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Abstract 

  Statistical data is sometimes obtained from uncertain resources or fuzzy phenomenon 

therefore the conventional statistical analysis becomes unable to interpret the result of these 

data. And addition it is difficult to find function form or probability distribution for this kind of 

data So, must be using appropriate analysis model achieved assumption fuzzy data or 

phenomenon. 

 Concern has been focused on utilizing the fuzzy nonparametric regression models, which are 

convenient to deal with this data, in this paper presents a compare between to smoothing 

approaches to estimating the fuzzy nonparametric regression function by using crisp 

independent and fuzzy dependent variables within uncertain phenomena. A triangular 

membership function was adopted to generate the belonging of the elements within the fuzzy 

set. where applied the local linear smoothing and kernel smoothing, suggested two test 

functions were proposed to show the applied methods’ The results of MATLAB simulations 

and the applied criteria of differentiating have shown the superiority of the local linear 

smoothing over kernel smoothing for the two proposed test functions. So we goal to modeling 

the fuzziness phenomena 
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1. Introduction 

    Smoothing is a statistical method to estimate a function with real value through observation 

when not a variable model to represent this function, it is an approach to determine the effect 

independent variable on a dependent variable where we aim for an approximation 

nonparametric regression estimation function to the nonparametric regression real function. 

Although many researchers studied fuzzy parametric regression, the resultant models were, 

sometimes, inefficient. Therefore, fuzzy nonparametric models have been proposed as an 

alternative solution to overcome this problem. This is because the nonparametric analysis is 

more reliable in finding the functional relationships among the variables. Moreover, it is not 

always to be able to measure the variables of a certain study with respect to specific values but 

in form of periods.     

 The fuzzy approach was firstly introduced by L.A.Zadeh [1] before it was improved to become 

a suitable method to deal with uncertain or fuzzy data, The fuzzy regression models of crisp set 

inputs and fuzzy outputs were under research by Ning Wang [2]. The research was based on the 

measure of Diamond distance which distance measure between two fuzzy numbers. 

1.1. The Fuzzy and crisp Set   

The Fuzzy set is set in all elements have a degree of membership defined as follows: X 

represents a set of elements denoting 𝒳 then the fuzzy set  ̃ in X it is a set of order parts: [3] 

   𝔪̃  *.𝒳 𝔪
𝔪̃
( )  𝒳   /+    where:   

𝔪̃
( ) represents the membership function to 𝒳 in  

 ̃  In Crisp set or classical set collection of observation have a degree of belonging to the 

period [0,1] or not, there are many types of membership function Like triangular, trapezoidal, 

Gaussian were represented in this paper using the triangular membership function as the 

following[4]: 
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Figure 1- Represent triangular memberships function curve  
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Where:  ̃  (  ( )   ( )   ( )) represent fuzzy number from a type of (LR), 

 ( )  ( )   continuous in period [0, 1],  ( )   ( )    ,  ( )   ( )   . 

 

1.2. Define univariate fuzzy nonparametric regression model [2][5][6][7] 

The fuzzy parametric regression model is prosaic because requiring some assumption, it is 

often indeterminate for this utilize the fuzzy nonparametric regression model with univariate 

crisp input and LR fuzzy output we describe this model by: 

   (𝒳)       ( ) 

 (𝒳)  *(  ( )   ( )   ( )+       

Where (𝒳) is crisp independent variables (input on domain R),   is an (LR) fuzzy dependent 

Variable (output),  (𝒳) unknown fuzzy regression function and it is field from(D) to      it is 

limits are minimum, upper, and middle   on respectively (        ),  ( )  is a random error 

term. 
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2. Methodology 

2.1. Local linear regression smooth 

It is also called local linear polynomial and used to solve the problem of bandwidth effect on 

bias and variance because it is adaptive with point location    [8]   

Let (     )   (     ) random sample with binary variable to estimate nonparametric 

regression function  ( )   , |   - by using Taylor series approximating  ( ) when X 

going to     

 ( )   (  )    (  )(    )  
  (  )

  
(    )

    
  (  )

  
(    )

  

  (  )    (    )    (    )
      (    )

      ( ) 

 ( ) represents the unknown function which we want to estimate at the point      , 

  (  ) represents derivative value from the rank(   )At the point              

 (         ), (          ) represent parametric function under assumption Availability of 

all derivatives 

We can find parametric estimation (          ) by the weight least squared method upon 

kernel function  (
    

 
) by minimum The sum of the squares of errors’ ratio to parametric  

(          ) as the following: 

  ∑{        (     )     (     )
 }

 
 

   

 .
     

 
/      ( ) 

We can rewrite the equation (4) by using the matrix as the following: 

  (    )  (    )                      ( ) 

Where: 

  

[
 
 
 
 
 (    )     (    ) 

 (    )     (    ) 

    
    
 (    )  (    ) ]

 
 
 
 

 

  (              )            (              )  

As the Kernel function is sympatric, we can express the weight matrix as the following:  
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)    

  (
     

 
)   

    

    (
     

 
)]
 
 
 
 
 
 

 

 

Using the matrix and simplification operation we get: 

                           

                             ( ) 

And finding the derivation concerning  : 

  

  
                                 ( ) 

  

  
   then the solution   (              ) is weight least square estimation is the 

following: 

 
 

 (    )                   ( ) 

From defending the Tyler series, we can write function estimation   ( ) at the point   : 

 ( )    
    

 (    )                 ( ) 

Where   
  unit vector with dimensions (   )     

Since we treatment with the Fuzziness theorem will be upon the univariate fuzzy model in 

equation (2) depend on the above theory to estimate   ( )  Where: 

  ( )  ( ( )  ( )  ( )) 

At     to all (     ) where represent crisp set independent variable (input variable) and 

dependent variable from type LR (output) to (n) observations. the aim of fuzzy number 

estimation is close to fuzzy number observation   we want to get beast fitting(match)  

So, we must use a distance to measure the proximate between two fuzzy numbers (estimated 

and observed) so we use diamond distance to match [4][2][6]  

Let C, D represent any fuzzy number as the following: 

C= (        ), D= (        ), and there are of the type (LR) (that have one center) defined 

diamond fuzzy number (DFN) and the membership function his: 

where diamond fuzzy as the following:   
  *     (     ),   the membership function is: 
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Figure 2- Graphical representation of the diamond fuzzy number 

 

Upon on diamond distance, we can measure the convergence between two numbers fuzzy 

where the membership   function is equal when    (   )    

  (   )  (     )  (     )  (     )                 (  ) 

Where: 

   (        )   (        )                    

We can write the upper, lower, and mid of two fuzzy numbers as the following: 

                          

                        

As we mentioned above the local linear is based on extended Taylor so will approximate the 

regression function formed from upper, lower and mid   (        ). the function must have 

continuous derivatives in its domain so will be approximate function locally by linear functions 

below 
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 ( )   ̃( )   (  )   ̃(  )(    )                  (  ) 

 ( )   ̃( )   (  )   ̃(  )(    )               (  ) 

 ( )   ̃( )   (  )   ̃(  )(    )                  (  ) 

The linear functions above have limited regression function derivatives at the point(  ),To 

clarify the theoretical idea let the fuzzy depend variable as the following: 

   (           )                    and sample observation are crisp independent variable: 

(     )  ((             ((           )  
) to estimation regression function at the point    

meaning: (  )  ( ( )  ( )  ( )). 

By using local linear smoothing and diamond distance in equation (11) will be minimize the 

locally weighted least squares below:[9][2] 

   ∑  (((           )  
 ( ̃    ̃    ̃  )  

  (|     |)        (  )

 

   

 

To applied the equations (12,13,14) in equation (15) we will get: 

     ∑ ((     (  )   ̃(  )
 
   (    ))

   (|     |)  ∑ ((     (  )   
   

 ̃(  ) (    ))
   (|     |)  ∑ ((     (  )   ̃(  )

 
   (    ))

   (|   

  |)                         (  )   

Where *  (|     |)  
 

(     )

 

 
                   is kernel function, it is a series of weights at 

the point   working as the control in process smooth with bandwidth parametric.to estimation 

fuzzy regression function    ( ) at the point (  )  

  ( )  (  
    

 
    

 
  )  

 

 (  (  )    (  )  
 (  )  

 (  )    (  )   

the equation (16) contains to add three parts and each part contain different unknown 

parametric. we will take partial derivatives to equation (16) respect to unknown parametric and 

then equal to zero to get three gropes from linear equations:  

. (  )  ̃(  )/  ( (  )  ̃(  )) ( (  )  ̃(  )) 

By using matric based weight least square we get:[4][10] 

  (  )  
  

(  )  (  (  ) (    ))
  

  (  ) (    )   

  (  )  
  

(  )  (  (  ) (    ))
  

  (  ) (    )   
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  (  )  
  

(  )  (  (  ) (    ))
  

  (  ) (    )   

Where: 

 (  )  
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      ]
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The weight matric is: 

 (    )      (  (|     |)   (|     |)    (|     |) 

Where the diagonal matric elements will be equal to:   (|     |)               

Then the regression function estimation as the following: 

  ( )    
  (    )     

  (    )     
  (    )                    (  )    

Where: 

  
                      (    )  (  (  ) (    )    (  ) (    )         (  ) 

the local linear smooth is status case from the local polynomials (which represent the weight 

regression about the point (  ) )when the degree of polynomial (d=1) the degree polynomial 

with bandwidth parametric will be working as the control smoothing in estimation). As the 

fuzzy dependent variable to type LR then we can write estimation  ( )as follow:  

   ( )  (  (  )  
 (  )  

 (  ))    ,   ( )  (
∑      

 
   

∑   
 
   

 
∑      

 
   

∑   
 
   

 
∑      

 
   

∑   
 
   

) 

We can define the weight: 

    
    

 
[     (    )    ]       ∑. 

    

 
/

 

   

(    )
   

In this paper the fuzzy détente variable (  ) Symmetrix triangular and   ,   -    

As the form     (       )                       

Which     represent diffusion to   ,where diffusion vector to (n) observation from fuzzy 

dependent variable as follow:  (            )
              

From the equation (17) we get:  (  )    (  )    (  )    (  )    
  (    )  

Therefore, the regression function at the point    will be symmetric fuzzy number from (LR) 

and we can express as follow 

  ( )    
  (    )     

  (    ) )                (  ) 
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By Local Linear to Find smooth at each value of data, by A MATLAB m-file, version 2019b, 

was designated to apply the flowchart of Figure (3) 

 

Figure 3- Flowchart to highlight steps of executing the local-linear smooth method 

2.2. Kernel smoothing [11][12][13] [14][15]  

Kernel smooth is a statistic approach, it is the special case from a local average approach which 

is based on the weight function that represents kernel function, it is a probability function 

because it is satisfied conditions probability theory of its characteristic's symmetries, continues, 

limited and real function. 
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the weight function is important because it is wakened to modification size and formula the 

weight according to the point location respectively the point estimation x, meaning it gives 

large weight to the points closed from x upon the bandwidth and distance between the 

observation and the point x. As the following some kernel function Where:   (    )     |   

|≤1, h=bandwidth parametric. 

 

Table 1- Represent some kernel function formula 

kernel equation 

normal 
 ( )  

 

   
   ( 

  

 
)     

   

Epanechnikov 
 ( )  

 

 
(    ) 

box 
 ( )  

 

  
       

 Triangular  ( )  (    | |)        

 

 

Figure 4- represent some kernel functions curve 

 

We must choose the bandwidth parametric to be Careful because it is based on parts in 

converging nonparametric regression function to the main function, the small value to 
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bandwidth effect in the curve estimation then formation low curve estimate (under smoothing 

curve) but if we choose a large value to bandwidth, it gives high curve estimate (over 

smoothing). 

There are two methods for selecting bandwidth, first method used change bandwidth Upended 

location estimation called this method adaptive bandwidth which adopted in this paper, the 

second method used fixed bandwidth. 

2.3. Fuzzy Nadarya- Watson [13][7][10] 

Nadarya-Watson was first suggested kernel smooth (1964), it is a nonparametric statistical 

approach used to estimate function with real value through a sample of observation when not a 

variable parametric model for this function. The kernel is smooth as approximate to the curve 

regression. Nadarya-watson is a special case from local polynomial when     (in equation 

(3). 

In the kernel method arrange the fixed design point              in progressive order then 

calculate the distance between two points      و      such as the distance will be fixed and equal 

to all value from  ,we can get polynomial estimation   ( ) through the polynomial estimation 

 ( ) as the following: 

 ( )       (   )     (   )                        (  ) 

Where:   degree of the polynomial at the point   ,by using weight least square with kernel 

function as the following 

   ∑*    ( )+  (
    

 

 

   

)                          (  ) 

H represents bandwidth parametric which locates the value or the local Neighbour size, when 

the polynomial degree     then    ( ) represents    (fixed limit) and called (NW) 

estimation. We can find the least squared estimation by minimum the criterion as the following: 

  ∑(     )
  (

    

 
)

 

   

                     (  ) 

Then found derivation to according to     and equal to zero: 

∑(     
 )

 
 (

    

 
)

 

   

                       (  ) 
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 (
    

 
)  

 (
    

 
)

                 (  ) 

The equation (24) represents (NW) smooth. If we used any function from kernel functions in a 

table (1) were satisfied assumptions theory We can write the formula (NW) estimation as 

follow: 

   ( )  ∑  

 

   

[
 (

    

 
)  

 (
    

 
)

]  ∑  

 

   

             (  ) 

In fuzzy nonparametric regression to type (LR) the estimation ( ) at the point    as 

follows:[2][5][16] 

   ( )  (   ( )   ( )   ( )   

   ( ))  (
∑      

 
   

∑   
 
   

 
∑       

 
   

∑   
 
   

 
∑       

 
   

∑   
 
   

)                     (  ) 

Meaning the three limits to regression function   ( ) will converge locally to the point 

neighbor by fixed unknown limited to regression function (  ( )  ( )  ( )) 

2.4. Integral Square Error criterion (ISE) [10] 

One of the important statistical criteria, is used to compare nonparametric estimators, for the 

difficult computation of these integral we use the formula mathematical approximate where the 

period of the variable x is divided into many subperiods relative to statistics as follow:  

    
 

   
∑ ( (  )   (  ))

 
      (  )   

                                              

Average Mean Square Error criterion (AMSE):[10] 

The statistical measure used in most studies and research; the formula is: 

     
 

 
∑ (. (  )    (  )/

 

   (  ) 
                                                                                                 

 

3. Implement by Simulink 

For the application of the methods and comparing between them, we used Simulation help us to 

implement theorem, methods, choose different sizes and variances to add select an alternative 

model to the real model understudies we will build a fuzzy nonparametric regression model by 

MATLAB (2019) programing as follow:  
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generating randomly variable ( ) crisp set,   (   ) and generate sizes samples 

(N=50,100,200), variance (SD=0.2,0.4,0.6), generating randomly error vector normally 

distribution  (   (    )) 

generate the fuzzy depended variable ( ) from type (LR) with triangular membership function 

by using cod in MATLAB  

     (    (
(       )

   
 
(       )

   
  ) 

Suggest two test functions to explained the thermotical part  

1-  [           (     )] 

2-  [  ( )                         ] 

 upon two criteria from comparation, ISE, AMSE 
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Figure 5- Flowchart to highlight steps of executing data fuzzing  
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4. Results 

 Below result where the table (1) represents the first test function suggest to apply the methods 

and some figures of different size and variance           (      ) 

 

Table 2- Represents the result the exponential function by two methods with two criteria (ISE, 

AMSE) for all different sizes and variances 

Suggest test function 1:     ( )         (      ) 

Method Sample 

size 

σ = 0.2 σ = 0.4 σ = 0.6 

AMS

E 

ISE AMSE ISE AMSE ISE 

Local-linear 

smooth 

50 0.102

4 

0.022

3 

0.204 0.0892 0.3072 0.2008 

100 0.068

5 

0.005

2 

0.137 0.0207 0.2055 0.0465 

200 0.041

2 

0.00 0.082 0.0261 0.1236 0.0588 

Nadarya-Watson 

smooth 

50 0.155

1 

0.044

9 

0.310

3 

0.1797 0.4654 0.4004 

100 0.157

9 

0.028

7 

0.315

7 

0.1148 0.4736 0.2584 

200 0.157

4 

0.04 0.314 0.1663 0.4722 0.3742 
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Figure 6- Represent (L-L-S) smooth at (SD = 0.4, n=100) 

 

Figure 7- Represent (NW) smooth at (SD= 0.2, N=200) 

 

From above result and graphical superiority local- linear method upon values of criterion to all 

sample sizes and variance and figures to the test function. 

Below result where the table (2) represents the first test function suggest to apply the methods 

and some figures of different size and variance   ( )                       
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Table 3- 

Represent the result of the polynomial function by two methods with two criterions (ISE, 

AMSE) to all different size and variances 

 

Suggest test function 1:       ( )                  

        

Methods Sa

mpl

e 

size 

σ = 0.2 σ = 0.4 σ = 0.6 

AM

SE 

ISE AMS

E 

ISE AMS

E 

ISE 

Local-

linear 

smooth 

50 0.15

59 

0.06

69 

0.410

1 

0.18

78 

0.345

0 

0.5

04 

100 0.15

44 

0.06

57 

0.322

0 

0.15

69 

0.487

9 

0.4

85   

200 0.14

91 

0.06

44 

0.316

5 

0.13

43 

0.477

8 

0.3

98 

Nadarya

-Watson 

smooth 

50 0.00

74 

0.02

34 

0.209

9 

0.07

89 

0.299

2 

0.1

00 

100 0.00

697 

0.02

24 

0.199

9 

0.06

27 

0.235

6 

0.0

54 

200 0.00

47 

0.02

12 

0.167

5 

0.06

19 

0.198

7 

0.0

59 
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Figure 8- Represent (NW) smooth to (SD=0.2, N=100) 

 

 

Figure 9- Represent (L-L-S) smooth at (SD=0.4, N=50) 

 

5. Conclusion 

We conclude by the methods are used in the simulating, the best local-liner smooth method 

because it has attractive bias properties and has the best convergence rate.  to estimate fuzzy 

nonparametric regression of both the test functions upon value to the criterion and figures 

which explain convergent the test function to real function, the better is decreased when 

increasing degree of the polynomial and the good select bandwidth parametric as the choose 

optimal value to bandwidth the balance between bias and variance can be verified. 
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