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 The aim of this paper is to design fast feed forward  neural network to present 

a method to solve second order boundary value problem for ordinary differential 

equations. That is to develop an algorithm which can speedup the solution times, 

reduce solver failures, and increase possibility of obtaining the globally optimal 

solution and we use several different training algorithms many of them having a 

very fast convergence rate for reasonable size networks. Finally, we illustrate the 

method by solving model problem and present comparison with solutions obtained 

using other different method.  
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1. Introduction 

Many methods have been developed so far for 

solving differential equations. Some of them produce a 

solution in the form of an array that contains the value 

of the solution at a selected group of points, others use 

basis functions to represent the solution in analytic 

form and transform the original problem usually to a 

system of algebraic equations.[1] 

Most of the previous study in solving 

differential equations using Artificial neural 

network(ANN) is restricted to the case of solving the 

systems of algebraic equations which result from the 

discretization of the domain. ANN is a simplified  

mathematical model of the human brain, It can be 

implemented by both electric elements and computer 

software. It is a parallel distributed processor with 

large numbers of connections, it is an information 

processing system that has certain performance 

characters in common with biological neural networks. 

Ann have been developed as generalizations of 

mathematical models of human cognition or neural 

biology, based on the assumptions that : [1] 

1- Information processing occurs at many simple 

elements called neurons that is fundamental to the 

operation of ANN's. 

2- Signals are passed between neurons over connection 

links. 
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3- Each connection link has an associated weight 

which, in a typical neural net, multiplies the signal 

transmitted. 

4- Each neuron applies an activation function (usually 

nonlinear) to its net input (sum of weighted input 

signals) to determine its output signal. 

The units in a network are organized into a 

given topology by a set of connections or weights . 

  ANN is Characterized by[2] : 

1- Architecture: its pattern of connections between the 

neurons. 

2- Training Algorithm : its method of determining the 

weights on the connections.  

3- Activation function.  

  ANN are often classified as single layer or 

multilayer. In determining the number of layers, the 

input units are not counted as a layer, because they 

perform no computation. Equivalently, the number of 

layers in the net can be defined to be the number of 

layers of weighted interconnects links between the 

slabs of neurons [3]. 

 

2. Multilayer Feed Forward Architecture [4] 

   In a layered neural network the neurons are 

organized in the form of layers. We have at least two 

layers: an input and an output layer. The layers 

between the input and the output layer (if any) are 

called hidden layers, whose computation nodes are 

correspondingly called hidden neurons or hidden units. 
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Extra hidden neurons raise the network’s ability to 

extract higher-order statistics from (input) data . 

  The ANN is said to be fully connected in the 

sense that every node in each layer of the network is 

connected to every other node in the adjacent forward 

layer , otherwise the network is called partially 

connected. Each layer consists of a certain number of 

neurons; each neuron is connected to other neurons of 

the previous layer through adaptable synaptic weights 

w and biases b. 

 

3. Description of the Method 

In the proposed approach the model function is 

expressed as the sum of two terms: the first term 

satisfies the boundary conditions (BC)  and contains 

no adjustable parameters. The second term can be 

found by using feed forward neural network(FFNN) 

which is trained so as to satisfy the differential 

equation and such technique we called collocation 

neural network. Since it is known that a multilayer 

FFNN with one hidden layer can approximate any 

function to arbitrary accuracy[5], [6] , thus our FFNN 

contains one hidden layer. 

 In this section we will illustrate how our approach can 

be used to find the approximate solution of the general 

form a differential equation of 2nd order :  

  y"(x) = F( x, y(x), y'(x) ) , (1) 

where a subject to certain BC’s and x = (x1, x2, 

…, xn)  Rn, D  Rn denotes the domain and y(x) is 

the solution to be computed. 

  If yt(x, p) denotes a trial solution with 

adjustable parameters p, the problem is transformed to 

a discretize form : 

 Minp i

2

i t i t i t i
p ˆx D

Min G(x , (x ,p), (x ,p), (x ,p))


   
 F(xi , yt(xi ,p), yt'(xi ,p) )  ,  (2) 

subject to the constraints imposed by the BC’s. 

In the our proposed approach, the trial solution 

yt employs a FFNN and the parameters p correspond 

to the weights and biases of the neural architecture. 

We choose a form for the trial function yt(x) such that 

it satisfies the BC’s. This is achieved by writing it as a 

sum of two terms :  

  yt(xi , p) = A(x)  + G( x, N(x, p) ) ,  (3) 

where N(x, p) is a single-output FFNN with 

parameters p and n input units fed with the input 

vector x. The term A(x)  contains no adjustable 

parameters and satisfies the BC’s. The second term G 

is constructed so as not to contribute to the BC’s, since 

yt(x) satisfy them. This term can be formed by using a 

FFNN whose weights and biases are to be adjusted in 

order to deal with the minimization problem. 

 

4. Computation of the Gradient 

 An efficient minimization of (2) can be 

considered as a procedure of training the FFNN, where 

the error corresponding to each input vector xi is the 

value E(xi) which has to forced near zero. 

Computation of this error value involves not only the 

FFNN output but also the derivatives of the output 

with respect to any of its inputs. Therefore, in 

computing the gradient of the error with respect to the 

network weights consider a multi layer FFNN with n 

input units (where n is the dimensions of the domain ) 

one hidden layer with H sigmoid units and a linear 

output unit . 

  For a given input vector x = ( x1, x2, …, xn ) 

the output of the FFNN is :   

   N = 

H

i i

i 1

(z )
=

 
,  where  zi = 

n

ij j i

j 1

w x b
=

+
 

wij denotes the weight connecting the input unit 

j to the hidden unit i  

vi denotes the weight connecting the hidden unit 

i to the out put unit , 

bi denotes the bias of hidden unit i, and  

σ (z) is the sigmoid transfer function ( tansig. ). 

The gradient of FFNN, with respect to the 

parameters of the FFNN can be easily obtained as : 

  

i

N



 =  (zi),  (4) 

i

N

b




 = vi(zi),   (5) 

ij

N

w





 = vi(zi) xj ,  (6) 

Once the derivative of the error with respect to 

the network parameters has been defined, then it is a 

straight forward to employ any minimization 

technique. It must also be noted, the batch mode of 

weight updates may be employed.  

 

5. Illustration Of The Method 

 In this section we describe solution of single 

BVP using FFNN . 

To illustrate the method, we will consider the 

2nd order BVP : 

  d2y(x) / dx2  = f( x, y, y' )   ,  (7) 

where x  [a , b] and the BC : y(a) = A, y(b) = 

B, a trial solution can be written as : 
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  yt(x, p) = (bA– aB)/(b–a) + (B–A)x /(b–a) + 

(x–a)(x–b)N(x, p),  (8) 

where N(x, p) is the output of a FFNN with one 

input unit for x and weights p . 

Note that  

 yt(x) satisfies the BC by construction. The error 

quantity to be minimized is given by : 

 E[p] = 

2n
t i

i t i

i 1

d (x )
f (x , (x ))

dx=

 
−  

 


 d2yt(xi ,p) / dx2 – f(xi , yt(xi ,p) , dyt(xi 

,p) / dx ) }2  ,(9) 

where the xi  [a , b]. Since :  

dyt(x, p)/dx = (B–A)/(b–a)+ {(x–a)+(x–b)}N(x,p) +  

(x–a) (x–b)

dN(x,p)

dx  

and  

d2yt(x, p) /dx2 = 2N(x, p) + 2{(x–a)+(x–b)} 

dN(x,p)

dx +  (x–a) (x–b) d2 N(x, p) /dx2 

it is straightforward to compute the gradient of 

the error with respect to the parameters p using (4) – 

(6). The same holds for all subsequent model 

problems. 

 

6.Algorithm: 

the main steps of the algorithm are the 

following: 

Step1: Determine the variable interval of  the  x, i.e. (  

x  [a,b] ). 

Step2:  input the analytic solution . 

Step3: Determine the Boundary condition. 

Step4: Determine the structure of the neural network 

for solving BVP. 

Step5: Determine the activation function and 

corresponding training algorithm Complete the design. 

Step6: Determine the trial solution. 

Step7: Implementation. 

Step8: compared the neural results and the exact 

results. 

Step9: stop after obtain the globally optimal solution. 

Step10:  if no. 

Step9:  Go to 7. 

 

7. Example 

   In this section we report numerical result, we 

use a multi-layer FFNN having one hidden layer with 

5 hidden units (neurons) and one linear output unit. 

The sigmoid activation of each hidden unit is tansig , 

the analytic solution ya(x) was known in advance. 

Therefore we test the accuracy of the obtained 

solutions by computing the deviation : 

  y(x) = | yt(x) – ya(x) |. 

In order to illustrate the characteristics of the 

solutions provided by the neural network method, we 

provide figures displaying the corresponding deviation 

y(x) both at the few points (training points) that were 

used for training and at many other points (test points) 

of the domain of equation. The latter kind of figures 

are of major importance since they show the 

interpolation capabilities of the neural solution which 

to be superior compared to other solution obtained by 

using other methods. Moreover, we can consider 

points outside the training interval in order to obtain an 

estimate of the extrapolation performance of the 

obtained numerical solution.  

Example 1   

 Consider the following 2nd order BVP : d2y/dx2 = - 

dy/dx + 2y  

with BC: y(0) = 1 , y(1) = e and x  [0, 1]. The 

analytic solution is : ya(x) = exp(x) ,  according to (8) 

the trial neural form of the solution is taken to be : 

  yt(x) = 1 + (e -1) x + x (x - 1) N(x, p) . 

  The FFNN trained using a grid of ten 

equidistant points in [0, 1]. Figure(1) display the 

analytic and neural solutions with Levenberg – 

Marquardt (trainlm) training. The neural results with 

different  types of training algorithm such as : 

Levenberg – Marquardt (trainlm), conjugate gradient 

(traincgp) , quasi – Newton ( trainbfg ) , Bayesian 

Regulation (trainbr) introduced in table (1) and its 

errors given in table (2), table(4) gives the weight and 

bias of the designer network ,table(3) gives the 

performance of the train with epoch and time . 

Ibraheem and Khalaf [7] solve this example by 

using (integration and interpolation techniques) and 

Neural Networks and gave the maximum error value is 

max  yexact - yNN  = 1.2089E-008 and solution time 

is 5.9070 sec. and the result obtained by the neural 

network given in figure 2 

Example 2 

  Consider the following 2nd order BVP :  

 

with BC: y(0) = 0 , y(1) = 1 and x  [0, 1]. The 

analytic solution is : ya(x) = 2x /(x+1),  according to 

(8) the trial neural form of the solution is taken to be : 
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  yt(x) = x + x (x – 1) N(x, p) . 

  The FFNN trained using a grid of ten 

equidistant points in [0, 1]. Figure(3) display the 

analytic and neural solutions with Levenberg – 

Marquardt (trainlm) training. The neural results with 

different  types of training algorithm such as : 

Levenberg – Marquardt (trainlm), conjugate gradient 

(traincgp) , quasi – Newton ( trainbfg ) , Bayesian 

Regulation (trainbr) introduced in table (5) and its 

errors given in table (6), table(7) gives the weight and 

bias of the designer network ,table(8) gives the 

performance of the train with epoch and time . 

Ibraheem and Khalaf [7] solve this example by 

using (integration and interpolation techniques) and 

Neural Networks and gave the maximum error value is 

max  yexact - yNN  = 44.3729E-004 and solution 

time is 3.8750 sec. and the result obtained by the 

neural network given in figure 4. 

 

8. Conclusion 

 From the above problems it is clear that the 

method which proposed can handle effectively ODE 

and provide accurate approximate solution throughout 

the whole domain and not only at the training points. 

As evident from the tables, the results of proposed 

method are more precise as compared to neural 

network suggested in [7].  

It is very difficult to know which training 

algorithm will be the fastest for a given problem. It 

will depend on many factors including the complexity 

of the problem, the number of data points in the 

training set, the number of weights and biases in the 

FFNN, the error goal, and whether the FFNN is being 

used for pattern recognition (discriminant analysis) or 

function approximation (regression). 

In general, the practical results on FFNN show 

which contain up to a few hundred weights the 

Levenberg-Marquardt algorithm (trainlm) will have 

the fastest convergence, then  trainbr and then trainbfg. 

However, "trainbr" it does not perform well on 

function approximation on problems. The "traincg",  

algorithms have relatively modest memory 

requirements in particular "traincgp", but the 

computation required does increase geometrically with 

the size of the FFNN . The performance of the various 

algorithms can be affected by the accuracy required of 

the approximation.    
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  Table2 : Accuracy of solutions for example 1 
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Table3 : the performance of the train with epoch and 

time 

Time Epoch 
Performance 

of train 
TrainFcn 

0:00:02 148 7.75e-32 Trainlm 

0:00:05 282 2.49e-18 Trainbfg 

0:00:01 48 5.87e-07 Traincgp 

0:00:06 396 6.15e-10 Trainbr 

 
 



P- ISSN  1991-8941   E-ISSN 2706-6703           Journal of University of Anbar for Pure Science (JUAPS)     Open Access                                                     

2013,(7), (1 ) :149-157                              

 

154 

Table 4: Weight and bias of the network for different 

training algorithm 

Weights and bias for trainlm 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 

0.5134 0.8604 0.0521 

0.1776 0.9344 0.9312 

0.3986 0.9844 0.7287 

0.1339 0.8589 0.7378 

0.0309 0.7856 0.0634 

Weights and bias for trainbfg 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 

0.0292 0.4242 0.7112 

0.9289 0.5079 0.2217 

0.7303 0.0855 0.1174 

0.4886 0.2625 0.2967 

0.5785 0.8010 0.3188 

Weights and bias for traincgp 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 

0.6511 0.8978 0.9431 

0.1336 0.4972 0.1127 

0.6385 0.7713 0.6483 

0.3849 0.0604 0.4808 

0.7657 0.2625 0.0665 

Weights and bias for trainbr 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 

0.0321 0.6153 0.9158 

0.8271 0.5831 0.1355 

0.3400 0.6983 0.3321 

0.8467 0.0293 0.8975 

0.2461 0.5279 0.4996 
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Figure 1: analytic and neural solution of example 1 using 

: trainlm training algorithm 

 

    

Figure2a. Learning curve of NN gave in [7] for Example 

1 

 
Figure2b. Curve of NN gave in [7] and exact for 

Example 1 
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Table 6 : Accuracy of solutions for example 2 
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Table 7: Weight and bias of the network for different 

training algorithm 

Weights and bias for trainbfg 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 

0.7613 0.2021 0.2040 

0.4027 0.4691 0.6241 

0.6743 0.3784 0.7252 

0.5511 0.3404 0.8344 

0.0515 0.0639 0.0189 

Weights and bias for trainlm 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 

0.0018 0.5932 0.4884 

0.7118 0.3044 0.7290 

0.8677 0.9677 0.2026 

0.1183 0.8960 0.2163 

0.0390 0.1900 0.9763 

Weights and bias for traincgp 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 

0.7058 0.5066 0.2039 

0.1331 0.7169 0.3867 

0.6655 0.3012 0.0650 

0.3756 0.7060 0.4323 

0.5024 0.9152 0.6897 

Weights and bias for trainbr 
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Net.B{1} Net.LW{2,1} Net.IW{1,1} 

0.5711 0.6603 0.4559 

0.6902 0.6805 0.2428 

0.8956 0.8506 0.0019 

0.2669 0.0373 0.6153 

0.0686 0.6808 0.6612 

 
Table  8 : the performance of the train with epoch and 

time 

Time Epoch 
Performance 

of train 
TrainFcn 

0:00:08 530 6.87e-32 Trainlm 

0:00:20 1157 6.98e-19 Trainbfg 

0:00:00 26 6.48e-08 Traincgp 

0:00:01 92 8.47e-10 Trainbr 
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Figure 3: analytic and neural solution of example 1 using 

: trainlm training algorithm 

 

 

   Figure4a. Learning curve of NN for Example 2 gave in 

[7] 

 
 Figure4b. Curve of NN gave in [7] and exact solution for 

Example 2 
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 تصميم شبكة عصبية ذات تغـذية تقـدمية لحل مسائل قيم حدودية

 منى حسين علي              لمى ناجي محمد توفيق

 الخلاصة
ـدمية تمثل طريقــة لحــل م ــم ل وــيم لدعايــة لتماــما ت الياميــتية ا عييمايــة عهــذا يا ــ  الهدف من البحث هو تصميم شبكة عصبية ذات تغـذية تق

ي ــ  تطوير خوارزمية اليدريب بحيــث ت ــرن زمــن الحــل عتقتــل مــن لــم ت الالــل حــ  الحصــوك عتــا الحــل ع تليــد ممكمييــة الحصــوك عتــا الحــل المثــمل  الر  
اة باضهم يميتك ي بة تقمرب سرياة جدا ح  لملة اللبكمت الي  تميتك ملجمم ماقولــة مخيــرا عيــح م عاسيخدم م ح  ذلك عدا من خوارزميمت اليدريب المخيت

 .   [7]الطريقة من خلاك لل مثملين عقمريم ييم ج اللبكة المقيرلة مع ييم ج المصدر
    


