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Abstract  

A mid-span deflection of concrete beam strengthened by FRP bars has been anticipated. A case of 

simply supported beam loaded by two point loads has been simulated by using artificial neural networks 

(ANNs) which are involved in MATLAB package, version 9.0.0.341360 (R2016a). The proposed model 

presupposes 60 beam specimens to collect the required data for the neural pattern. A set of 8 input variables 

was selected to construct the proposed neural pattern; these are, beam dimensions, concrete specifications, 

and FRP properties. While the mid-span deflection at the ultimate load, will be the output inconstant. The 

use of 9 nodes in the hidden layer is active in predicting the mid-span deflection. A comparison between 

the gained results and the past experimental data shows that the proposed neural pattern gives a reasonable 

anticipation with an overall error of 8.2 %. 
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1. Introduction: 

When a structural concrete member, which is reinforced using conventional steel 

rebars, becomes under offensive environments, like de-icing chlorides or marine 

surroundings, the concrete may exposed to sever damages due to corrosion and oxidized. 

Therefore, other materials that show high strength against corrosion have been 

progressively used, such as Fibre Reinforcement Polymers (FRP). These materials are 

applied nowadays in different kinds of civil engineering constructions such as marines 

structures, foundations base of electrical and reactor tools, and floor concrete sheets in 

aggressive chemical milieu (Maher et.al., 2015). FRP are structural reinforcing bars made 

of fibers held in a resin polymeric binder. FRP are manufactured in several types of fibers 

like Carbon (CFRP) and Glass (GFRP). Besides resistance of corrosion, FRP bars have 

many other characteristics as compared with steel rebars, some of these are high tensile 
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strength, lightweight, linear elastic to failure, and lower strain at failure (ACI 440.1R-06, 

2006).   

Studies of fiber-reinforced polymer (FRP) bars have been made theoretically and 

experimentally to investigate the flexural behavior of concrete members reinforced by 

(FRP) bars (Almusallam, 1995; Ashour et.al., 2006; Chaallal et.al., 1995; Ehab et.al., 

2002; Pecce et.al., 2000). Some of these investigations stated that the deflection of 

concrete beams reinforced by FRP is bigger than similar samples of RC beams reinforced 

by steel; the diagram of their load-deflection is in a straight line (Saadatmanesh et.al., 

1991; Victor et.al., 2002). However, there are still less researches to anticipate the 

deflection of concrete members reinforced with FRP elements. This study aims to 

investigate a mid-span deflection at ultimate load for simply supported concrete beams 

reinforced by FRP using artificial neural networks. 
 

2. Artificial Neural Networks: 

Artificial Neural Network is a mathematical model which uses available empirical 

datum to predict the behavior of any structure under different testing conditions. 

Actually, the smallest mathematical function of any artificial neural network is called 

artificial neuron. This function consists of three basic principles: multiplication, 

collection and stimulation (Kenji , 2011), see figure (1).  

It is utterly true that the working basics and rule sets of artificial neuron seems to be 

blank; however the total potential and computation power of these structures come to life 

when they are internally joined into artificial neural networks, see figure (2). Therefore, 

basic and plain rules of these ANNs may lead to a sort of complications. 

To use the artificial neural network system, the ANN should be learned to deal with 

the form of the given dilemma. The ANNs can act as the same of biological neural 

networks whose can study their responses of the rule of incomes that they earn from their 

habitat.  

The datum comes into the structure of an artificial neuron by means of inputs that 

are weighted, in which every input can be independently times by a weight, and then, the 

structure of an artificial neuron accumulates the weighted inputs. Finally, an artificial 

neuron goes along the treated information as an output data (Kenji,2011).The 

mathematical statement of an artificial neuron pattern can be simplified in equation (1).             
 

 ( )   (∑   ( )   ( )   
 
   )         (1) 

Where: 

xi (k): input value at time (k). 

wi (k): weight value at time (k). 

b: bias 

F: transfer function 
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yi (k): output value at time (k). 

m: number of input variables  

From the equation mentioned above, it can be notice that the considerable 

anonymous variable is the transfer function, which describes the features of artificial 

neuron, and it could be any mathematical model. Generally there are two possible output 

magnitudes, zero and one. It will be one when the input value fits the specific neuron, as 

versus as, the value will be zero.  

3. Research Methodology: 

3.1. Structure of Suggested Neural Model and Data Election:  

To predict a mid-span deflection at the ultimate load for a concrete beam, 

reinforced by FRP bars, an artificial neural simulation is made depending on MATLAB 

version 9.0.0.341360 (R2016a). In this study, the case of simply supported beam loaded 

by two point loads is considered, see figure (3).  

In the beginning, a relation between input and output variables should be simulated. 

To do this; the algorithm of feed-forward back-propagation will be used. In order to 

construct and learn the neural networks, the process of trial and error is used for learning 

types, hidden layers, and training parameters. 

The selection of data for the suggested neural model depends on the available past 

researches (Begg et.al., 2006; Imam et.al., 2014; Kamanli et.al., 2012; Raheman et.al., 

2013; Yost et.al., 2001; Ashour, 2004; Tomlinson et.al.,2014; Kassem et.al., 2011; 

Zhang L., et. al., 2014; Aiello M. et. al., 2000; Kishi N., et. al., 2005; Al-Sunna R., et. al., 

2006; Rasheed et.al., 2004; Abdul Hamid et.al., 2013), in which overall number of (60) 

beam specimens were gathered to construct a data base.  Various input parameters to the 

whole data set should be considered for the training group. However, the training process 

capacity built by alternative election from the data set, or else, they may be taken 

randomly by the computer system.      

To gain reasonably accurate results, the available data for the neural pattern should 

be divided into two categories, training and testing sets. In the recent work, forty eight 

(48) specimens were used for the training group and twelve (12) samples were used for 

the testing set.   

3.2. Description of Variables: 

It is crucial to select the input parameters to gain a powerful network. However, the 

output parameters depend on the type of the network.        

In the present work, a mid-span deflection at ultimate load (d) is considered as an 

output variable. While the input parameters will be eight, these are: 

a- Beam dimensions, width (b), depth (h), span length (L), and shear span (m=a/L), 

where (a) is the shear span (mm). 

b- Cylinder compressive strength of concrete (f’c). 
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c- Cross sectional area (Af), modulus of elasticity (Ef) and tensile strength (fu) of FRP 

bars.        

The input variables will be represented in the input layer by eight nodes, while 

there will be only one node for the output layer. The domain of input and output 

parameters are listed in table (1) and table (2).  

3.3 Hidden Layers and Their Nodes: 

The network implementation decides the hidden layers and their inside nodes, there 

is no principles available to determine their accurate number. Sometimes it begins by a 

tiny number and gradually increased by trial and error until the required simulation of the 

networks is attained. Actually, the activity of network will be heavy and slow if there are 

a large number of nodes, and this may give rise to complicate preference of the testing 

set. While it may be fail to pick up, if this number is very poor. However, and to get a 

gorgeous achievement of training and testing sets, network with a minimum error and 

convenient number of hidden layer nodes will be chosen by the process of trial and error. 

To designate appropriate network, back propagation (Levenberg-Marquardt) neural 

network with various orders was considered. In meantime, several networks with 

different activation functions, tansig (Hyperbolic tangent), logsig (Logistic sigmoidal), 

and purelin (Linear) were tested and the optimal topology was gained by taking network 

with training of minimum inaccuracy. The obtained data demonstrates that the one hidden 

layer with nine nodes pattern bear reasonable performance with less error for the output 

variables. The structure of this network consists of tansig function with (9) nodes for the 

hidden layer, while a purelin function was used for the output layer, figure (4). This 

structure results in a better performance with MSE of (0.0026) for the testing set, 

(0.0014942) for the training group, and the number of epochs is (55), as shown in figure 

(5). The properties of the used neural pattern are shown in table (3).             

4. Evaluation of Networks Performance: 

In this study, artificial neural network was used to expect the mid-span deflection at 

ultimate load for concrete beams reinforced by FRP bars. To evaluate the performance of 

the selected neural network, a comparison between the present work (dANN) and the past 

experimental studies have been done, see table (4). It can be seen from these results that 

the proposed model gives quite accurate results. The ratio between the deflection values 

obtained from the used neural model to the available experimental data varies from 

(0.817) to (1.235) with an average of (1.039).              

On the other hand, a statistical calculation was done to compare between the actual 

values of deflection and the predicted ones. The four statistical indexes are: 

a- MAE: Mean Absolute Error, 

b- MAPE: Mean Absolute Percentage Error  

c- RMSE: Root Mean Squared Error, and 

d- FOV: Fraction of Variance       

These indexes are presented in equations (2) to (5), respectively.  
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Where: 

u  is the actual value, 

v  is the predicted value, 

u is the mean of the actual values, and 

n  is number of specimens.  

The obtained results are presented in table (5). It can be seen that for the predicted 

deflection of the neural model, the values of MAE, MAPE, RMSE, and FOV are (0.724, 

2.47, 1.729, and 0.95) respectively. The gained values indicate that the network model 

agreed with the experimental values, therefore the neural network model can anticipate 

deflections elegantly with an average error of 8.2%.   

5. Results and Discussion: 

To evaluate the accuracy of the used neural model, a regression test was made for 

the predicated values of mid-span deflection with the actual results. The index of this test 

is called coefficient of correlation (R), when R becomes as close as possible to (one), the 

correlation is then so perfect. Figure (6) illustrates the correlation test for the used neural 

model with the experimental values for the training group with correlation value of (R 

=0.99277). However, figure (7), indicates the same relation, but for the testing group with 

value of correlation equals to (R= 0.98633). Therefore, and because the obtained values 

of the index R reached to (one), with an error of 0.72 % and 1.36 % for the training and 

testing groups respectively, it can be stated that the proposed neural model accurately 

simulates the experimental results. 
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6. Conclusions:  

Mid-span deflection at ultimate load for simply supported concrete beam reinforced 

by PRF bars was investigated by using artificial neural networks. The main remarkable 

conclusions are: 

1. The obtained values of mid-span deflection are compared with the existed 

experimental information and the ratio between them is found to be varied from 

(0.817) to (1.235) with an average of (1.039).              

2. The gross average error of the neural model for the anticipation of mid-span deflection 

leads to (8.2 %). This means that the used neural pattern gives gorgeous results.  

3. The correlation index R reaches to one, with an error of (0.72 %) for the training group 

and (1.36 %) for the testing group, which indicates that the correlation is spectacular.  

4. The performance of the artificial neural network to predicate the mid-span deflection 

at ultimate load has been confirmed efficiently. 
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Table (1) Input parameters 
 

Item Parameters 
Amplitude  

Min. Max. 

 

Beam 

Width b (mm) 80 500 

Depth h (mm) 100 550 

Length L (mm) 400 3400 

Shear span ratio m (a/L) 0.313  0.470 

Cylinder compressive strength of 

concrete f'c (MPa) 
22.9   85.6 

FRP 

Area Af (mm
2
) 50  1134 

Tensile strength  fu (MPa) 347.5  1988 

Modulus of elasticity Ef (MPa) 32670 122000 
 

Table (2) Output parameters 
 

Parameter 
Amplitude  

Min. Max. 

Mid-span deflection d (mm) 8.1 131.4 

 
Table (3) Features of used neural pattern 

Network 

Number of nodes 
Number of 

Iterations 

MSE 

Hidden 

layer 

Output 

layer 
Training set Testing set 

9 – 1 9 1 55 0.0014942 0.0026 
 

Table (4) Actual and predicted mid-span deflection at ultimate load 

Beam 

Item 

Mid-span deflection (mm) 
dANN 

/dEXP Actual 

dEXP 

predicted 

dANN 

1 32.86 30.30 0.922 

2 36.43 36.96 1.015 

3 45.00 50.50 1.122 

4 40.30 40.50 1.005 

5 42.30 45.40 1.073 

6 42.00 48.50 1.155 

7 48.80 52.67 1.079 

8 53.87 53.87 1.000 

9 45.00 46.59 1.035 

10 8.10 10.00 1.235 

11 13.83 13.94 1.008 

12 16.87 13.78 0.817 
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Table (5) Statistical indexes 

Index MAE RMSE MAPE FOV 

Used  neural pattern 0.724 1.729 2.470 0.950 

 

 

Figure (1) Working presinciple of an artificial neuron (Kenji , 2011) 

 

 

 

Figure (2) Simple artificial neural network (Kenji , 2011) 

 

 

Figure (3) Concrete beam loaded by two point loads 
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Figure (4) Topology of used neural pattern 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (5) Number of epochs for training group 
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Figure (6) Regression analysis (training set) 

 

 

Figure (7) Regression analysis (testing set) 

 


