
P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2013,(7), (1) :149-157

149

Design Feed Forward Neural Network To Solve Boundary Value

Problems

Luma. N. M. Tawfiq Muna. H. Ali

Baghdad University - College of Education Ibn Al-Haitham.

A R T I C L E I N F O A B S T R A C T

Received: 6 / 3 /2012

Accepted: 18 / 9 /2012

Available online: 30/11/2013

DOI: 10.37652/juaps.2013.84593

 The aim of this paper is to design fast feed forward neural network to present

a method to solve second order boundary value problem for ordinary differential

equations. That is to develop an algorithm which can speedup the solution times,

reduce solver failures, and increase possibility of obtaining the globally optimal

solution and we use several different training algorithms many of them having a

very fast convergence rate for reasonable size networks. Finally, we illustrate the

method by solving model problem and present comparison with solutions obtained

using other different method.

Keywords:

Artificial neural network,

Feed Forward neural network,

Training Algorithm ,

ODE.

1. Introduction

Many methods have been developed so far for

solving differential equations. Some of them produce a

solution in the form of an array that contains the value

of the solution at a selected group of points, others use

basis functions to represent the solution in analytic

form and transform the original problem usually to a

system of algebraic equations.[1]

Most of the previous study in solving

differential equations using Artificial neural

network(ANN) is restricted to the case of solving the

systems of algebraic equations which result from the

discretization of the domain. ANN is a simplified

mathematical model of the human brain, It can be

implemented by both electric elements and computer

software. It is a parallel distributed processor with

large numbers of connections, it is an information

processing system that has certain performance

characters in common with biological neural networks.

Ann have been developed as generalizations of

mathematical models of human cognition or neural

biology, based on the assumptions that : [1]

1- Information processing occurs at many simple

elements called neurons that is fundamental to the

operation of ANN's.

2- Signals are passed between neurons over connection

links.

* Corresponding author at: Baghdad University - College of

Education Ibn Al-Haitham.;
 ORCID: https://orcid.org/0000-0001-5859-6212 .Mobil:777777

E-mail address:

3- Each connection link has an associated weight

which, in a typical neural net, multiplies the signal

transmitted.

4- Each neuron applies an activation function (usually

nonlinear) to its net input (sum of weighted input

signals) to determine its output signal.

The units in a network are organized into a

given topology by a set of connections or weights .

 ANN is Characterized by[2] :

1- Architecture: its pattern of connections between the

neurons.

2- Training Algorithm : its method of determining the

weights on the connections.

3- Activation function.

 ANN are often classified as single layer or

multilayer. In determining the number of layers, the

input units are not counted as a layer, because they

perform no computation. Equivalently, the number of

layers in the net can be defined to be the number of

layers of weighted interconnects links between the

slabs of neurons [3].

2. Multilayer Feed Forward Architecture [4]

 In a layered neural network the neurons are

organized in the form of layers. We have at least two

layers: an input and an output layer. The layers

between the input and the output layer (if any) are

called hidden layers, whose computation nodes are

correspondingly called hidden neurons or hidden units.

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2013,(7), (1) :149-157

150

Extra hidden neurons raise the network’s ability to

extract higher-order statistics from (input) data .

 The ANN is said to be fully connected in the

sense that every node in each layer of the network is

connected to every other node in the adjacent forward

layer , otherwise the network is called partially

connected. Each layer consists of a certain number of

neurons; each neuron is connected to other neurons of

the previous layer through adaptable synaptic weights

w and biases b.

3. Description of the Method

In the proposed approach the model function is

expressed as the sum of two terms: the first term

satisfies the boundary conditions (BC) and contains

no adjustable parameters. The second term can be

found by using feed forward neural network(FFNN)

which is trained so as to satisfy the differential

equation and such technique we called collocation

neural network. Since it is known that a multilayer

FFNN with one hidden layer can approximate any

function to arbitrary accuracy[5], [6] , thus our FFNN

contains one hidden layer.

 In this section we will illustrate how our approach can

be used to find the approximate solution of the general

form a differential equation of 2nd order :

 y"(x) = F(x, y(x), y'(x)) , (1)

where a subject to certain BC’s and x = (x1, x2,

…, xn)  Rn, D  Rn denotes the domain and y(x) is

the solution to be computed.

 If yt(x, p) denotes a trial solution with

adjustable parameters p, the problem is transformed to

a discretize form :

 Minp i

2

i t i t i t i
p ˆx D

Min G(x , (x ,p), (x ,p), (x ,p))


   
 F(xi , yt(xi ,p), yt'(xi ,p)) , (2)

subject to the constraints imposed by the BC’s.

In the our proposed approach, the trial solution

yt employs a FFNN and the parameters p correspond

to the weights and biases of the neural architecture.

We choose a form for the trial function yt(x) such that

it satisfies the BC’s. This is achieved by writing it as a

sum of two terms :

 yt(xi , p) = A(x) + G(x, N(x, p)) , (3)

where N(x, p) is a single-output FFNN with

parameters p and n input units fed with the input

vector x. The term A(x) contains no adjustable

parameters and satisfies the BC’s. The second term G

is constructed so as not to contribute to the BC’s, since

yt(x) satisfy them. This term can be formed by using a

FFNN whose weights and biases are to be adjusted in

order to deal with the minimization problem.

4. Computation of the Gradient

 An efficient minimization of (2) can be

considered as a procedure of training the FFNN, where

the error corresponding to each input vector xi is the

value E(xi) which has to forced near zero.

Computation of this error value involves not only the

FFNN output but also the derivatives of the output

with respect to any of its inputs. Therefore, in

computing the gradient of the error with respect to the

network weights consider a multi layer FFNN with n

input units (where n is the dimensions of the domain)

one hidden layer with H sigmoid units and a linear

output unit .

 For a given input vector x = (x1, x2, …, xn)

the output of the FFNN is :

 N =

H

i i

i 1

(z)
=

 
, where zi =

n

ij j i

j 1

w x b
=

+

wij denotes the weight connecting the input unit

j to the hidden unit i

vi denotes the weight connecting the hidden unit

i to the out put unit ,

bi denotes the bias of hidden unit i, and

σ (z) is the sigmoid transfer function (tansig.).

The gradient of FFNN, with respect to the

parameters of the FFNN can be easily obtained as :

i

N



 =  (zi), (4)

i

N

b




 = vi(zi), (5)

ij

N

w





 = vi(zi) xj , (6)

Once the derivative of the error with respect to

the network parameters has been defined, then it is a

straight forward to employ any minimization

technique. It must also be noted, the batch mode of

weight updates may be employed.

5. Illustration Of The Method

 In this section we describe solution of single

BVP using FFNN .

To illustrate the method, we will consider the

2nd order BVP :

 d2y(x) / dx2 = f(x, y, y') , (7)

where x  [a , b] and the BC : y(a) = A, y(b) =

B, a trial solution can be written as :

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2013,(7), (1) :149-157

151

 yt(x, p) = (bA– aB)/(b–a) + (B–A)x /(b–a) +

(x–a)(x–b)N(x, p), (8)

where N(x, p) is the output of a FFNN with one

input unit for x and weights p .

Note that

 yt(x) satisfies the BC by construction. The error

quantity to be minimized is given by :

 E[p] =

2n
t i

i t i

i 1

d (x)
f (x , (x))

dx=

 
−  

 


 d2yt(xi ,p) / dx2 – f(xi , yt(xi ,p) , dyt(xi

,p) / dx) }2 ,(9)

where the xi  [a , b]. Since :

dyt(x, p)/dx = (B–A)/(b–a)+ {(x–a)+(x–b)}N(x,p) +

(x–a) (x–b)

dN(x,p)

dx

and

d2yt(x, p) /dx2 = 2N(x, p) + 2{(x–a)+(x–b)}

dN(x,p)

dx + (x–a) (x–b) d2 N(x, p) /dx2

it is straightforward to compute the gradient of

the error with respect to the parameters p using (4) –

(6). The same holds for all subsequent model

problems.

6.Algorithm:

the main steps of the algorithm are the

following:

Step1: Determine the variable interval of the x, i.e. (

x  [a,b]).

Step2: input the analytic solution .

Step3: Determine the Boundary condition.

Step4: Determine the structure of the neural network

for solving BVP.

Step5: Determine the activation function and

corresponding training algorithm Complete the design.

Step6: Determine the trial solution.

Step7: Implementation.

Step8: compared the neural results and the exact

results.

Step9: stop after obtain the globally optimal solution.

Step10: if no.

Step9: Go to 7.

7. Example

 In this section we report numerical result, we

use a multi-layer FFNN having one hidden layer with

5 hidden units (neurons) and one linear output unit.

The sigmoid activation of each hidden unit is tansig ,

the analytic solution ya(x) was known in advance.

Therefore we test the accuracy of the obtained

solutions by computing the deviation :

 y(x) = | yt(x) – ya(x) |.

In order to illustrate the characteristics of the

solutions provided by the neural network method, we

provide figures displaying the corresponding deviation

y(x) both at the few points (training points) that were

used for training and at many other points (test points)

of the domain of equation. The latter kind of figures

are of major importance since they show the

interpolation capabilities of the neural solution which

to be superior compared to other solution obtained by

using other methods. Moreover, we can consider

points outside the training interval in order to obtain an

estimate of the extrapolation performance of the

obtained numerical solution.

Example 1

 Consider the following 2nd order BVP : d2y/dx2 = -

dy/dx + 2y

with BC: y(0) = 1 , y(1) = e and x  [0, 1]. The

analytic solution is : ya(x) = exp(x) , according to (8)

the trial neural form of the solution is taken to be :

 yt(x) = 1 + (e -1) x + x (x - 1) N(x, p) .

 The FFNN trained using a grid of ten

equidistant points in [0, 1]. Figure(1) display the

analytic and neural solutions with Levenberg –

Marquardt (trainlm) training. The neural results with

different types of training algorithm such as :

Levenberg – Marquardt (trainlm), conjugate gradient

(traincgp) , quasi – Newton (trainbfg) , Bayesian

Regulation (trainbr) introduced in table (1) and its

errors given in table (2), table(4) gives the weight and

bias of the designer network ,table(3) gives the

performance of the train with epoch and time .

Ibraheem and Khalaf [7] solve this example by

using (integration and interpolation techniques) and

Neural Networks and gave the maximum error value is

max  yexact - yNN  = 1.2089E-008 and solution time

is 5.9070 sec. and the result obtained by the neural

network given in figure 2

Example 2

 Consider the following 2nd order BVP :

with BC: y(0) = 0 , y(1) = 1 and x  [0, 1]. The

analytic solution is : ya(x) = 2x /(x+1), according to

(8) the trial neural form of the solution is taken to be :

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2013,(7), (1) :149-157

152

 yt(x) = x + x (x – 1) N(x, p) .

 The FFNN trained using a grid of ten

equidistant points in [0, 1]. Figure(3) display the

analytic and neural solutions with Levenberg –

Marquardt (trainlm) training. The neural results with

different types of training algorithm such as :

Levenberg – Marquardt (trainlm), conjugate gradient

(traincgp) , quasi – Newton (trainbfg) , Bayesian

Regulation (trainbr) introduced in table (5) and its

errors given in table (6), table(7) gives the weight and

bias of the designer network ,table(8) gives the

performance of the train with epoch and time .

Ibraheem and Khalaf [7] solve this example by

using (integration and interpolation techniques) and

Neural Networks and gave the maximum error value is

max  yexact - yNN  = 44.3729E-004 and solution

time is 3.8750 sec. and the result obtained by the

neural network given in figure 4.

8. Conclusion

 From the above problems it is clear that the

method which proposed can handle effectively ODE

and provide accurate approximate solution throughout

the whole domain and not only at the training points.

As evident from the tables, the results of proposed

method are more precise as compared to neural

network suggested in [7].

It is very difficult to know which training

algorithm will be the fastest for a given problem. It

will depend on many factors including the complexity

of the problem, the number of data points in the

training set, the number of weights and biases in the

FFNN, the error goal, and whether the FFNN is being

used for pattern recognition (discriminant analysis) or

function approximation (regression).

In general, the practical results on FFNN show

which contain up to a few hundred weights the

Levenberg-Marquardt algorithm (trainlm) will have

the fastest convergence, then trainbr and then trainbfg.

However, "trainbr" it does not perform well on

function approximation on problems. The "traincg",

algorithms have relatively modest memory

requirements in particular "traincgp", but the

computation required does increase geometrically with

the size of the FFNN . The performance of the various

algorithms can be affected by the accuracy required of

the approximation.

References

[1] I. A.Galushkin, " Neural Networks Theory", Berlin

Heidelberg , 2007.

[2] R. M. Hristev , " The ANN Book ", Edition 1,

1998.

[3] T.Villmann, U.Seiffert and A.Wismϋller , " Theory

and Applications of Neural maps ", ESANN2004

PROCEEDINGS - European Symposium on Ann,

pp.25 - 38, April 2004 .

[4] L.N.M.Tawfiq and R.S.Naoum , " On Training of

Artificial Neural Networks " , AL-Fath Jornal , No

23, 2005 .

[5] L.N.M.Tawfiq and R.S.Naoum " Density and

approximation by using feed forward Artificial

neural networks ", Ibn Al-Haitham Journal for Pure

& Applied Sciences, Vol. 20 (1) 2007.

[6] A. K. Jabber ," On Training Feed Forward Neural

Networks for Approximation Problem ", MSc

Thesis, Baghdad University, College of Education

(Ibn Al-Haitham), 2009.

[7] K. I. Ibraheem and B. M. Khalaf , Shooting Neural

Networks Algorithm for Solving Boundary Value

Problems in ODEs , Applications and Applied

Mathematics: An International Journal , Vol. 6,

Issue 11 , pp. 1927 – 1941, 2011.

Table1: Analytic and Neural solution of example 1

(x)tOut of FFNN y

E
x

a
ct

so
lu

ti
o
n

In
p

u
t

T
ra

in
b

r
 T

ra
in

cg
p

T
ra

in
b

fg

T
ra

in
lm

(x
)

a
y

x

0
.9

9
9
9

9
9

5
2

5
4

6
0

5
7

8
 0
.9

9
7
4

5
0

5
5

5
5

2
2

4
6

2
 1
.0

0
0
0

0
0

0
0

1
6

6
9

8
8

 1
.0

0
0
0

0
9

8
3

0
8

9
9

0
5

1
 0

.0

1
.1

0
5
2

2
9

2
5

6
6

9
8

2
4

 1
.1

0
4
6

1
3

7
2

1
7

7
4

8
0

 1
.1

0
5
1

7
0

9
1

8
4

4
1

0
9

 1
.1

0
5
1

7
0

9
1

8
0

7
5

6
5

 1
.1

0
5
1

7
0

9
1

8
0

7
5

6
5

0
.1

1
.2

2
1
4

0
9

7
2

3
8

5
7

9
4

 1
.2

2
1
9

7
6

0
0

8
3

8
7

4
6

 1
.2

2
1
4

0
9

6
0

6
0

9
1

8
2

 1
.2

2
1
4

0
2

7
5

8
1

6
0

1
7

 1
.2

2
1
4

0
2

7
5

8
1

6
0

1
7

0
.2

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2013,(7), (1) :149-157

153

1
.3

4
9
8

4
1

7
5

8
8

3
6

8
0

 1
.3

5
0
5

2
9

3
5

8
6

4
0

2
7

 1
.3

4
9
8

6
4

5
3

9
9

1
8

3
0

 1
.3

4
9
8

5
8

8
0

7
5

7
6

0
0

 1
.3

4
9
8

5
8

8
0

7
5

7
6

0
0

0
.3

1
.4

9
1
8

3
9

2
1

8
7

2
6

3
9

 1
.4

9
1
8

0
2

1
3

3
7

0
6

4
6

 1
.4

9
1
8

2
4

7
0

0
7

5
5

9
7

 1
.4

9
1
8

2
4

6
9

7
6

4
1

2
7

 1
.4

9
1
8

2
4

6
9

7
6

4
1

2
7

0
.4

1
.6

4
8
7

5
6

4
3

0
4

4
5

8
3

 1
.6

4
7
9

2
4

3
8

4
1

0
0

3
6

 1
.6

4
8
7

2
1

2
7

0
4

2
2

8
5

 1
.6

4
8
7

2
2

5
8

1
8

0
3

1
6

 1
.6

4
8
7

2
1

2
7

0
7

0
0

1
3

0
.5

1
.8

2
2
1

1
1

4
8

6
9

6
1

2
0

 1
.8

2
1
4

3
0

2
4

0
3

7
2

4
2

 1
.8

2
2
1

1
8

8
0

0
4

2
9

7
0

 1
.8

2
2
1

1
8

8
0

0
3

9
0

5
1

 1
.8

2
2
1

1
8

8
0

0
3

9
0

5
1

0
.6

2
.0

1
3
7

5
6

1
2

1
5

0
6

2
4

 2
.0

1
4
5

8
5

7
5

9
8

4
9

5
6

 2
.0

1
3
7

3
1

5
1

8
5

1
3

5
9

 2
.0

1
3
7

4
6

1
5

2
7

1
5

9
8

 2
.0

1
3
7

5
2

7
0

7
4

7
0

4
8

0
.7

2
.2

2
5
8

8
7

5
7

5
4

0
9

5
6

 2
.2

2
8
1

1
0

2
0

0
4

4
3

8
3

 2
.2

2
5
4

9
2

4
0

0
2

7
1

4
0

 2
.2

2
5
5

4
0

9
2

8
4

9
2

4
7

 2
.2

2
5
5

4
0

9
2

8
4

9
2

4
7

0
.8

2
.4

6
0
5

4
5

7
2

4
1

9
4

1
8

 2
.4

5
9
5

1
3

1
3

2
8

1
1

2
1

 2
.4

5
9
6

0
3

1
1

3
0

3
6

8
2

 2
.4

5
9
6

5
0

8
2

6
9

2
1

0
7

 2
.4

5
9
6

0
3

1
1

1
1

5
6

9
5

0
.9

2
.7

1
8
2

8
1

6
1

8
5

0
5

2
4

 2
.7

0
1
8

7
3

9
5

1
2

5
6

7
6

 2
.7

1
8
2

8
1

8
2

9
5

5
0

4
8

 2
.7

1
8
2

8
1

8
2

8
4

5
9

0
5

 2
.7

1
8
2

8
1

8
2

8
4

5
9

0
5

1
.0

 Table2 : Accuracy of solutions for example 1

 (x) |ay −(x) t| y =y(x) Deviation

(x) computed by the ty h e r e w

following training algorithm

T
ra

in
b

r
 T

ra
in

cg
p

T
ra

in
b

fg
 T

ra
in

lm

4
.7

4
5
3

9
4

2
2

3
1

2
6

8
1

e-
0

7

0
.0

0
2
5

4
9

4
4

4
4

7
7

5
3

8
0

2
 1

.6
6

9
8

7
5

3
4

9
1

0
8

4
5

e-
0

9

9
.8

3
0
8

9
9

0
5

3
4

8
6

7
8

e-
0

6

5
.8

3
3
8

6
2

2
5

8
8

9
7

1
5

e-
0

5

0
.0

0
0
5

5
7

1
9

6
3

0
0

8
5

1
4

9
2

3
.6

5
4
4

2
7

8
7

1
4

2
4

5
6

e-
1

0

2
.2

2
0
4

4
6

0
4

2
5
0

3
1

9

e-
1

6

6
.9

6
5
6

9
7

7
6

7
4

8
0

3
5

e-
0

6

0
.0

0
0
5

7
3

2
5

0
2

2
7

2
9

4
1

5
3

6
.8

4
7
9

3
1

6
5

3
0

6
4

5
2

e-
0

6

2
.2

2
0
4

4
6

0
4

9
2

5
0

3
1

e-
1

6

1
.7

0
4
8

7
3

9
2

0
4

8
2

8
0

e-
0

5

0
.0

0
0
6

7
0

5
5

1
0

6
4

2
6

7
7

2
2

5
.7

3
2
3

4
2

2
9

1
9

5
3

0
7

e-
0

6

4
.4

4
0
8

9
2

0
9

8
5

0
0

6
3

e-
1

6

1
.4

5
2
1

0
8

5
1

2
2

7
8

7
3

e-
0

5

2
.2

5
6
3

9
3

4
8

0
5

4
8

6
2

e-
0

5

3
.1

1
4
7

0
2

7
1

7
9

6
5

6
6

e-
0

9

0

3
.5

1
5
9

7
4

5
7

0
5

5
5

9
7

e-
0

5

0
.0

0
0
7

9
6

8
8

6
5

9
9

7
6

9
3

9
8

2
.7

7
2
8

1
3

0
9

0
2

4
6

0
2

e-
1

0

1
.3

1
1
1

0
3

0
2

7
4

7
9

2
8

e-
0

6

7
.3

1
3
4

2
9

3
1

3
0

3
8

3
6

e-
0

6

0
.0

0
0
6

8
8

5
6

0
0

1
8

0
8

7
4

8
1

3
.9

1
9
5

0
9

1
6

1
6

7
6

1
6

e-
1

1

2
.2

2
0
4

4
6

0
4

9
2

5
0

3
1

e-
1

6

3
.4

1
4
0

3
5

7
6

5
6

4
7

5
8

e-
0

6

0
.0

0
0
8

3
3

0
5

2
3

7
9

0
8

0
2

6
8

2
.1

1
8
8

9
5

6
8

9
1

7
3

7
8

e-
0

5

6
.5

5
4
7

5
4

4
9

8
8

2
0

7
1

e-
0

6

0
.0

0
0
3

4
6

6
4

6
9

1
7

0
9

2
7

4
1

0
.0

0
2
5

6
9

2
7

1
9

5
1

3
6

2
5

8
 4

.8
5

2
8

2
2

1
0

6
7

8
2

2
8

e-
0

5

0

0
.0

0
0
9

4
2

6
1

3
0

3
7

2
3

4
0

8
6

8
.9

9
7
8

3
4

5
7

4
2

2
0

3
2

e-
0

5

1
.8

7
9
8

7
4

4
7

8
3

0
5

5
1

e-
0

9

4
.7

7
1
5

7
6

4
1

1
5

8
8

5
4

e-
0

5

2
.0

9
9
5

3
8

0
9

0
0

5
0

1
5

e-
0

7

0
.0

1
6
4

0
7

8
7

7
2

0
2

2
8

6
9

 1
.0

9
1
4

3
8

9
3

9
2

2
6

9
2

e-
0

9

4
.4

4
0
8

9
2

0
9

8
5

0
0

6
3

e-
1

6

Table3 : the performance of the train with epoch and

time

Time Epoch
Performance

of train
TrainFcn

0:00:02 148 7.75e-32 Trainlm

0:00:05 282 2.49e-18 Trainbfg

0:00:01 48 5.87e-07 Traincgp

0:00:06 396 6.15e-10 Trainbr

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2013,(7), (1) :149-157

154

Table 4: Weight and bias of the network for different

training algorithm

Weights and bias for trainlm

Net.B{1} Net.LW{2,1} Net.IW{1,1}

0.5134 0.8604 0.0521

0.1776 0.9344 0.9312

0.3986 0.9844 0.7287

0.1339 0.8589 0.7378

0.0309 0.7856 0.0634

Weights and bias for trainbfg

Net.B{1} Net.LW{2,1} Net.IW{1,1}

0.0292 0.4242 0.7112

0.9289 0.5079 0.2217

0.7303 0.0855 0.1174

0.4886 0.2625 0.2967

0.5785 0.8010 0.3188

Weights and bias for traincgp

Net.B{1} Net.LW{2,1} Net.IW{1,1}

0.6511 0.8978 0.9431

0.1336 0.4972 0.1127

0.6385 0.7713 0.6483

0.3849 0.0604 0.4808

0.7657 0.2625 0.0665

Weights and bias for trainbr

Net.B{1} Net.LW{2,1} Net.IW{1,1}

0.0321 0.6153 0.9158

0.8271 0.5831 0.1355

0.3400 0.6983 0.3321

0.8467 0.0293 0.8975

0.2461 0.5279 0.4996

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x

yt

Figure 1: analytic and neural solution of example 1 using

: trainlm training algorithm

Figure2a. Learning curve of NN gave in [7] for Example

1

Figure2b. Curve of NN gave in [7] and exact for

Example 1

Table5: Analytic and Neural solution of example 2

(x)tOut of FFNN y

E
x

a
ct

so
lu

ti
o
n

In
p

u
t

T
ra

in
b

r
 T

ra
in

cg
p

T
ra

in
b

fg

T
ra

in
lm

(x
)

a
y

X

2
.1

0
0
6

2
3

7
6

1
8

8
0

3
6

e-
0

6

2
.9

5
2
5

2
6

3
0

0
7

8
1

2
4

e-
0

5

1
.2

8
1
3

9
4

9
9

0
1

1
5

8
1

e-
1

0

0

0
 0

.0

0
.1

8
1
3

8
4

7
4

8
7

5
4

5
0

4
 0
.1

7
9
8

1
3

9
1

8
0

9
3

0
0

8
 0
.1

8
1
4

6
0

8
1

3
3

8
9

4
3

4
 0
.1

8
1
6

3
2

4
9

9
0

1
0

1
7

0
 0
.1

8
1
8

1
8

1
8

1
8

1
8

1
8

2

0
.1

0
.3

3
3
3

2
9

4
8

6
0

0
6

8
4

0
 0
.3

3
2
9

8
6

3
6

1
9

7
6

8
6

9
 0
.3

3
3
2

4
8

1
2

1
1

2
5

5
6

8
 0
.3

3
3
3

3
3

3
3

3
3

3
3

3
3

3
 0
.3

3
3
3

3
3

3
3

3
3

3
3

3
3

3

0
.2

0
.4

6
1
5

5
4

4
9

4
7

1
9

6
7

6
 0
.4

6
2
1

4
0

6
4

4
5

7
9

7
9

6
 0
.4

6
1
5

3
8

4
6

2
5

0
5

0
3

6
 0
.4

6
1
5

3
8

4
6

1
5

3
8

4
6

2
 0
.4

6
1
5

3
8

4
6

1
5

3
8

4
6

2

0
.3

0
.5

7
1
4

0
9

3
1

9
6

5
3

5
2

7
 0
.5

7
1
9

1
9

0
1

6
3

5
7

4
4

2
 0
.5

7
1
4

2
8

5
7

0
5

2
5

4
8

9
 0
.5

7
1
3

9
5

2
3

1
1

6
4

3
6

8
 0
.5

7
1
4

2
8

5
7

1
4

2
8

5
7

2

0
.4

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2013,(7), (1) :149-157

155

0
.6

6
6
6

8
0

4
0

9
8

9
3

7
6

3
 0
.6

6
6
6

9
5

2
8

4
9

8
6

1
9

2
 0
.6

6
6
6

6
6

6
6

6
2

8
3

0
7

4
 0
.6

6
6
6

3
6

8
7

3
1

8
2

7
1

8
 0
.6

6
6
6

6
6

6
6

6
6

6
6

6
6

7

0
.5

0
.7

4
9
9

9
6

6
2

9
6

8
0

5
5

2
 0
.7

4
9
7

6
1

5
5

0
7

3
8

8
2

3
 0
.7

5
0
0

0
0

0
0

1
6

8
0

5
9

0
 0
.7

4
9
9

8
9

7
6

0
1

8
6

7
6

7
 0
.7

5
0
0

0
0

0
0

0
0

0
0

0
0

0

0
.6

0
.8

2
3
4

1
2

8
3

1
1

6
3

5
5

0
 0
.8

2
3
3

4
4

8
3

7
5

1
1

3
7

9
 0
.8

2
3
5

2
5

8
7

9
4

3
1

5
6

5
 0
.8

2
3
5

2
9

4
1

1
7

6
4

7
0

6
 0
.8

2
3
5

2
9

4
1

1
7

6
4

7
0

6

0
.7

0
.8

8
8
6

9
5

3
3

2
1

4
1

9
0

8
 0
.8

8
8
8

9
5

7
1

4
1

6
0

7
3

8
 0
.8

8
8
8

8
8

8
8

9
2

5
8

3
7

9
 0
.8

8
8
8

8
8

8
8

8
8

8
8

8
8

9
 0
.8

8
8
8

8
8

8
8

8
8

8
8

8
8

9

0
.8

0
.9

4
7
3

6
8

4
6

4
5

7
3

0
8

1
 0
.9

4
7
3

7
9

7
9

0
4

8
6

3
5

9
 0
.9

4
7
3

7
9

1
3

3
3

4
7

4
6

6
 0
.9

4
7
3

6
8

4
2

1
0

5
2

6
3

1
 0
.9

4
7
3

6
8

4
2

1
0

5
2

6
3

2

0
.9

1
.0

0
0
6

8
4

9
0

6
6

8
4

7
3

 0
.9

9
9
4

9
0

0
6

4
8

7
8

1
6

5
 1
.0

0
0
0

0
0

0
0

0
1

1
7

1
2

 1
.0

0
0
0

0
0

0
0

0
0

0
0

0
0

1
 1

.0

Table 6 : Accuracy of solutions for example 2

 (x) |ay −(x) t| y =y(x) Deviation

(x) computed by the ty w h e r e

following training algorithm

T
ra

in
b

r
 T

ra
in

cg
p

T
ra

in
b

fg
 T

ra
in

lm

2
.1

0
0
6

2
3

7
6

1
8

8
0

3
6

e-
0

6

2
.9

5
2
5

2
6

3
0

0
7

8
1

2
4

e-
0

5

1
.2

8
1
3

9
4

9
9

0
1

1
5

8
1

e-
1

0

0

0
.0

0
0
4

3
3

4
3

3
0

6
3

6
7

8
0

4
6

0
.0

0
2
0

0
4

2
6

3
7

2
5

1
7

4
3

2
 9

.0
3

0
8

2
3

8
6

6
4

9
6

0
1

e-
1

0

0
.0

0
0
1

8
5

6
8

2
8

0
8

0
1

1
6

7
8

3
.8

4
7
3

2
6

4
9

3
5

5
5

6
8

e-
0

6

0
.0

0
0
3

4
6

9
7

1
3

5
6

4
6

4
4

9
8

0
.0

0
0
3

5
7

3
6

8
4

2
8

7
4

7
8

4
0

0

1
.6

0
3
3

1
8

1
2

1
4

2
3

6
7

e-
0

5

0
.0

0
0
6

0
2

1
8

3
0

4
1

3
3

4
0

2
6

8
.5

2
1
2

2
0

7
7

6
5

1
3

9
6

e-
0

5

1
.1

1
0
2

2
3

0
2

6
2
5

1
6

4

e-
1

6

1
.9

2
5
1

7
7

5
0

4
4

9
1

5
0

e-
0

5

0
.0

0
0
4

9
0

4
4

4
9

2
8

8
7

0
5

1
5

9
.6

6
5
7

4
0

4
3

0
2

6
4

6
9

e-
1

0

3
.3

3
4
0

2
6

4
2

0
3

6
5

1
8

e-
0

5

1
.3

7
4
3

2
2

7
0

9
6

2
4

1
2

e-
0

5

2
.8

6
1
8

3
1

9
5

2
5

3
8

6
4

e-

0
5

3
.8

3
5
9

2
3

8
0

0
8

2
1

2
1

e-
1

0

2
.9

7
9
3

4
8

3
9

4
8

8
2

5
6

e-
0

5

3
.3

7
0
3

1
9

4
4

8
4

1
4

7
0

e-
0

6

0
.0

0
0
2

3
8

4
4

9
2

6
1

1
7

7
1

0
9

1
.6

8
0
5

9
0

4
4

4
5

8
6

0
2

e-
0

9

0
2

3
9

8
1

3
2

1
. 3

2
6
7

0
9

e-
0

5

0
.0

0
0
1

1
6

5
8

0
6

0
1

1
5

6
2

6
9

0
.0

0
0
1

8
4

5
7

4
2

5
3

3
2

6
4

0
8

3
.5

3
2
3

3
3

1
4

1
3

2
0

6
2

e-
0

6

1
.1

1
0
2

2
3

0
2

4
6

2
5

1
6

e-
1

6

0
.0

0
0
1

9
3

5
5

6
7

4
6

9
8

1
2

9
4

6
.8

2
5
2

7
1

8
4

9
0

3
1

3
7

e-
0

6

3
.6

9
4
9

0
1

0
5

1
7

8
7

2
7

e-
1

0

2
.2

2
0
4

4
6

0
4

9
2

5
0

3
1

e-
1

6

4
.3

5
2
0

4
4

9
2

4
4

3
8

3
0

e-
0

8

1
.1

3
6
9

4
3

3
7

2
6

8
1

5
5

e-
0

5

1
.0

7
1
2

2
9

4
8

3
4

0
6

9
9

e-
0

5

5
.5

5
1
1

1
5

1
2

3
1

2
5

7
8

e-
1

6

0
.0

0
0
6

8
4

9
0

6
6

8
4

7
2

8
5

3
7

0
.0

0
0
5

0
9

9
3

5
1

2
1

8
3

4
8

3
7

1
.1

7
1
1

8
3

1
5

0
4

6
1

2
7

e-
1

0

3
.3

3
0
6

6
9

0
7

3
8

7
5

4
7

e-
1

6

Table 7: Weight and bias of the network for different

training algorithm

Weights and bias for trainbfg

Net.B{1} Net.LW{2,1} Net.IW{1,1}

0.7613 0.2021 0.2040

0.4027 0.4691 0.6241

0.6743 0.3784 0.7252

0.5511 0.3404 0.8344

0.0515 0.0639 0.0189

Weights and bias for trainlm

Net.B{1} Net.LW{2,1} Net.IW{1,1}

0.0018 0.5932 0.4884

0.7118 0.3044 0.7290

0.8677 0.9677 0.2026

0.1183 0.8960 0.2163

0.0390 0.1900 0.9763

Weights and bias for traincgp

Net.B{1} Net.LW{2,1} Net.IW{1,1}

0.7058 0.5066 0.2039

0.1331 0.7169 0.3867

0.6655 0.3012 0.0650

0.3756 0.7060 0.4323

0.5024 0.9152 0.6897

Weights and bias for trainbr

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2013,(7), (1) :149-157

156

Net.B{1} Net.LW{2,1} Net.IW{1,1}

0.5711 0.6603 0.4559

0.6902 0.6805 0.2428

0.8956 0.8506 0.0019

0.2669 0.0373 0.6153

0.0686 0.6808 0.6612

Table 8 : the performance of the train with epoch and

time

Time Epoch
Performance

of train
TrainFcn

0:00:08 530 6.87e-32 Trainlm

0:00:20 1157 6.98e-19 Trainbfg

0:00:00 26 6.48e-08 Traincgp

0:00:01 92 8.47e-10 Trainbr

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y
t

Figure 3: analytic and neural solution of example 1 using

: trainlm training algorithm

 Figure4a. Learning curve of NN for Example 2 gave in

[7]

 Figure4b. Curve of NN gave in [7] and exact solution for

Example 2

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2013,(7), (1) :149-157

157

 تصميم شبكة عصبية ذات تغـذية تقـدمية لحل مسائل قيم حدودية

 منى حسين علي لمى ناجي محمد توفيق

 الخلاصة
ـدمية تمثل طريقــة لحــل م ــم ل وــيم لدعايــة لتماــما ت الياميــتية ا عييمايــة عهــذا يا ــ الهدف من البحث هو تصميم شبكة عصبية ذات تغـذية تق

ي ــ تطوير خوارزمية اليدريب بحيــث ت ــرن زمــن الحــل عتقتــل مــن لــم ت الالــل حــ الحصــوك عتــا الحــل ع تليــد ممكمييــة الحصــوك عتــا الحــل المثــمل الر
اة باضهم يميتك ي بة تقمرب سرياة جدا ح لملة اللبكمت الي تميتك ملجمم ماقولــة مخيــرا عيــح م عاسيخدم م ح ذلك عدا من خوارزميمت اليدريب المخيت

 . [7]الطريقة من خلاك لل مثملين عقمريم ييم ج اللبكة المقيرلة مع ييم ج المصدر

