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Abstract

A layered technique formulation through the depth of reinforced concrete beam section is
devoted to develop an incremental-iterative algorithm suitable for the analysis of beams
strengthened by CFRP laminates under monotonic and cyclic loading conditions. Concrete
nonlinear behavior in compression through loading, unloading, and reloading stages is
considered with a tension-stiffening model to represent concrete in tension. A bilinear
behavior with strain hardening model of steel reinforcement bars through loading, unloading,
and reloading stages is used. A computer program Matlab code is developed and verified
through comparisons with given experimental case studies available in literature, which show
good agreement. Extending the present algorithm to include different sections, hybrid beams,

and long term effects are recommended as future work.
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1. Introduction

The moment-curvature relationship for a strengthened reinforced concrete section
subjected to flexural load can be derived assuming that plane sections before bending remain
plane after bending and that the stress-strain curves for concrete and steel are known. The
curvatures and corresponding bending moments may be determined using these assumptions
and from the requirements of strain compatibility and equilibrium of forces [1, 2]. Tri-
segmental relationships predict the actual behavior of reinforced concrete beams better than
bilinear relationships, which tend to overestimate deformations [3]. In some comparisons
between moment-curvature theory and experimental data, the overestimation was between 10
to 100% [4]. ElI-Tawil et al. [5] developed an analytical model to simulate the static and
incremented fatigue behavior of reinforced concrete beams strengthened with CFRP (Carbon
Fiber Reinforced Polymer) laminates. Fiber section model, including the nonlinear time-
dependent behavior of concrete in addition to yielding of steel and rupture of CFRP
laminates, is used to carry out the calculations. Then the results gained from analysis were
compared with experimental data done by Shahawy and Beitelman [6, 7] for two groups of
CFRP strengthened beams. They concluded that fatigue loads caused a time-dependent
stresses redistribution, which led to a mild increase in steel and CFRP laminate stresses as
fatigue life was exhausted. CFRP materials are an excellent choice for externally
strengthening reinforced concrete beams [8] because they behave linearly elastic up to failure
with high ultimate strengths that are much greater than the yield strength of reinforcing steel
and do not show degradation when exposed to moisture and typical outdoor temperatures [9,
10].

2. Material Constitutive Relationships
2.1. Basic Assumptions

The followings are the main basic assumptions used in the present algorithm: plane
sections normal to the beam longitudinal axis remain plane after bending, the CFRP laminate
and the longitudinal steel bars reinforcement are assumed to be perfectly bonded to the
concrete, and deformations resulting from shear forces are neglected throughout the present
analytical method.
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2.2. Concrete Behavior in Compression

An empirical monotonic model suggested by Kent and Park [11] is adopted in this
analysis, as shown in Fig. 1. This model describes the stress—strain relationship of concrete in
compression as a function of the concrete compressive strength and its corresponding strain.
The model consists of a curvilinear ascending and a bilinear descending branches. This model
is then extended by Otter and Naaman [12] and has been selected to represent the cyclic
behavior of concrete in direct compression. Some of the key points used to describe the

response under cyclic loading are shown in Fig. 2.
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Fig. 1: Monotonic stress-strain relationship for concrete in compression [11].
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Fig. 2: Concrete cyclic model in compression [12]
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2.3. Concrete Behavior in Tension

Concrete is assumed to crack when it reaches its tensile strength calculated according to
the ACI-318 Code 2014 [13]. After concrete cracks, gradual release of tensile stress takes
place in concrete members reinforced with steel bars or CFRP laminates. As the crack widens,
this tension-stiffening effect accounts for the mechanism of load transfer which exist between
reinforcing bars (or CFRP laminate) and linear degradation of the surrounding concrete is
used to describe its tensile strength after cracking stage. It is appropriate to consider that
CFRP will generate a higher concrete tension stiffening effect as compared with steel
reinforcement because it is directly attached to a bigger surface area of concrete. The residual
stress due to the presence of steel bar reinforcement alone is assumed to decrease linearly
from 70% from its cracking stress to zero at strain value equals to five times cracking strain of
concrete [6]. Tension-stiffening effect due to the presence of both steel and CFRP laminate is
assumed to be decreased to zero at 20 times cracking strain of concrete. These mentioned
models are shown in Fig. 3. For the cyclic behavior; unloading and reloading of a cracked
layer are supposed to follow a secant path [14], the secant modulus can be calculated using

the previously kept maximum strain developed in the cracked layer.

| 20& "I-;Et Et
Unloading& reloading

<

StraTn

Tension-Stiffening — =
(Steel+CFRP)

Tension-Stiffening

0.7
(Steel only) Ji

Cracking | f:
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Fig. 3: Tension-stiffening models for concrete in tension, monotonic, and cyclic behavior [14]

2.4. Monotonic and Cyclic Uniaxial Stress-Strain Relationship of Steel

A bilinear elasto—plastic model with a strain hardening part is used for the steel bars [15].
The response in tension and compression is assumed to be identical. In case of unloading
when the steel is stressed beyond the yield stress, a path with the same elastic modulus could

be followed.
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2.5. Modeling the Behavior of CFRP Laminates
The CFRP laminate material is assumed to be a unidirectional brittle material [16], with

high yield tensile strength f , and with Er modulus of elasticity. CFRP laminates have no

compressive strength; therefore, its response under tensile stresses is a matter of concern. An
elastic behavior followed by sudden failure is assumed to occur during loading, unloading,

and reloading stages.

3. Moment-Curvature Relationship
The determination of theoretical moment—curvature for cyclically loaded reinforced

concrete rectangular beams externally strengthened with CFRP laminates involves a large
amount of computational effort [17]. Therefore a Matlab code is developed and verified to
perform the required computations. The code implements a discrete (layered) element
technique to simulate the complex stress distribution through the section that occurs due to
cyclic loading. In this technique, the rectangular cross section of the beam is divided into a
number n of horizontal elements (layers). Each element has a width equal to the section

width, Fig. 4. If there are n elements in the section, each element will have a depth d,

described by;
h
de = E
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Fig. 4: Discrete element technique for rectangular strengthened beam section

Assuming that the strain at top fiber of the concrete section is ¢, and the neutral axis depth

measured from this fiber is d, , the average strain of an element i is given by;

P,
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(1)

where; d; = is the depth measured from top concrete fiber to the center of the concrete

element i, given by;

d, = _0_5)E )
n
Consequently, the strain at top or bottom steel bars is;
d,xd’lord
L) .

n

where; d, d are the depth of bottom and top steel bars measured from top concrete fiber,
respectively. The concrete tensile strength may be calculated from ACI-318 Code 2014 [13],

as:
f,—o7yr, @

and the corresponding strain is calculated using Hook's Law and concrete modulus of
elasticity (Eo) [13] as;

& =— ®)

for top laminate (6)

for bottom laminate (7)

where; df', and ds are depth of top and bottom CFRP laminates measured from top concrete
fiber, respectively. Now, for an element i within the section, having ¢;, the corresponding
force is calculated from;

= oh ©
n

where; f. = the calculated corresponding stress for the element i,

h = total depth concrete section, and,

L
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b = width of rectangular beam, or element.

Applying the equilibrium equation for all horizontal forces within the section;

>C->T=0 ©)

leads to the following expression;
Fcc + Fsc - Fct - Fst - Ff =0 (10)

where; Y C, and > T total compressive and tensile forces, respectively.

Fc. = sum of forces of all concrete layers in the compression zone, = i”; F. (12)
F = sum of forces of all concrete layers in the tension zone, = Zin:nc+1 : (12)
Fsc = compressive force in compression steel bars, = A, f,. (13)
Ft = tensile force in tension steel bars, = A, f (14)
F: = tensile force in CFRP laminate, = A, f, (15)

A, Ast = areas of compression and tension steel bars, respectively,
fse, fst = compression and tension steel bars stresses, respectively,
A, fi = CFRP laminate cross sectional area and stress, respectively, and,
n. = number of concrete layers (elements) in compression zone.
Now, if condition of equilibrium for all horizontal forces is satisfied, the moment M; , of
a concrete element i, about the neutral axis is calculated using;
Mi:Fi(dn_di) (16)

then total internal resisting moment for the whole section can be obtained;

M =>"M,+F,.(d,—d'ord)+F,(d, —d ord’)+F,(d, +d} ord, ) a7
i=1

and the corresponding curvature is;

¢ =arctan j—° (18)

n

Once moment and curvature values at a specific strain increment are calculated, load and

deflection values can be calculated using the following basic relationship:
M d¥y
El dx?

After integrating this formula twice, the following final equation for a simple beam with

¢

(19)

two points loading is obtained:
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o= ‘*{TJ 20)
where; EI = flexural rigidity
and, P = _AaM (21)
(L—MzL)

L = beam length, support to support distance,
a = support to load distance,

0 = mid-span deflection,

P = total load on the beam, and,

MZL = pure moment zone length, or distance between two-point loading.

4. Numerical Method of Analysis

An incremental-iterative technique is used to compute the theoretical moment—curvature
for strengthened rectangular reinforced concrete beams, and then load-deflection
relationships, using the computer program developed in this research work. The computer
program is coded using Matlab language. The main input data required for the analysis
includes:

e The cross sectional properties of the reinforced concrete beam.

e The yield stress fy, the modulus of elasticity Es, the area of top and bottom steel bars, and
location of steel bars, (d and d).

o Cross-sectional area A, spacing s, and core dimensions of confined stirrups.

o Cross-sectional area A, Young modulus Ey, and yield strength f,s of CFRP laminate.

o Number of discrete elements n within the concrete section.

An outline of the procedure for determining the moment—curvature relationship and then

the force—displacement relationship is given below:

1. The initial value of the strain & at the top fiber of the cross-section is prescribed.

2.For the given value of ¢ the neutral axis depth d, is estimated, and stresses in each
discrete concrete element is computed according to the mentioned strain profiles.

3. The horizontal forces in each concrete element, in the steel bars, and in the CFRP laminate
in tension zone are calculated.

4. The equilibrium of all these horizontal forces is checked according to ZC —ZT =0.
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5. If the equilibrium conditioned mentioned in the previous step as given in equation (9) is
not satisfied, the estimated depth to the neutral axis is adjusted accordingly until the
equilibrium condition of forces is achieved.

6.If the equilibrium of horizontal forces is satisfied, the bending moment M, and the

corresponding curvature ¢, are calculated for that particular value of & using equations

(17) and (18), then the load and deflection values are calculated.
7. The strain & at the top fiber is incremented, and the procedure through steps 2 to 6 is then

repeated for the new prescribed value of &..

5. Results and Discussion

To verify of the developed Matlab code, two groups of data gained from two different
previous researches are used. The first group consists of two reinforced concrete beams tested
monotonically up to failure by Spadea et al. [18]; the first rectangular beam Al is a
conventional reinforced concrete beam while the second beam Al.1 is a CFRP bottom face
strengthened reinforced concrete beam. The strengthening is done using 80 mm x 1.2 mm X
4700 mm CFRP laminate. Beams important data are shown in Table 1. The present developed
algorithm gives good agreement of load versus mid-span deflection, Fig. 6, when compared
with the experimental data in spite of the fact that the computed ultimate capacities for these
beams are less than the experimentally recorded values.

Table 1: Experimental data of the two tested beams [18]

Cube

Clioks- Internal Reinforcement CFRP Comp. Load (kN)

Beam | Section. Usage | Strength
N2 . .

(mm~9) i Bot. Shear (MPa) Crack | Yield | Ultimate
Al - 30.1 10.2 | 45.2 54.0

140x300 | 2-®16 | 2-®16 | P6@150
All Bottom 343 10.0 | 553 86.8
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TOTAL LOAD, kKN
|

TOTAL LOAD, kI
L L

Experimental
Layered Formulation

80 120 160 200 30 120
MID-ZPAN DEFLECTION, mm MID-SPAN DEFLECTION, mm

Beam Al Beam Al.1
Fig. 6: Experimental and analytical load-deflection curves for beams Al and Al.1

The second group for verification of the proposed algorithm is consists of the data given
in Table 2. for ten reinforced concrete beams, which are cast and tested by Al-Shaarbaf and
Hasan [19] under monotonic and different cyclic loading histories and by different amounts of
CFRP laminates, as shown in Fig. 7. The main input data used for the computer program

executions of these tested beams are shown in Table 3.

iz P2, 2-F10 non 100 non |
Y445m:m J —
|28

J 445 510 mmm i
Fe E L
| | | |
I I | T T T T 11
” o SRR ‘ ‘ E
| I I =
| I S R =
2-F10 nen =) _L !
E—
Stirrups of smooth CFEF laminate T f
bars-F6 mm, spaced at applied wi?h epOXY CFREP

TS5 mum clic

Fig. 7: Reinforcement details and dimensions of a typical tested beam [19]

Table 2: Beams strengthening and loading scheme [19]

CFRP ] Number Applied 8 Ultimate
Beam Width L%‘L‘:g of Cycfig Load Zorc?nzctl;fl rlﬁgtae(; Capacity
(mm) Cycles (KN) (KN)
BR1 - Monotonic - - - 54
BF1 50 Monotonic - - - 75
BF2 30 Monotonic - - - 69
BF3 70 Monotonic - - - 76
BR1R1 - Repeated 2 50 93 44
BF1R1 50 Repeated 2 60 80 74
BF1R2 50 Repeated 5 70 93 72
BF2R1 30 Repeated 5 64 93 67
BF3R1 70 Repeated 5 70 93 73
BFIC1 558 0% & | cyelic 2 70 93 62
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Table 3: Main input data used in the developed algorithm

Concrete
=N Young's Modulus (GPa) 28
' Compressive Strength (MPa) 30
i Tensile Strength (MPa) 3.4
P Uniaxial Crushing Strain 0.004
v Poisson's Ratio 0.2
e Total Layers through the 30
Depth
oy 0.3
™ Conventional | Tension-Stiffening Parameters 5
! | Strengthened 20
Longitudinal Reinforcement
Es Young's Modulus (GPa) 200
£, Yield Stress (MPa) 518
Area of Top Steel Bars (mm?) | 157
A Area of Bottom Steel Bars
2 157
(mm°)
Hs Hardening Parameter 0.1
CFRP Laminates
Ef Young's Modulus (GPa) 230
fir Yield Stress (MPa) 3500
* Calrulated

t# Inpt Diata

The main experimental and layered technique analysis results for these tested beams are
shown in Table 4, and Table 5. Comparison between experimental and layered formulation
load versus mid-span deflection curves are shown in Fig. 8, and Fig. 9. The layered
formulation (L. F.) curve for the monotonically tested conventional reinforced concrete beam
BR1, Fig. 8a, shows stiffer response compared with the experimentally recorded curve for the
three stages of behavior mentioned by Al-Shaarbaf and Hasan [19]. The computed ductility
ratio, which is defined as the ratio of ultimate to yield deflections, for layered technique
analysis method is 3.3, Table 5, and is lower than the recorded experimental ductility ratio
which is 3.7. The present analytical method shows a decrease of 11% in ductility ratio. Also,
an increase of 2% is noticed in the computed over the experimentally recorded ultimate
monotonic load capacity for the conventional reinforced concrete beam BRL1. In spite of the
fact that the computed layered formulation curve for beam BF1, Fig. 8b, shows a slightly

stiffer behavior in the pre-cracking and post-cracking stages, but it shows also a relatively
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early failure. This early failure reduced the computed ductility ratio, as shown in Table 5. The
percentage reduction in the computed ductility ratio over the experimentally recorded ductility
ratio is 22%, because the layered formulation produced a ductility ratio of 2.1, which is less
than the experimentally recorded ductility ratio of 2.7. But, a reduction of 2% is noticed in the
computed ultimate monotonic load capacity. A slight stiffer response, is also noticed in the
pre-crack and post-crack regions in the layered technique analysis of the strengthened beam
BF2, shown in Fig. 8c. The computed ductility ratio is 2.3, which is less than the
experimentally recorded ductility ratio of 2.7 (i.e., by a reduction of 15% in ductility ratio).
While the computed ultimate monotonic load capacity increased by 17% compared with the
experimentally recorded ultimate monotonic load capacity. The computed ultimate load
capacity for beam BF3, shown in Fig. 8d [19], increased by 3% compared with the
experimental ultimate monotonic capacity, while, the computed ductility ratio is 2.0, which is
less than the experimentally recorded ductility ratio of 2.6 (i.e., by a reduction of 23% in
ductility ratio). The comparison shows an indicated response slightly stiffer than the
experimental one, especially at stages close to the ultimate monotonic load. This stiffer
response is due to the fact that the models considered in layered technique are more
conservative than the real behavior.

Table 4. Comparison of experimental and layered formulation results

Deflection (mm) Load (kN)
(A,). (P.).r
B £ ) . Layered (A ) . . . Layered (P )
eam Xperimenta Xperimenta
% Formulation LEED : Formulation |* Y /B
(%) (%)
4y Ay 4y Ay P, P, P, P,
BR1 7.1 26.3 6.7 22.1 84 50 54 48.1 | 55.2 102
BF1 7.4 19.9 7.8 16.4 82 66 75 64.5 | 73.9 98
BF2 7.2 195 | 7.6 17.3 89 58 69 58.4 | 68.1 117
BF3 7.7 20.1 | 8.3 16.2 80 70 76 68.9 | 78.3 103
BR1R1 | 7.0 26.9 6.2 21.1 78 49 44 48.1 | 46.1 105
BF1R1 | 9.3 194 | 8.2 15.9 82 67 74 63.7 | 72.9 98
BF1R2 | 7.6 18.9 7.3 16.7 88 66 72 64.5 | 70.8 98
BF2R1 | 7.2 18.1 7.9 16.4 90 58 67 58.4 | 66.2 98
BF3R1 | 9.7 159 | 11.2 | 15.7 99 68 73 68.1 | 72.4 99
BF1C1 | 7.9 196 | 8.2 18.5 94 65 62 64.5 68 110
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Table 5. Experimental and layered formulation ductility ratios

Ductility Ratio Calculated
Reduction
Beam Experimental Layereq in Ductility Ratio
Formulation
(%)
BR1 3.7 3.3 11
BF1 2.7 2.1 22
BF2 2.7 2.3 15
BF3 2.6 2.0 23
BR1R1 3.8 34 11
BF1R1 2.1 1.9 10
BF1R2 2.5 2.3 8
BF2R1 2.5 2.1 16
BF3R1 1.3 1.1 15
BFi1C1 2.5 2.3 8
o //—_/,_,_—
o
— — T //
20 20 //
= o / [— o
0 T T T 0 T T

25 30 0 4 20

10 15 20 8 16
MID-SPAN DEFLECTION, mm MID-SPAN DEFLECTION, mm

a) Beam BR1 b) Beam BF1
80 80
L
f/é
/A/—‘

60 ?/ 60 //
z S /
g g
3 40 4 9 40
- -
2 / 2
2 / 2

20 20
[/ Xperimental / [

Experimental

L. F. Method

0 T T
20

8 12 8 12 16
MID-SPAN DEFLECTION, mm MID-SPAN DEFLECTION, mm

c) Beam BF2 d) Beam BF3

Fig. 8: Experimental and analytical load-deflection curves for beams tested under

monotonic loads
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Experimental and computed load versus mid-span deflection comparison is made in Fig.
9a for the conventional reinforced concrete beam BR1R1 subjected to two constant repeated
load cycles. The computed ultimate load capacity is 5% higher than the recorded
experimentally ultimate load capacity, while the computed ductility ratio is reduced by 11%.
The experimental ductility ratio is 3.8, while the predicted ductility ratio is 3.4. Fig. 9b
presents a comparison between the experimental and computed load versus mid-span
deflection curves for beam BF1R1, which is subjected to two constant repeated load cycles
followed by a monotonic loading up to failure. The comparison indicates a reduction of 2% in
the computed ultimate load, and by a reduction of 10% in the computed ductility ratio. A
comparison for beam BF1R2, which is subjected to five constant repeated load cycles
followed by monotonic loading up to failure, is shown in Fig. 9c. The computed ultimate load
increased by 3% compared with the experimentally recorded ultimate load. The computed
ductility ratio is 2.3, which is less than the experimentally recorded ductility ratio of 2.5 (i.e.,
by a reduction of 8% in ductility ratio). A comparison is made in Fig. 9d for the beam BF2R1
which is subjected to five constant repeated load cycles followed by monotonic loading up to
failure. The computed ultimate load is 2% less than the experimental ultimate load, while the
computed ductility ratio is reduced by 16%. The experimental ductility ratio is 2.5, while the
calculated ductility ratio is 2.1. Fig. 9e presents a comparison between the experimental and
computed load versus mid-span deflection curves for beam BF3R1, which is subjected to five
constant repeated load cycles followed by monotonic loading up to failure.

The comparison indicates a reduction by 1% in the computed ultimate load, by a
reduction of 15% in the computed ductility ratio. The experimental recorded ductility ratio is
1.3, while the computed ductility ratio is 1.1. The comparison shows that the effect of
repeated load cycles on the beam stiffness is less in layered technique analysis. This may be
due to the use of idealized concrete and steel bars behavior through unloading and reloading
stages. A comparison for beam BF1C1 is shown in Fig. 9f [19]. This beam is strengthened by
50 mm width top and 50 mm width bottom CFRP laminates and subjected to constant
reversed cyclic loads. The computed analytical ultimate load increased by 10% compared
with the experimentally recorded load for the conventionally reinforced beam BR1R1
subjected to two repeated load cycles. The computed ductility ratio is 2.3, which is less than
the experimentally recorded ductility ratio of 2.5 (i.e., by a reduction by 8% in ductility ratio).

The comparison shows that the analytical response is slightly stiffer than the experimental one
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during loading, unloading, and reloading schemes, especially near the ultimate load region.

This stiffer response may be attributed to the relatively stiff models used in the layered

formulation to represent the concrete in compression and tension.
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6. Conclusions and Recommendations

The monotonic and cyclic behavior of the strengthened beams is investigated well by
using the adopted layered technique method of analysis through the developed computer
program. The load versus mid-span deflections, and the yield and ultimate loads predicted are
close to those measured during the experimental tests available in literature. The maximum
difference between experimental and computed ultimate load capacities for the conventional
reinforced concrete beams tested by Al-Shaarbaf and Hasan [19] is 5%, while the maximum
difference in ultimate load capacities for the strengthened beams is 17%. The maximum
difference in the computed ductility ratio is 11% for the conventional beams, and is 23% for
the strengthened beams. Extending the present algorithm to analyze different cross sections
and hybrid beams may be recommended as future work. Long term effects and the inclusion
of steel fibers in normal and high strength concrete with the appropriate constitutive cyclic

model may be also studied.

References

[1] Carreira, D. J., and Chu, K. H., “The Moment-Curvature Relationship of Reinforced
Concrete Members”, ACI Journal, Proceedings, 83(2), 191 (1986).

[2] Park, R., and Paulay, T., ""Reinforced Concrete Structures', John Wiley and Sons, 765
New York (1975).

[3] Wang, C., and Salmon, C. G., ""Reinforced Concrete Design**, 6™ Edition, Harper Collins
Publishers, Inc., 1028, New York (1998).

[4] Rao, S., and Subramanyam, B. V., “Trisegmental Moment-Curvature Relations for
Reinforced Concrete Members”, ACI Journal, Proceedings, 70(5), 346 (1973).

[5] El-Tawil, S., Ogunc, C., Okeil, A., and Shahawy, M., “Static Fatigue Analysis of RC
Beams Strengthened with CFR'P Laminates”, ASCE Journal of Composites for
Construction, 5(4), 258 (2001).

Web Site: www.uokirkuk.edu.ig/kujss E-mail: kujss@uokirkuk.edu.iq

65




™

f.-,» — I ""zd’% Kirﬁ,u &l Unir()ersity ]ouma[ /S ClentEﬁC S tud-'les (KU]SS )

O 4 i Volume 13, Issue 2, June 2018, pp. (49 - 67)

Qeall’ ISSN 1992 — 0849 (Print), 2616 — 6801 (Online)

[6] Shahawy, M., and Beitelman, T. E., “Static and Fatigue Performance of RC Beams
Strengthened with CFRP Laminates”, Journal of Structural Engineering, ASCE, 125(6),
613 (1999).

[7] Shahawy, M., and Beitelman, T. E., “Static and fatigue performance of RC beams
strengthened with CFRP laminates”, Report, Structural Research Center, Florida

Department of Transportation, Tallahassee, FL (2000).

[8] Ahmed, E., Sobuz, H., and Sutan N., “Flexural Performance of CFRP Strengthened RC
Beams with Different Degrees of Strengthening Schemes”, International Journal of the
Physics, 6(9), 2229 (2011).

[9] Haque, A., Mahmood, S., Walker, L., and Jeelani, S., “Moisture and Temperature
Induced Degradation in Tensile Properties of Kevlar-Graphite/Epoxy Hybrid
Composites”, Journal of Reinforced Plastics and Composites, 10(3), 132 (1991).

[10] Birger, S., Moshonov, A., and Kenig, S., “The Effects of thermal and Hygrothermal
Ageing on the Failure Mechanisms of Graphite-Fabric Epoxy Composites Subjected to
Flexural Loading”, Composites,. 20, 341 (1989).

[11] Kent, C., and Park, R., “Flexural Members with Confined Concrete”, ASCE Journal of
Structural Engineering, 97(ST7), 1696 (1971).

[12] Otter, D. E., and Naaman, A. E., “Model for Response of Concrete to Random
Compressive Loads”, ASCE Journal of Structural Engineering, 115(11), 2794 (1989).

[13] ACI Committee 318, “Building Code Requirements for Structural Concrete
(ACI318M.14) and Commentary”, American Concrete Institute, Farmington Hills,
Michigan, USA (2014).

[14] Yankelevsky, D. Z., and Reinhardt, H. W., “Uniaxial Behavior of Concrete in Cyclic
Tension”, ASCE Journal of Structural Engineering, 115(1), 166 (1989).

Web Site: www.uokirkuk.edu.ig/kujss E-mail: kujss@uokirkuk.edu.iq

66




vy Joumal g

| if“/' %%"z; T(er{,uE, Uni'VBTSity j oumd[/ SClBTltT;ﬁC Studies (KU]SS)

O  |# Volume 13, Issue 2, June 2018, pp. (49 - 67)

Qeall’ ISSN 1992 — 0849 (Print), 2616 — 6801 (Online)

[15] Naaman, A.E., Park, S. Y., Lopez, M. M., and Till, R.D., “Parameters Influencing the
Flexural Response of RC Beams Strengthened Using CFRP Sheets”, FRPRCS-5,
University of Cambridge, UK, 117 (2001).

[16] El-Tawil, S., Ogunc, C., Okeil, A., and Shahawy, M., “Static Fatigue Analysis of RC
Beams Strengthened with CFRP Laminates”, ASCE Journal of Composites for
Construction, 5(4), 258 (2001).

[17] Sun, Z., Yang, Y., Yan W., Wu, G., and He, X., “Moment-Curvature Behaviors of
Concrete Beams Singly Reinforced by Steel-FRP Composite Bars”, Advances in Civil
Engineering Journal, Article ID 1309629, 14 (2017).

[18] Spadea, G., Swamy, R. N., and Bencardino, F., “Strength and Ductility of RC Beams
Repaired with Bonded CFRP Laminates”, ASCE Journal of Bridge Engineering, 6(5),
349 (2001).

[19] Al-Shaarbaf, I. A. and Hasan Q. F., “Experimental Behavior of CFRP Strengthened
Reinforced Concrete Beams Subjected to Cyclic Loadings”, 11" Scientific Conference

for Foundation of Technical Education, Technical College-Baghdad, Irag, (2009).

P,
Web Site: www.uokirkuk.edu.ig/kujss E-mail: kujss@uokirkuk.edu.iq

67




