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 The location of the phase transition in the two dimensional Ising model were  

determined using Monte Carlo simulation with importance sampling. The 

magnetization  M  per site   , energy
  E  per site  J , magnetic 

susceptibility   , specific heat  VC  of a Ferromagnetic materials were 

calculated as a function of temperature T for  5555,3030,1616   spin 

lattice interaction in zero and nonzero magnetic field
  0,0  BB . There is thus a 

phase transition defined by the Curie temperature. The Monte Carlo method was 

used to check the results and to confirm the phase transition . The internal 

interaction results were found to be consistent with what was expected. As a 

magnetic field is applied, the spins tend to align with it for T ˃ CT  and its effect is 

not significant at a very high temperature because of the thermal agitation. For T ˂

CT , the alignment of the spins is possible only if the amplitude of the field is big 

enough.  
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Introduction 

The ising model allows to deal with 

thermodynamic problems such as the behavior of the 

spins in ferromagnetic materials. Thus, referring to a 

two-dimensional lattice of 1/2 spins to which the 

Monte Carlo method is applied, we determine the 

observables describing the system and their evolution 

with the variation of the magnetic field and the 

temperature [1]. 

 An ising model is introduced and used to 

investigate the properties of a  Ferro magnet with 

respect to its magnetization and energy at varying 

temperatures.  

 
* Corresponding author at: University of Al–anbar, 

College of pharmacy. E-mail address:  

The observables are calculated and a phase 

transition at a critical temperature is also illustrated 

and evaluated [2]. we can to rely on numerical 

methods that adopted is based on program as ( Fortran 

code 90),to build the phase diagrams . 

In most ordinary materials the associated 

magnetic dipoles of the atoms have a random 

orientation. In effect this non-specific distribution 

results in no overall macroscopic magnetic moment.  

However in certain cases, such as iron, a 

magnetic moment is produced as a result of a preferred 

alignment of the atomic spins [2]. 

This phenomenon is based on two fundamental 

principles, namely energy minimization and entropy 

maximization. These are competing principles and are 

important in moderating the overall effect. 
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Temperature is the mediator between these opposing 

elements and ultimately determines which will be 

more dominant. The relative importance of the energy 

minimization and entropy maximization is governed in 

nature by a specific probability[2,3]. 

 
 

 
kT

E
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
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
 exp                         (1)                             

 

Where     E  : the energy  ,   

                    P : Partition function ,  

                T : Temperature ,   

                  k : Boltzmann constant  

 

which is illustrated in figure 1 and is known as 

the Gibbs distribution   

 

Theory And Method 

The ising model 

The Hamiltonian for a system that is dependent 

on the arrangement  of spins on a lattice and from that 

we can deduce properties such as magnetization and 

susceptibility [4,5]. Suppose that the Hamiltonian is 

 
i

i

ji

ji sBssJH                (2)                                                                                                                                                                             

 

internal interaction energy   external magnetic 

energy 

   

where
 

ji means that we sum over the 

nearest-neighbor pair of spins. This means that the 

spin at site ji  interacts with spins at sites
  1ji  

and  1ij  respectively. We are assuming 

periodic boundary conditions in our model which 

means that every spin will interact with four other 

spins regardless of their position on the finite lattice. 

The better understanding of the proposed system can 

be seen as in figure 2 . 

Here J  is the dimensionless interaction strength 

and B represents the energy involved in the 

magnetization of the lattice and is also dimensionless. 

The Ising Model considers the problem in two 

dimensions and places dipole spins at regular lattice 

points while restricting their spin axis to be either up 

(+y) or down (-y). The lattice configuration is square 

with dimensions L and the total number of spins 

equal to LLN  . In its simplest form the 

interaction range amongst the dipoles is restricted to 

immediately adjacent sites (nearest neighbors). This 

produces a Hamiltonian for a specific spin site, i , of 

the form [2,6]  : 

  

jnn

jii ssJH                  (3)                    

where the sum nnj  runs over the nearest 

neighbors of i  . The coupling constant between 

nearest neighbors is represented by J  while the is  

and js  are the respective nearest neighbor  spins. The 

nature of the interaction in the model is all contained 

in the sign of the interaction coupling constant J  . 

 If J is positive it would mean that the material 

has a ferromagnetic nature (parallel alignment) while a 

negative sign would imply that the material is 

antiferromagnetic (favors anti-parallel alignment). J  

will be taken to be 1  in our discussion and the 

values for spins will be 1  for spin up and 1  for 

spin down. A further simplification is made in that 

BkJ  is taken to be unity. The relative positioning of 

nearest neighbors of spins is shown in figure 3 with 

the darker dot being interacted on by its surrounding 

neighbors [2]. 

The equilibrium of the system can be 

represented with these quantities [1,5,6]. 

 

•  Magnetization 

                   (4)        S
N

M
2

1
           

   2N : The total no. square of spins S . 
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•  Heat capacity 

                                              

   222

2
1

1
 EEkT

N
C          (5)                                              

  
2E : Average of  the energy square of spins . 

 T : Temperature , k : Boltzmann constant  

 

It is linked to the variance of the energy. 

 

•  Susceptibility 

  
 22

2

1
 SS

kT

J

N
                   (6)   

     T : Temperature , k : Boltzmann constant 

   J : is the dimensionless interaction strength . 

where  j jSS .  It is linked to the variance of 

the magnetization . 

 

The free energy should  satisfies the 

equation:[1,5] 

     STEZTkF B  ln             (7) 

 

       Where    





j

jE
eZ



   

      

                Z : partition function 

                 and 

   
TkB

1
  

          Where   the Boltzmann factor is equal to 

unity . 

  The system approaches the equilib- rium by 

minimizing F. 

- At low temperatures, the interaction between the 

spins seems to be strong, the spins tend to align 

with another. In this case, the magnetization 

reaches its maximal value
 

1M  according to its 

formula, the magnetization exists even if there is no 

external magnetic field. 

- At high temperature, the interaction is weak, the 

spins are randomly up or down. So, the 

magnetization is close to the value 0M . 

Several configurations suits: the system is 

metastable. 

- The magnetization disappears at a given 

temperature. 

- Thus there exists thus a transition phase. In zero 

external magnetic field, the critical temperature is 

the Curie temperature 
 21ln

2


CT  (obtained by the 

Onsager’s theory) [1,7].  According to the 

transition phase theory, the second order derivative 

of the free energy in B and in T are 

discontinuous at the transition phase; as the 

susceptibility and the heat capacity are expressed 

with these derivatives, they should diverge at the 

critical temperature. 

 

Behavior of the spins 

     For a given   , the starting lattice is defined as 

the stable lattice of the previous     : 

•  At  1 , i.e. at a very low temperature, we obtain 

fully aligned spins. 

The magnetization is maximum. Then, as the 

temperature increases the  spins are gradually 

changed. 

•  When    is such that CTT  , there are several 

clusters of aligned spins, in each cluster the 

magnetization is maximum but the magnetization of 

the set is null in general because the probability 

which will be in the configuration i  is equal to the 

probability that will be in the configuration i  . 

• At very high temperature  0 , the dipoles are  

randomly oriented. 

When the lattice is initialized at each value of 

  , the results are different: At a very low 

temperature, there are several clusters of aligned spins. 

These domains stop to evolve: We obtain Weiss 

domains and Bloch walls. The magnetization is thus 
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random. The size of the matrix limits the possible 

number of clusters.[1] 

 

Results And Discussion 

Case of zero external magnetic field  

Influence of the size on the charac- 

teristic quantities : 

In order to see the effects of the size of the 

lattice on the transition of the phase, the 

thermodynamic quantities are plotted for several sizes 

in the absence of magnetic field. We notice that if the 

size is not big enough, the phase transition is not really 

perceptible. The effect of temperature for different 

lattice sizes on energy and magnetization have been 

shown in figures (4 and 5) .  

At very low temperatures, the energy is 

minimum and it slowly increases with the temperature. 

At a given temperature, the slope for three different 

sizes of lattice becomes the same abrupt increasing 

and the energy finally approaches  J0 .  

For the three sizes, the magnetization is 

maximum at low temperatures and at Curie 

temperature 05.065.2 CT  for  

lattices  3030,1616  , but at  2.02CT
 
for 

lattice  5555  the magnetization becomes minimum 

because the sequence particles is long in lattice as well 

as it takes greater time for a larger system to reach 

equilibrium which means that must be let the system 

evolve over a larger number of steps.  There is a 

transition such that the magnetization above this 

temperature is almost null.  

The bigger is the lattice , the faster is the 

demagnetization . Moreover, the demagnetization is 

not complete at small sizes, in this case  M is 

constant and non-null at high temperature. Indeed, 

there are finite size effects[1]. Therefore, a lattice 

 3030  is appropriated to determine the transition 

phase according to the above discussion. 

The heat capacity and the susceptibility against 

the temperature for different sizes have been shown in 

figures (6 and 7), respectively .    

The heat capacity has a peak at Curie 

temperature
 

2.045.2 CT  which symbolizes the 

phase transition, at high temperatures, it decreases 

until it reaches 0. The bigger the lattice is, the more the 

peaks marking the phase transition are pronounced.  

The peak is present in the figure (7) as well at 

10.05.2 CT , but the susceptibility becomes 

almost null at high temperatures.  

The finite size effects for a lattice  3030  is 

appropriated to determine the transition phase. When 

the size is appropriated enough, the susceptibility and 

the heat capacity diverge, and this is consistent with 

the theory. 

 

Influence of the magnetic field 

 Thermodynamic quantities against the temperature : 

The effect of the external  magnetic field 

 0B  on the thermodynamic quantities have been 

also investigated . In figure (8) the influence of the 

magnetic field on the energy makes the shift of the 

energy less abrupt with a lattice  3030 .  

In figure (9) the magnetization is in general 

bigger when a magnetic field is applied, but at high 

temperatures, the magnetic field has only little effect. 

The heat capacity and the susceptibility against 

the temperature for a lattice  3030  and with 

presence of the external magnetic field  0B  have 

been shown in figures (10 and 11), respectively . 

 The temperature at the location of the peak, is 

lightly displaced toward the bigger values.  
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In figure (11) the magnetic field generates a 

decreasing in the magnitude of the peak. At high 

temperature, the magnetic field has almost no effect. 

The thermal agitation makes negligible effect in the 

magnetic field. 

The bigger the lattice is, the more the peaks 

marking the phase transition are pronounced.  

 

Thermodynamics quantities against the magnetic 

field 

The effect of the external  magnetic field  0B  

on the thermodynamic quantities with a lattice
 

 3030  have been shown in figures (12 and 13), 

respectively. The influence of the magnetic field on 

the energy and magnetization at several given 

temperatures, the magnetic field varies from 

 JB 1 , a large positive value to

 JB 1 , a large negative value . 

Both the energy and magnetization quantities 

are approximately null constants as shown in figures 

(12 and 13), respectively. The magnetic field cannot 

establish  an order, the temperature is much too high, it 

confirms the above results about the influence of the 

magnetic field according to the temperature. 

The effect of external magnetic field
  0B  on 

energy and on the magnetization with a lattice 

 3030 have been shown in figures (14 and 15), 

respectively .    

As shown in figure (14), the magnetic field has 

a large positive value at the beginning ,whereas the 

energy is negative , the spins are thus up, they align 

with the magnetic field. Then the energy increases 

linearly with  B  until the sign of the magnetic 

field changes. the magnetic field becomes a large 

negative value, but the energy is negative and 

maximum, the spins are down, they align with the 

magnetic field. Then the energy decreases linearly 

with  B . The energy quantity follow the pattern 

from  JB 1  to
  JB 1  . 

 In figure (15) at the beginning , the magnetic 

field has a large positive value, the magnetization is 

positive and maximum, the spins are up, they align 

with the magnetic field. Then the magnetization 

decreases with  B  until the sign of the magnetic 

field changes. The magnetization becomes negative. 

the spins tend to align with the magnetic field and the 

magnetization increase with  B . The magnetization 

quantity follow the same pattern from  JB 1  to 

 JB 1  as shown in figure (14). 

 

Conclusions 

The Monte Carlo method applied to the Ising 

model which describes the magnetic properties of 

materials allows to obtain the thermodynamic 

quantities variations. The results are consistent with 

the expected values and behavior in the case where the 

lattice is big enough to limit the finite size effect [1]. 

At a certain temperature (T˃TC) and in the absence of 

magnetic field  B , the spins are randomly oriented, a 

phase transition will be in ferromagnetic state, 

Therefore the average magnetization will be decreased 

and the energy state increases, while below a certain 

temperature at (T ˂
 
TC) the spins are aligned, hence a 

phase transition will be in a ferromagnetic state, and 

the average magnetization will be increased and the 

energy state decreases. Moreover, above a certain 

temperature spontaneous magnetization  M  
will be 

zero. 

 In the presence of a magnetic field  B , the 

phase transition is not so marked. At a very high 

temperature, the field has no effect because of the 

thermal agitation. In a general way, the spins align 

with the magnetic field but at (T ˂ TC) the changes of 
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direction happens only if the field is above a critical 

value . 
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Figure 1: shows the Boltzmann probability distribution 

as a landscape for varying Energy (E) and Temperature 

(T ) [2] . 

 
Figure 2: The energy of particle on the left is low since 

all the neighboring particles have the same alignment of 

spin. In contrast, the energy of the particle on the right is 

at its highest since all the neighboring particles have a 

different spin alignment [4]. 

 

 
Figure 3: Nearest neighbor coupling. The dark dot, at 

position(x,y), is being interacted upon by its nearest 

neighbors which are one lattice spacing away from it [2]. 

 
Figure 4: Energy (in J-unity) against the temperature 

for three different sizes of lattice for case of zero 

external field (B=0). 
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Figure 5: Magnetization against the temperature for 

three different sizes of lattice for case of zero external 

field (B=0). 

 

 

Figure 6: Heat capacity (in J -unity) against the 

temperature for different sizes for case of zero external 

field (B=0) . 

 

Figure 7: Susceptibility against the temperature for 

different sizes for case of zero external field (B=0) . 

 

 
Figure 8: The influence of the  external magnetic field on 

the energy on a lattice  3030  . 
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Figure 9: The influence of the  external magnetic field on 

the magnetization on a lattice 
 3030  . 

 

 
Figure10 : The Influence of the magnetic field on the 

heat capacity with a lattice 
 3030 . 

 

Figure11 : The Influence of the magnetic field on the 

susceptibility with a lattice 
 3030 . 

 

Figure 12 : 
 0  . Energy against the magnetic field 

with a lattice 
 3030 . 
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Figure 13 :  0  . Magnetization against the 

magnetic field with a lattice 
 3030 . 

 

 

Figure 14 : 
 4.0 . Energy against the magnetic field 

with a lattice 
 3030 . 

 

Figure 15 : 
 4.0

. Magnetization against the 

magnetic field with a lattice  3030 . 
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 الخلاصة
بمعرفة درجة حرارة تدعى بدرجةة حةرارة رةوري بامةتعمال محارةاة المةونتي رةارلو لمةادة  (Ising)تم تعيين موقع الانتقال الطوري ثنائي البعد لنموذج 

 وان المغناطيمةةية المرتمةةبة فيرومغناطيمةةية  M لرةةل موقةةع لتةةذرات ,  الطاقةةة المرتمةةبة E لرةةل موقةةع Jيةةة المغناطيمةةية, القابت   المةةعة ,

 الحراريةةةة VCحمةةةبت ردالةةةة لدرجةةةة الحةةةرارة ,T  لمصةةةةوفة مةةةن تةةةةاعذت تةةةبيرة ذرات البةةةرم 5555,3030,1616 مجةةةال مغناطيمةةةي  فةةةي
 0,0  BB. هذه النتائج ولتثبيت الانتقال الطوري  بينت نتائج التةاعل الداختي )التتقائي( لتبروم عنةد  امتخدمت طريقة مونتي رارلو لتدقيق 0B 

  اما عند مجال مغناطيمي ع الحمابات النظرية لهذه الطريقةانها متوافقة م 0B  فان البروم تميل لذصطةاف مةع المجةال الممةتط فةي حالةة CTT  ,
حيث ان تأثيره لم يرن فعال بدرجات الحرارة العالية بمبب التهيج الحراري الذي يعرقةل اصةطةاف البةروم  وعنةد  CTT  فهنةاك امرانيةة لاصةطةاف البةروم 

  فقط اذا رانت قيمة المجال ربيرة


