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Abstract. 

 In this paper , we introduces a new definition in bi-supra topological space , called 

M-θ- ii- open and via this definition , we introduce a new types of functions called 

quasi M-θ-ii-continuous functions which unifies some weak forms of quasi θ-ii-

continuous functions in bi-supra topological spaces and investigate their properties. 
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في الفضاءات ثنائية التبولوجي    -ii M-حول الذوال شبه الضعيفة هي النوع 

 شبه الفوقية

. رين عوراى رشيذ           م.م. سردار كول أهيي م.م         أ.م.د. طه حويذ جاسن 
 الجباري

كلية علوم الحاسوب            كلية علوم الحاسوب                   كلية الكتاب 

 الجاهعة

والرياضيات                        والرياضيات       
sardargul8293@gmail.com             al_reem_ms@yahoo.com    

Tahahameed91@gmail.com 

 الوستخلص:

فيييذ  يييحث ثدمنيييع ييييجديد  أسمييييد  جميييجث   ييي  يد        ii-open فيييذ ثديايييداثي  يد  ييي   

شمه ثديوي   ودن خلال  يحث ثدتأسميق ييجديد  يو  دين ثديجوثل شيمه ثدايأ ي   ثدتمودو ذ

وثدتييذ ديين خلادمييد ع ىيييد عىييض  وش ييج لأييل ث شيي دل دىييجوثل    -ii M-ديين ثديييو  

فييذ ثدياييداثي ثدتمودو  يي  شييمه ثديوي يي  و نسميييد لأييل    ii-ثداييأ ي  ديين ثديييو   

 خصد صييييييييييييييييييييييييييييييييييييييييييييييمد و ييييييييييييييييييييييييييييييييييييييييييييييس    دف  ييييييييييييييييييييييييييييييييييييييييييييييد  
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1. Introduction 

               In 1987, Noiri and Popa introduced M-open set and M-closed set and 

investigated a new class of functions called quasi θ-continuous functions[8] , 

Maghrabi and  Juhani introduced M-continuous function , pre-M-open function and 

pre-M-closed function [3] . In this paper by using M-θ-ii-open sets in [12] denoted 

another sets is M-θ-i-open in bi- supra topological spaces every M- -ii-open (resp.  

M- -ii-closed) set is  M- -i-open (resp.  M- -i-open ) sets  but the converse is not 

true[10] ,  

  , the quasi M-θ-ii -continuity is introduced and studied in bi-supra topological spaces 

(Let X be non-empty space , let  𝒮o(X)  be the set of all semi open subset of the space 

X ,  (for short 𝒮𝒯) and let  𝒫o(X)  be the set of all pre open  subset  of X(for short 

𝒫𝒯), Then , we say that (X,𝒮𝒯,𝒫𝒯) is a bi-supra topological space, [5] Moreover, 

basic properties of quasi M-θ-ii -continuous functions are investigated , also,  

relationships between quasi  M-θ- ii-continuous functions and graphs are investigated. 

2.Preliminaries. 

Throughout this paper (X ,𝒯 )  and (Y, 𝒯 ) (Simply, X and Y) represent  topological 

spaces on which no separation axioms are assumed, unless otherwise mentioned. The 

closure , the interior  and the complement a subset of A is denoted by cl(A), int(A) 

and(    or X\A) respectively . A subset A of a space X is said to be regular open[7] if 

it is the interior of its closure, i.e,( A = int(cl(A)). The complement of a regular- open 

set is referred to as a regular –closed set. A union of regular-open sets is called δ-open 

[7] The complement of a δ-open set is a δ-closed set. A subset A of a space(X, 𝒯    is   

a θ-open  set   [9] if there exists an open set U containing x such that U⊆cl(U) ⊆ A. 

The set of all θ-interior points of A is said to be the θ-interior set and denoted by θ-int 

(A). A subset A of X is θ-open if A = θ- int (A) .  The family of all θ- open sets  of  a 

space X is a topology on  𝒯  . The union of all  θ-open  (resp.  δ-open ) sets contained 
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in A is called the θ-interior   (resp.  δ-interior ) of A and it is denoted by θ- int(A) 

(resp. δ-int (A)). The intersection of all θ-closed (resp. δ- closed,) sets containing A is 

called the θ- closure (resp. δ- closure [4] ) of A and it is denoted by θ- cl(A) (resp. δ-

cl(A)).  

We recall the following definitions and results, which are useful in the sequel 

Definition 2.1[8] Let (X ,𝒯 )  be a topological space. Then a subset A of X is said to 

be: 

(i) an M-open set, if A ⊆ cl(      (A))   int(   (A)), 

(ii) an M-closed set if int(    (A))   cl(    (A)) ⊆A. 

Definition 2.2[8] Let (X ,𝒯 ) be a topological space and A ⊆   X. Then: 

(i) the M-interior of A is the union of all M-open sets contained in A and is denoted 

by M-int(A), 

(ii) the M-closure of A is the intersection of all M-closed sets containing A and is 

denoted by M-cl(A) . 

Definition 2.3[3] A function   f : (X,𝒯   )→ (Y   𝒯  )  is said to be: 

 (i) M-continuous [1] if        (U)  is M-open in X , for each U is 𝒯    

 (ii) pre-M-open [2] if, f (U) is M-open in Y , for each U is M- open in X. 

 (iii) pre-M-closed [2] if, f (U) is M -closed in Y , for each U is M- closed in X. 

Definition 2.4[11] A function f: (X,𝒮𝒯 ,𝒫𝒯 ) ⟶(Y,𝒮𝒯 ,𝒫𝒯 ) is called a quasi-  -

continuous function if    (V) is a  -open set in X for every  -open set V of Y . 

3 . A new type of bi-supra topological space 

Definitions 3.1 Let (X,𝒮𝒯    𝒫𝒯  ) be a bi-supra topological space, and let G be a 

subset of X. Then G is said to be an ii- open set if G=(AUB) U ∅ where A∈𝒮𝒯 , 

B∈𝒫𝒯 such that  A∉ 𝒫𝒯, A   ∅ . The Complement of  ii- open set  is called  ii- 

closed set. 
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Definitions 3.2 A subset A of a space (X,𝒮𝒯    𝒫𝒯  ) is called θ-ii-open  set  if there 

exists an ii- open set U containing x such that U ⊆ii- cl(U) ⊆ A. 

Definitions 3.3 The set of all θ-ii-interior points of A is said to be the θ-ii-interior set 

and denoted by θ-ii-int (A). so , a subset A of X is θ-ii-open if and only if A = θ-ii- int 

(A). 

Definitions 3.4 A union of regular-ii-open sets is called δ-ii-open . The complement 

of a δ-ii-open set is a δ-ii-closed set . 

Definitions 3.5 A subset A of a bi-supra topological space (X,𝒮𝒯    𝒫𝒯  )is called an 

M-ii-open set  if A ⊆ ii- cl(θ-ii int(A))   ii- int(δ –ii-cl(A)). The union of all M-ii-

open (resp. δ-ii-open, ) sets contained in A is called the M-ii-interior  (resp. δ-ii-

interior ) of A and it is denoted by M-ii-int(A) (resp . δ-ii-int (A)). The intersection of 

all M-ii-closed (resp. δ-ii- closed,) sets containing A is called the M-ii-closure (resp. 

δ-ii- closure ) of A and it is denoted by M-ii-cl(A) (resp. δ-ii-cl(A)). 

 

Definition 3.6  A subset A of a space (X,𝒮𝒯    𝒫𝒯  ) is an M-θ-ii- open set if and 

only if for each x ∈ A there exists an M-ii-open set in X such that M-ii-cl(G) ⊆A. 

 

 Remark 3.7 Every M-θ-ii- open (resp. M-θ-ii- closed) set is an M-ii- open  (resp. M-

ii- closed) set , and every  θ-ii- open (resp.  θ-ii- closed) set is M-ii- open  (resp. M-ii- 

closed) but the converse is not true as in that example 

  The implication between some types of sets are given by the following diagram 

M-θ-ii- open                        M-ii- open                     θ-ii- open 

Example 3.8. Let X = {a, b, c} and 𝒯    = { ∅, {a}, {b}, {a,b}, X} . Then 

{ ∅,{b, c}, {a,c}, {c},  X} ,  𝒮𝒯 = { ∅, {a}, {b},{a,b},{a,c}, {b,c}, X}= 𝒯 
  

𝒫𝒯  = { ∅, {a},{b}, {a, b} ,  X} 

ii-open in X = { ∅, {a, c}, {b, c}, X}, ii-closed in X = { ∅,{b} ,{a}, X} 
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= { ∅, X} , in X  θ-ii- open 

= { ∅, X}, in X  θ-ii-closed 

Regular –ii-open in X= { ∅, X}, 

δ-ii-open in X= { ∅, X}, 

δ-ii-closed in X= { ∅, X}, 

M-ii-open in X= { ∅, {a},{b},{c}, {a, b} ,{a,c}, {b, c}, X}, 

 M-ii-closed in X = { ∅,  {b, c} {a, c},{a,b},{c},{b},{a} ,X}, 

M-θ-ii- open in X= { ∅,  {a, b},{a,c}, {b, c} ,X} , so the sets {a},{b},{c} are  M-ii-

open sets but not M-θ-ii-open sets in X and not θ-ii- open in X .   

Definition 3.9 A subset A in a bi-supra topological space (X,𝒮𝒯    𝒫𝒯  )  is called M-

θ-ii-closure and denoted by M-θ-ii-cl(A) and is defined to be the set of all points x of 

X such that for each an M-θ-ii- open set in X,  M-θ-ii-cl(G) ∩ A     ∅. 

  

Definition 3.10 A subset A in bi-supra topological space (X,𝒮𝒯    𝒫𝒯  )  is said to be 

M-θ-ii-closed if  M-θ-ii-cl(A) = A. The complement of a M-θ-ii- closed set is an M-θ-

ii-open set.    

Lemma 3.11 For a subset A of a topological space  (X,𝒯   ) (resp.bi-supra  topological 

space (X,𝒮𝒯   𝒫𝒯  ) the following statements are hold:  

(i) If A ⊆ Fi, Fi is an M-closed [2](resp,  M-ii-closed )set in X, then A ⊆   M-cl(A) ⊆ 

Fi,(resp.M -ii-cl(A) ⊆ Fi).  

 (ii) If Gi ⊆ A, Gi is an  M-open[3] (resp . M-ii-open) set in X, then Gi ⊆  M-int(A) ⊆ 

A(resp. Gi ⊆  M-ii-int(A) ⊆ A) . 

(iii) A is M-ii-closed in U if M-ii-d(A) ⊆ A  
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(iv) M -ii-cl(A) = A   M-ii-d(A) . 

The set of θ-boundary (resp. θ-ii-boundary ,M-ii-boundary, M-ii-border) of A is 

denoted by θ-   (A) (resp. θ-ii-   (A),M-ii-   (A), M-ii- b(A)). 

Proposition  3.12 Let A be a subset of  (X,𝒯   )  a topological space  (resp.  

(X,𝒮𝒯   𝒫𝒯  ) a bi-supra  topological space )  . Then , the following statements are 

hold: 

 (i) θ-   (A) = θ-cl (A) \ θ-int (A) )[6] (resp. θ-ii-   (A) = θ-ii cl (A) \( θ-ii int (A) ) 

 (ii) M-   (A) = M-cl(A) \ M-int(A) [4] (resp.M-ii-   (A) = M-ii-cl(A) \( M-ii-int(A)) 

 (iii) M- b(A) = A\M-int(A) [2] (resp. M-ii- b(A) = A\M-ii-int(A)). 

We recall the following definitions and results, which are useful in the sequel: 

Definition 3.13 A function f: (X,𝒮𝒯 ,𝒫𝒯 ) ⟶ (Y,𝒮𝒯 ,𝒫𝒯 ) is called M-ii-continuous 

if    (V) is M-ii-open in X for every ii-open set V inY . 

Example 3.14 

Let X = {a, b, c} and 𝒯    = { ∅, {a}, {b}, {a,b}, X} . Then 

{ ∅,{b, c}, {a,c}, {c},  X} ,  𝒮𝒯 = { ∅, {a}, {b},{a,b},{a,c}, {b,c}, X}= 𝒯 
  

𝒫𝒯  = { ∅, {a},{b}, {a, b} ,  X} 

ii-open in X = { ∅, {a, c}, {b, c}, X}, ii-closed in X = { ∅,{b} ,{a}, X} 

M-ii-open in X= { ∅, {a},{b},{c}, {a, b} ,{a,c}, {b, c}, X} 

 M-ii-closed in X = { ∅,  {b, c} {a, c},{a,b},{c},{b},{a} ,X} 

New, let Y={a,b,c} and ,   ={∅,{a},{c},{a,c},Y} ,   
 ={Y,{b,c},{a,b},{b},∅}. 

Then 
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   = { ∅, {a}, {c},{a,c},{a,b}, {b,c}, Y} ,     = { ∅, {a},{c}, {a, c} , Y} 

ii-open in Y ={ ∅,{a,b},{b,c},Y}, ii-closed in Y={∅,{c},{a},Y} . 

If f: (X,   ,   ) ⟶(Y,   ,   ) is defined by f (a)=b , f (b)=a ,and f (c)=c then  f 

is M-ii-continuous . 

Theorem 3.15 Let (X,   ,   )  and  (Y,   ,   )  be two bi-supra topological 

spaces and  f:(X,   ,   )⟶(Y,   ,   ) be a function . Then the following 

statements are equivalent : 

(i)  f is M-ii-continuous 

(ii) M-ii-cl(   (B))⊆    (ii-cl(B)) for each B ⊆ Y 

(iii)  f(M-ii-cl(A)) ⊆ii-cl(f(A)) for each A ⊆ X 

(iv)      (ii-int(B)) ⊆M-ii-int(   (ii-b(B)) for each B =Y 

 Proof: (i)      (ii) Since B ⊆ ii-cl(B) ⊆Y which and is an ii-closed set. ,then by 

hypothesis,     (ii-cl(B)) is M-ii-closed in X. Hence, by 

Lemma 3.11, M-ii-cl(   (B))⊆    (ii-cl(B)) for each B ⊆ Y  

(ii)   (iii) Let A ⊆ X. Then   (A) ⊆ Y, hence by hypothesis, 

M-ii-cl(A) ⊆ M-ii-cl(    (  (A))) ⊆     (ii-cl(f(A))). Therefore,   (M-ii-cl(A)) ⊆ f 

    (ii-cl(  (A))) ⊆ ii-cl(  (A)), 

(iii)   (i)Let V ⊆ Y be an ii-closed set. Then,     (V) ⊆X. 

Hence, by (iii),   (M-ii-cl(    (V))) ⊆ ii-cl(  (    (V))) 

⊆ ii-cl(V) = V. Thus M-ii-cl(    (V)) ⊆     (V) and 

hence     (V)  is M-ii-closed in X. Hence,   is M-ii-continuous, 

 (iv)   (i)Let U =  Y be an ii-open set. Then by assumption, 

    (U) =     (ii-int(U)) ⊆ M-ii-int(    (U)). Hence, 

    (U) is M-ii-open in X. Therefore,   is M-ii-continuous.  
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Corollary 3.16 Let (X,   ,   )  and  (Y,   ,   )  be two bi-supra topological 

spaces and  f:(X,   ,   )⟶(Y,   ,   ) be a function 

(i) If   is M-ii-continuous , then M-ii-b(   (B))) ⊆     ii-b(B)) for each B ⊆ Y 

(ii) If   is M-ii-continuous , then M-ii-Fr(   (B))) ⊆     ii-Fr(B)) for each B ⊆ Y 

 Theorem 3.16  Let (X,   ,   )  and  (Y,   ,   )  be two bi-supra topological 

spaces and  f:(X,   ,   )⟶(Y,   ,   ) be a function . Then the following 

statement are equivalent : 

(i)  f is M-ii-continuous 

(ii)  f(M-ii-d(A)) ⊆ii-cl(f(A)) for each A ⊆ X , where M-ii-d(A) is ( The set of all M-

ii-limit points of A is called M-ii-derived set of A and denoted by M-ii-d(A)).   

Proof: (i)   (ii) since f is M-ii-continuous then by theorem (3.15(iii)) f(M-ii-

cl(A)) ⊆ii-cl(f(A)) for each  A ⊆ X , so f(M-ii-d(A))⊆ f(M-ii-cl(A)) ⊆ii-cl(f(A)) . 

 (ii)        (i) Let U be  an ii-closed subset  of Y . Then     (U) ⊆ X hence by 

hypothesis f(M-ii-cl(   (U))) ⊆ii-cl(f(   (U))) ⊆ii-cl(U) =U . Therefore by lemma 

(3.11(iii),(iv))   

Thus M-ii-cl(   (U))    (U)   M-ii-d(   (U)) ⊆    (U)     (U) =    (U). 

Hence    (U)= M-ii-cl(   (U)) which is M-ii-closed set in X therefore f is M-ii-

continuous . 

Definition 3.17 A function f: (X,   ,   ) ⟶(Y,   ,   ) is called an M- -ii-

continuous function , if for each x in X and each  ii-open set V in Y containing f(x) , 

there exists an  M- -ii-open set U in X containing x such that f(U) ⊆ V . 

Remark 3.18 Every M- -ii-continuous function is M-ii-continuous but the converse 

is not true. 

Proof:  Directly from that definitions . 

Example3.19  
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    Let X={a,b,c}  

     = { ∅, {a}, {b}, {a,b}, X} .Then  

{ ∅,{b, c}, {a,c}, {c},  X} ,     = { ∅, {a}, {b},{a,b},{a,c}, {b,c}, X}=   
  

    = { ∅, {a},{b}, {a, b} ,  X}  

M- -ii-open in X= { ∅, {a},{b},{c}, {a, b} ,{a,c}, {b, c}, X} 

 M- -ii-closed in X = { ∅ ,  {b, c} {a, c},{a,b},{c},{b},{a} ,X} 

  And let    let Y={a,b,c}  

  ={∅,{a},{b},{a,b},Y} ,   
 ={Y,{b,c},{a,c},{c},∅}  

   = { ∅, {a}, {b},{a,b},{a,c}, {b,c}, Y} ,     = {∅, {a},{b}, {a, b} , Y} 

ii-open in Y ={ ∅,{a,c},{b,c},Y} 

ii-closed in Y={∅,{b},{a},Y} 

If   : (X,   ,   ) ⟶(Y,   ,   ) is defined by f (a)=a , f (b)=c , and f (c)=b . 

Then f is M- -ii-continuous . 

4. qusai  M-θ-ii –continuous functions. 

In this section , we introduces the concept of  " qusai  M-θ-ii –continuous functions" 

and some examples with many properties of this concept . 

Definition 4.1 A function f: (X,   ,   ) ⟶(Y,   ,   ) is called quasi- -ii-

continuous function if    (V) is   -ii-open set in X for every   -ii-open set V of Y . 

Definition 4.2 A function f: (X,   ,   ) ⟶(Y,   ,   ) is called a quasi-M- -ii-

continuous function , if    (V) is an M- -ii-open set in X for every  -ii-open set V of 

Y . 
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Example 4.3 See example (3.13) is holding definition 

Proposition 4.4 Every quasi-M- -ii-continuous function is an M-  -ii-continuous 

function . 

Theorem 4.5 For a function  : (X,   ,   ) ⟶(Y,   ,   ) , the following 

statements are equivalent:  

(i)   is quasi M- θ-ii-continuous,  

(ii) For each x∈ X and each θ-ii-open V set in Y contains      , there exists an M-θ-

ii-open set U  in X contains x such that f(U)⊆ V,  

(iii)     ( (F) is M- θ-ii-closed in X, for every θ-ii-closed set F of Y, 

      (iv)      M- θ-ii-cl(    ( (B)) ⊆      ( (θ-ii-cl(B)), for each B ⊆ Y, 

 (v)  (M- θ-ii-cl(A)) ⊆ θ-ii-cl(  (A)), for each A ⊆ X,  

(vi)     ( (θ-ii-int(B)) ⊆ M- θ-ii-int(    ( (B)), for each B ⊆ Y,  

(vii) M- θ-ii- Fr (    ( (B)) ⊆     ( (θ-ii- Fr (B)) , for each B ⊆ Y,  

(viii) M- θ-ii-b(    ( (B)) ⊆     ( (θ-ii-b(B)), for each B ⊆ Y. 

Proof. (i)→(ii). Let x∈ X and V ⊆ Y be a θ-ii-open set containing   (x). Then x∈ 

   ( (V). Hence by hypothesis,     ( (V) is M- θ-ii-open set of X containing x. We 

put U =    ( (V), then x∈ U and   (U) ⊆ V.  

(ii)→(iii). Let F ⊆ Y be θ-ii-closed. Then Y\F is θ-ii-open if x∈     (Y\F), then   (x) 

∈ Y\F. Hence by hypothesis, there exists an M- θ-ii-open set U containing x such that 

f(U) ⊆ Y\F, this implies that, x∈ U ⊆     (Y\F). Therefore,     (Y\F) =  x∈{ U 

:     (Y\F)} which is M- θ-ii-open in X. Therefore,     (F) is M- θ-ii-closed.  

(iii)→(i). Let V ⊆ Y be a θ-ii-open set. Then Y\V is θ-ii-closed in Y. By hypothesis, 

    (Y\V) = X\    (V) is M- θ-ii-closed and hence     (V) is M-θ-ii-open. 

Therefore,   is quasi M- θ-ii-continuous. 
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(i)→ (iv). If B ⊆ X then θ-ii-cl(B) is θ-ii-closed , then by hypothesis,     (θ-ii-cl(B)) 

is M- θ-ii-closed in X . Hence, by Lemma 3.11, M- θ-ii-cl(    (B)) ⊆     (θ-ii-cl(B)) 

for each B ⊆ Y. 

(iv) →(v). Let A ⊆ X. Then   (A) ⊆Y, hence by hypothesis, M- θ-ii-cl(A) ⊆ M- θ-ii-

cl(    (  (A))) ⊆     (θ-ii-cl(  (A))). Therefore,   (M- θ-ii-cl(A)) ⊆       (θ-ii-cl(  

(A))) ⊆ θ-ii-cl(  (A)), 

 (v) →(i). Let V ⊆ Y be a θ-ii-closed set. Then,     (V) ⊆ X . Hence, by hypothesis, 

f(M- θ-ii-cl(    (V))) ⊆ θ-ii-cl(f(    (V))) ⊆ θ-ii-cl(V) = V. Thus M- θ-ii-cl(    

(V)) ⊆     (V) and hence     (V) ∈ M- θ-ii-closed in X. Hence,   is quasi M-θ-ii-

continuous,  

(i) → (vi).   B ⊆ X then θ-ii-int(B) is θ-ii-open , then by hypothesis,     (θ-ii-int(B)) 

is an M- θ-ii-open set in X. Hence, by Lemma 3.11 ,     (θ-ii-int(B)) ⊆ M- θ-ii-

int(    (B)), for each B ⊆ Y.  

(vi) → (i). Let V ⊆ Y be a θ-ii-open set. Then by assumption,     (V) =     (θ-ii-

int(V)) ⊆ M- θ-ii-int(    (V)) . Hence,     (V) is M- θ-ii-open in X. Therefore,   is 

quasi M- θ-ii-continuous.  

(vi) → (vii). Let V ⊆ Y. Then by hypothesis,     (θ-ii-int(V)) ⊆ M- θ-ii-int(    (V)) 

and so     (V) \ M- θ-ii-int(    (V)) ⊆     (V) \     (θ-ii-int(V)) =     (V\ θ-ii-

int(V)). By Proposition 3.12, M- θ-ii-Fr(    (V)) ⊆     (θ-ii- Fr (V)). 

Proposition 4.6 If f : (X,𝒮𝒯 ,𝒫𝒯 ) ⟶ (Y,𝒮𝒯 ,𝒫𝒯 ) is quasi-M-  -ii-continuous and g: 

(Y,𝒮𝒯 ,𝒫𝒯 ) ⟶(Z,𝒮𝒯 ,𝒫𝒯 )  is quasi-  -ii-continuous then gof is quasi-M-  -ii-

continuous . 

Proof: let V⊆   be a  -ii-open set and g be a quasi-  -ii-continuous function . Then 

   (V) is θ-ii-open in Y . But f is a quasi-M-  -ii-continuous function , then 

       (V) is an M- -ii-open set in X , Hence gof is an M- -ii-continuous  function 
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