip is covered by one type of
the typical material, namely, glass and wood layers as the test requires as shown in
figures (5).
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Figure (5): (A) 3D view and (B) side view of experimental
4. Control System structure

This section introduces the control system which is represented by the Artificial
Neural Network. During the period in which the slippage occurs, all the variables that
mentioned in section (2) must be monitored in order to recognize the moment of the
slippage occurrence. Therefore, an artificial intelligence algorithm has been configured to
state the onset of slippage. This algorithm has been made by using the pattern recognition
in Neural Network - Matlab. This software is based on a feedforward and
backpropagation neural network algorithm, which composed of an input layer, two
hidden layers each has ten neurons and output layer with two neurons, as depicted in
figures (6) and (7).
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Figure (6): Neural Network Simulink diagram.
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Figure (7): Structure of Neural Network Layers.

5. Results and Discussion
5.1 Data set for Artificial Neural Network Training

There are three groups of experiments to force the grasped object to slip. After that,
the slippage data are acquired by the sensory system. The objective of these experiments
is to demonstrate the effectiveness of the proposed system to detect slipping in multi-
direction under different types of loads. The experiments will be explained as follows:
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5.1.1 First Experiments Group: grasping the object under the effect of external pulling
(quasi-static load).

This group of experiments is performed as in the following sequence:

(1) Grasping the object by means of turning-on the robotic gripper actuator until it

reaches the stable status of grasp.

(2) Start recording the signals of the sensory system at the moment when the grasping
reaches the stable status.

(3) Pulling the grasped object manually until it starts to slip;

(4) Restarting the previous steps, but in a different slippage direction.

Ft/Fn|13) Ft/Fn|z8) Ft/Fn{aL) Ft/Fe)18) e Pt/ 28] Ft/ErfaL)
e F2/Fif 2L) — Hal-efectsignal M ) ;
08 Ft/Fe{20) Hal-effectsgnal
: - 355 08
06 05 Il
L 335
o [35y) | 04 m L
02 st 3
- o - 315 E
0 : 5Bl IE g
c : t
o b ¥4 3 4 E 3 a
EM : wss| |02 2 F2es £
04 —— ——r= '—é 04 A =
I‘ E
06 I L 275 05 s l L 275
03 |\ 08 il\.- A ™ i,
-1 — = 255 -1 255
Time(sec) Time{sec)
Figure (8): The forces ratio versus time Figure (9): The forces ratio versus time
with angle slipping of 0 deg. with angle slipping of 45 deg.
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Figure (10): The forces ratio v ersus with angle slipping of 90 deg.
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From the results of the first experiment group, one can observe that the signal
behavior of the contact force component ratio in real time starts with a certain ratio of
initial grasping force. This force ratio varies from one to another experiment due to the
effect of the compressive springs in the fingertip structure, and then this signal will vary
as a jump from the initial value at the moment of slip occurrence. Also at this time, the
variation in the Hall-effect sensor signal will be occurred approximately similar to the
variation in the signal of force ratio, this means the beginning of the grasped object
slippage. Furthermore, it was observed that the variation in the signal of ratios (Fy, /Fp.)
changes according to the angle of slippage occurrence. When the slippage angle is 0 deg,
the variation in the signal just occurs in the force ratios that oriented towards z-axis, when
the slippage angle is 40 deg, the jump in the signal occurs at the force ratios in both x-
axis and z-axis in a similar behavior, and when the slippage angle is 90deg, the variation
in signal just occurs in the force ratios that oriented towards the x-axis.

5.1.2 Second Experiments Group: grasping the object under the effect of external
disturbance (dynamic load).

These experiments are performed as in the previous sequence as mentioned in the
first group of experiments except step. 3; However, in these experiments the unbalance
motors have been used as disturbance generators in order to generate slippage between
the grasped object and the fingertip at the moment of its turning-on. The results of this
group will be listed and presented in figures (11) to (13):
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Figure (11): The forces ratio versus with Figure (12): The forces ratio versus time
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Figure (13): The force ratio versus time with angle slipping of 90 deg.
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In these experiments, as the dynamic load is applied, the object begins to slip, also
at this moment; the signal of force ratio is starting to change into a form of an alternative
sequence, this change is due to the instantaneous variation that occurs in the magnitude
and direction of the components of the contact forces. Subsequently, the friction cone
condition cannot be satisfied because of the variation range of force ratio will be raised
during the period of slippage occurrence in comparison with the drop in friction
coefficient from static (ug) to dynamic (u4). Also, it was observed that the response of
the contact force component ratios varies depending on the angle of slip, namely, only the
ratio that is towards the angle of slip will get the variation in its signal as explained in the
first group of experiments.

The training of the artificial neural network has been done by means of importing a
data from the experimental results of equations (7) and (8), in other words, the signals of
the components of the contact forces under quasi-static and dynamic loads. These data
are randomly shuffled to increase the depth of learning for this algorithm so that it can
recognize the occurrence of the slippage at any time. The collected data are divided into
specific time interval. Afterwards, these data are converted into a vector form by passing
thought a buffer block in Matlab-Simulink program. This block makes the signal is
divided to be an input vector of artificial neural network. The following figure shows the
schematic diagram of the buffering process:

A

‘-

Buffer

w1 Ll |

Figure (14): the buffering process schematic diagram

After buffering the ratio signals (F;,/E,,), the output vector (target vector) of the
trained algorithm is in the form of a binary system (0, 1) based on recognizing the signal
behavior of the ratios of contact force components, when the target vector value is
[0 1]7 this means that there is no slippage. While when the target vector value is[1 0]7,
this means that there is a slippage. In the case of the slippage occurrence, the signal of
force ratios will jJump. The training has been done in different grasping force levels and
for two different materials (glass and wood). Figures (15) and (16) display the ability of
the artificial neural network to recognize the behavior of the contact forces ratios signal at
the duration of the slip under different loads (quasi-static and dynamic) with (10) hidden
layer neurons and (10) input layer size.
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Figure (15): The performance of ANN Figure (16): The performance of ANN
with (10) input layer size, (10) hidden with (10) input layer size, (10) hidden
layer neurons and two hidden layers, layer neurons and two hidden layers,

under quasi-static load. under dynamic load.

5.2 Enhancement of Performance of Artificial Neural Network by Using Input
Normalization

As clarified in figures (15) and (16), the neural network was responding with a poor
ability of training; therefore, the signals of contact force component ratio are normalized.
The normalization process is done through subtracting the signals of force ratio from their
instantaneous mean values for minimizing the diversity from one sample to another. To
fulfil this process, a special model by using Matlab-Simulink program was built as
clarified in figure (17).

E{-} mean |«

Mean1

1 -
(1) . > /_/_
Int / Out1

Add1 Dead Zone1 Gaint

Figure (17): The Normalization process block diagram.
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This aids the neural network algorithm to reach the best performance, as displayed
in figures (18) and (19).

7 Best Validation Performance is 9.2994e-06 at epoch 155 . Best Validation Performance is 0.0013911 at epoch 855
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Figure (18): The performance of ANN Figure (19): The performance of ANN
after Normalization with (10) input layer after Normalization with (10) input layer
size, (10) hidden layer neurons and two size, (10) hidden layer neurons and two
hidden layer, under quasi-static load. hidden layer, under dynamic load.

From the previous figures (18 & 19), one can notice, at the quasi-static case, the
Artificial Neural Network cross entropy became (9.2994e-06) at best validation
performed and 155 epoch as shown in figure (18), while at the dynamic case, the cross
entropy became (0.001394) at best validation performed and 855 epoch as shown in
figure (19).

5.3 ANN Experiments for detecting and controlling slippage

The experiments are done for different contact material of the grasped object (glass
and wood) and for different grasping force levels. When the neural network trains under
different conditions of grasping, the control system appears a high ability to distinguish
the behavior of the signal at the slippage occurrence period. The output of the control
system will be in the form of two vectors; [1 0] this denotes the stable grasping situation,
while [0 1] denotes slippage situation and sending an order to turning-on the hand's
actuator. The tests to control the slippage will be divided into two groups and
summarized as follows:
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5.3.1 First group of experiments: Control the slippage under quasi-static load cases.

To evaluate the Artificial Neural Network performance for detecting slippage, the
controlling system is examined experimentally by monitoring the moment of system
response when a variation in the normalized signal of force ratio occurs under quasi-static
load cases. The process of these experiments has been begun by grasping the object just
under the object weight effect (stable grasping conditions). Afterwards, the grasped
object was pulled manually to force it to slip.

These experiments have been conducted in different angles of slippage for three
times, and then repeating these experiments again, but with a pair of contact material of
the grasped object (wood, glass). The results of these experiments will be listed as
subfigures within figures (20) (20) (22) and (23):
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Figure (20): The system control response under quasi-static load and different
slippage angles, glass layer.
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Figure (21): The normalized force ratios under quasi-static load and
different slippage angles, glass layer.
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Figure (22): The system control response under quasi-static load and different slippage

angles, wood layer.
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Figure (23): The normalized force ratios under quasi-static load and different slippage
angles, wood layer.

Each experiments graph in figure (20) and (22) clarify the feedback response of
artificial neural network with time for different slippage angles and different contact
materials in comparison with the signal of the hall-effect sensor (HES). One can observe
any variation in the magnitude of its signal when there is any relative motion between the
grasped object and the fingertips (slippage occurrence). From these experiments, it can be
noticed, that the artificial neural network gives an excellent response with different
slippage angles. This means that the controller does not need to know the slippage at any
angle happened in order to detect and control it. Also, it was observed, when the
contacting occurs between the soft layers of the fingertips and the pair of glass layers of
the grasped object, the grasping process is more stable and the results of experiments of
this case show better responses to the slippage occurrence due to the mechanism of
adhesion friction (Carbone et.al., 2009). But when the contacting occurs between the
fingertips soft layers and the pair of wood layers of the grasped object, the experimental
results of this case of contact show noise and unclear responses. This is due to the variety
in the mechanism of friction of soft with wood. As a summary, the present approach can
detect the onset of slip of the grasped object with different roughness i.e. smooth layer
(glass) and rough layer (wood).

Figures (21 and (23) is divided into five subfigures, each subfigure display the
normalized ratios components of contact forces with specific slippage angle (0° or 45 or
90°) and with a specific contact material (glass or wood). By monitoring the behavior of
the normalized ratios of components of contact forces, one can notice that the overall
signals of the normalized ratios have the same behavior almost at the slippage occurrence
period which is interpreted as a jumping off from the initial value of the ratio. It also
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notes that there exists a slight diversity in the onset of slippage at each contact force ratio
(F/E,(1R) ,F;/F,(2R), F;/F,(1L), F;/F,(2L)). This is due to the mismatch of the grasp
area in both fingers on the two sides of the grasped object; moreover, it is not ensured
that the external load which is applied to generate the slip will be in the tangential
direction of the angle of the slippage occurrence. This diversity can be considered as a
special feature added to the features of the controlling system because the controller can
detect the slip at any time and direction.

5.3.2 Second group of experiments: Control the slippage under dynamic load cases.

As mentioned in subsection (5.1.2), the grasped object in this group is under the effect
of localized disturbance (dynamic load). This load is generated by means of two
disturbance generators (unbalance DC motors) embedded within the grasped object. In
these experiments, the object will be grasped just under its weight until it reaches the
stable status of grasp. Then, the overall signals of the sensory system will be recorded,
afterwards turning-on the two unbalance DC motor simultaneously to generate an
excitation in the grasped object till the object begins to slip. Finally, recording the
response of neural network, which operates on stopping the slippage by increasing the
grasping force, the results of this group will be listed as follows:
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Figure (24): The system control response under dynamic load and different slippage
angles, glass layer.
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Figure (25): The normalized force ratios under dynamic load and different
slippage angles, glass layer.
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Figure (26): The system control response under dynamic load and different
slippage angles, wood layer.
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Figure (27): The normalized force ratios under dynamic load and different slippage
angles, wood layer.

Figures (24) and (26) show the response of the controlling system under dynamic
load effect in comparison with the hall-effect sensor signal. The artificial neural network
in this group of experiments has been tested. It is capable of distinguishing the slippage
and gives its response at this moment, where these experiments are conducted with multi-
direction slip occurrence and with two types of contact material (glass and wood). The
control system has demonstrated similar behavior to that of the first group of
experiments, i.e. the neural network can give a response to the occurrence of slippage
regardless of the type of the load that causes the slippage.

Each subfigure in figures (25) and (27) clarifies the signals of normalized ratios of
contact force components with a certain direction to slip and with a certain contact
material. The control system showed its ability to give a good response to the variety in
the signals of the normalized ratios which happened because of the effect of slipping. In
other words, the experimental results of this group revealed that the control system able
to distinguish between the variation of the normalized ratios caused by the effect of the
dynamic load and the variation caused by the effect of slipping. The experiments also
showed that there was diversity between each normalized ratio and other. This happened
as a result of the moment of slippage occurrence, the diversity in the situation of the
grasping, the non-asymmetry in the two unbalance DC motor operating and the difference
in the friction coefficient for each contact material (glass and wood) which leads to
different behavior of the signal of the normalized ratios. Eventually, the flexible parts
(compressive springs) in the fingertip mechanism may affect the overall type of tests
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(first and second groups of experiments). This has been caused the diversity in the normal
component and the two tangential components.

6. Conclusion

The artificial gripper has been controlled in order to provide a stable grasp
situation. In other words, making and optimization process of grasping forces by the
detection of slip between the grasped object and artificial fingers. Whether the grasping
forces are slight, this leads to slip and whether the grasping forces are high, this leads to a
breakdown of the grasped object. For this purpose, the ANN has been exploited by
training on the detection of the slip by distinguishing the pattern of the slippage signals
which are represented by the contact force components ratio signals (F;/F,). This
operation has been done by helping of Matlab/Simulink program. The problems that
associate with the noise of the FlexiForce sensors and the pairing of contact material
(glass and wood) of the object have been eliminated by means of the normalization
process. For the future work, the present study has to be developed by enhancing the
performance of the neural network algorithm to be able to train online i.e. the weights and
bias functions will be updated when the grasping being in real environment.

7. Nomenclature

Féi ) Ffi Forces measured by Flexiforce sensors for left and right finger respectively
L R Springs forces at fingertips for left and right finger respectively

FL FR Normal components of contact forces for left and right finger respectively

F%i, F{Si Tangential components of contact forces for left and right finger respectively

F.,/F,, Ratio of tangential force to normal force

Us Static coefficient of friction

Ua Dynamic coefficient of friction
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