P- ISSN 1991-8941 E-ISSN 2706-6703
2013,(7), (1) :149-157

Journal of University of Anbar for Pure Science (JUAPS) Open Access

Design Feed Forward Neural Network To Solve Boundary Value
Problems

52\
5

Luma. N. M. Tawfiq Muna. H. Ali

Baghdad University - College of Education Ibn Al-Haitham.

ARTICLE INFO ABSTRACT

The aim of this paper is to design fast feed forward neural network to present
a method to solve second order boundary value problem for ordinary differential
equations. That is to develop an algorithm which can speedup the solution times,
reduce solver failures, and increase possibility of obtaining the globally optimal
solution and we use several different training algorithms many of them having a
very fast convergence rate for reasonable size networks. Finally, we illustrate the
method by solving model problem and present comparison with solutions obtained

Received: 6 / 3 /2012

Accepted: 18/9/2012

Available online: 30/11/2013

DOI: 10.37652/juaps.2013.84593

Keywords:
Avrtificial neural network,

Feed Forward neural network,

Training Algorithm,
ODE.

using other different method.

1. Introduction

Many methods have been developed so far for
solving differential equations. Some of them produce a
solution in the form of an array that contains the value
of the solution at a selected group of points, others use
basis functions to represent the solution in analytic
form and transform the original problem usually to a
system of algebraic equations.[1]

Most of the previous study in solving
differential equations using Artificial neural
network(ANN) is restricted to the case of solving the
systems of algebraic equations which result from the
discretization of the domain. ANN is a simplified
mathematical model of the human brain, It can be
implemented by both electric elements and computer
software. It is a parallel distributed processor with
large numbers of connections, it is an information
processing system that has certain performance
characters in common with biological neural networks.
Ann have been developed as generalizations of
mathematical models of human cognition or neural
biology, based on the assumptions that : [1]

1- Information processing occurs at many simple
elements called neurons that is fundamental to the
operation of ANN's.

2- Signals are passed between neurons over connection
links.

* Corresponding author at: Baghdad University - College of

Education Ibn Al-Haitham.;

ORCID: https://orcid.org/0000-0001-5859-6212 .Mobil: 777777
E-mail address:

149

3- Each connection link has an associated weight
which, in a typical neural net, multiplies the signal
transmitted.

4- Each neuron applies an activation function (usually
nonlinear) to its net input (sum of weighted input
signals) to determine its output signal.

The units in a network are organized into a

given topology by a set of connections or weights .

ANN is Characterized by[2] :

1- Architecture: its pattern of connections between the
neurons.

2- Training Algorithm : its method of determining the
weights on the connections.

3- Activation function.

ANN are often classified as single layer or
multilayer. In determining the number of layers, the
input units are not counted as a layer, because they
perform no computation. Equivalently, the number of
layers in the net can be defined to be the number of
layers of weighted interconnects links between the
slabs of neurons [3].

2. Multilayer Feed Forward Architecture [4]

In a layered neural network the neurons are
organized in the form of layers. We have at least two
layers: an input and an output layer. The layers
between the input and the output layer (if any) are
called hidden layers, whose computation nodes are
correspondingly called hidden neurons or hidden units.

P- ISSN 1991-8941 E-ISSN 2706-6703
2013,(7), (1) :149-157

Extra hidden neurons raise the network’s ability to
extract higher-order statistics from (input) data .

The ANN is said to be fully connected in the
sense that every node in each layer of the network is
connected to every other node in the adjacent forward
layer , otherwise the network is called partially
connected. Each layer consists of a certain number of
neurons; each neuron is connected to other neurons of
the previous layer through adaptable synaptic weights
w and biases b.

3. Description of the Method

In the proposed approach the model function is
expressed as the sum of two terms: the first term
satisfies the boundary conditions (BC) and contains
no adjustable parameters. The second term can be
found by using feed forward neural network(FFNN)
which is trained so as to satisfy the differential
equation and such technique we called collocation
neural network. Since it is known that a multilayer
FFNN with one hidden layer can approximate any
function to arbitrary accuracy[5], [6] , thus our FFNN
contains one hidden layer.

In this section we will illustrate how our approach can
be used to find the approximate solution of the general
form a differential equation of 2nd order :

y'(x) = F(x, y(x), y'(x)) , (1)

where a subject to certain BC’s and x = (x1, x2,

..., xn) € Rn, D < Rn denotes the domain and y(x) is
the solution to be computed.

If yt(x, p) denotes a trial solution with
adjustable parameters p, the problem is transformed to
a discretize form :

Minp %<0 F(xi , yt(xi ,p), yt'(xi ,p)) , (2)

subject to the constraints imposed by the BC’s.

In the our proposed approach, the trial solution
yt employs a FFNN and the parameters p correspond
to the weights and biases of the neural architecture.
We choose a form for the trial function yt(x) such that
it satisfies the BC’s. This is achieved by writing it as a
sum of two terms :
yt(xi, p) = A(x) +G(x,N(x,p)), (3)

where N(x, p) is a single-output FFNN with
parameters p and n input units fed with the input
vector x. The term A(x) contains no adjustable
parameters and satisfies the BC’s. The second term G
is constructed so as not to contribute to the BC’s, since
yt(x) satisfy them. This term can be formed by using a

Journal of University of Anbar for Pure Science (JUAPS)

150

Open Access

FFNN whose weights and biases are to be adjusted in
order to deal with the minimization problem.

4. Computation of the Gradient

An efficient minimization of (2) can be
considered as a procedure of training the FFNN, where
the error corresponding to each input vector xi is the
value E(xi) which has to forced near zero.
Computation of this error value involves not only the
FFENN output but also the derivatives of the output
with respect to any of its inputs. Therefore, in
computing the gradient of the error with respect to the
network weights consider a multi layer FFNN with n
input units (where n is the dimensions of the domain)
one hidden layer with H sigmoid units and a linear
output unit .

For a given input vector x = (x1, x2, ..., xn)
the output of the FFNN is :
N = ;Vic(z'), where zi = éwuxﬁbi

wij denotes the weight connecting the input unit
j to the hidden unit i

vi denotes the weight connecting the hidden unit
i to the out put unit,
bi denotes the bias of hidden unit i, and
o (z) is the sigmoid transfer function (tansig.).

The gradient of FFNN, with respect to the
parameters of the FFNN can be easily obtained as :

oN =0 (zi), (4)

ov.

ON =Vic'(z), (5)
ob,

ON =vic'(z) %, (6)

ow

Once the derivative of the error with respect to
the network parameters has been defined, then it is a
straight forward to employ any minimization
technique. It must also be noted, the batch mode of
weight updates may be employed.

ij

5. lllustration Of The Method

In this section we describe solution of single
BVP using FFNN .

To illustrate the method, we will consider the
2nd order BVP :

d2y(x) /dx2 =f(x,y,y") , (7)

where x € [a, b] and the BC : y(a) = A, y(b) =

B, a trial solution can be written as :

P- ISSN 1991-8941 E-ISSN 2706-6703
2013,(7), (1) :149-157

yt(x, p) = (bA- aB)/(b-a) + (B-A)x /(b-a) +
(x-a)(x-b)N(x, p), (8)

where N(x, p) is the output of a FFNN with one
input unit for x and weights p .
Note that

yt(X) satisfies the BC by construction. The error
quantity to be minimized is given by :
E[p] = Z:H d2yt(xi ,p) / dx2 — f(xi , yt(xi ,p) , dyt(xi
p) 1dx) 32 ,(9)

where the xi € [a, b]. Since :
dyt(x, p)/dx = (B-A)/(b-a)+ {(x-a)+(x-b)}N(x,p) +
dN(X, P)
(x-a) (x-b) ~ dX
and
d2yt(x, p) /dx2 =
dN(x,P)
dx + (x-a) (x-b) d2 N(x, p) /dx2

it is straightforward to compute the gradient of
the error with respect to the parameters p using (4) —
(6). The same holds for all subsequent model
problems.

2N(x, p) + 2{(x-a)+(x-b)}

6.Algorithm:

the main steps of the algorithm are the
following:
Stepl: Determine the variable interval of the x, i.e. (
X € [a,b]).

Step2: input the analytic solution .

Step3: Determine the Boundary condition.

Step4: Determine the structure of the neural network
for solving BVP.

Step5: Determine the activation function and
corresponding training algorithm Complete the design.
Step6: Determine the trial solution.

Step7: Implementation.

Step8: compared the neural results and the exact
results.

Step9: stop after obtain the globally optimal solution.
Step10: if no.

Step9: Goto7.

7. Example

In this section we report numerical result, we
use a multi-layer FFNN having one hidden layer with
5 hidden units (neurons) and one linear output unit.
The sigmoid activation of each hidden unit is tansig ,
the analytic solution ya(x) was known in advance.

Journal of University of Anbar for Pure Science (JUAPS)

151

Open Access

Therefore we test the accuracy of the obtained
solutions by computing the deviation :
Ay(x) = | yt(x) — ya(x) |.

In order to illustrate the characteristics of the
solutions provided by the neural network method, we
provide figures displaying the corresponding deviation
Ay(x) both at the few points (training points) that were
used for training and at many other points (test points)
of the domain of equation. The latter kind of figures
are of major importance since they show the
interpolation capabilities of the neural solution which
to be superior compared to other solution obtained by
using other methods. Moreover, we can consider
points outside the training interval in order to obtain an
estimate of the extrapolation performance of the
obtained numerical solution.

Example 1
Consider the following 2nd order BVP : d2y/dx2 = -
dy/dx + 2y

with BC: y(0) =1, y(1) =eand x e [0, 1]. The
analytic solution is : ya(x) = exp(x) , according to (8)
the trial neural form of the solution is taken to be :

yt(x) =1+ (e-1) x +x (x - 1) N(X, p) .

The FFNN trained using a grid of ten
equidistant points in [0, 1]. Figure(1l) display the
analytic and neural solutions with Levenberg —
Marquardt (trainlm) training. The neural results with
different types of training algorithm such as :
Levenberg — Marquardt (trainlm), conjugate gradient
(traincgp) , quasi — Newton (trainbfg) , Bayesian
Regulation (trainbr) introduced in table (1) and its
errors given in table (2), table(4) gives the weight and
bias of the designer network ,table(3) gives the
performance of the train with epoch and time .

Ibraheem and Khalaf [7] solve this example by
using (integration and interpolation techniques) and
Neural Networks and gave the maximum error value is
max | yexact - yNN | = 1.2089E-008 and solution time
is 5.9070 sec. and the result obtained by the neural
network given in figure 2
Example 2

Consider the following 2nd order BVP :

d’y 1

3 4.2
dx? 2x2 G 2y

with BC: y(0) =0, y(1) =1 and x € [0, 1]. The
analytic solution is : ya(x) = 2x /(x+1), according to
(8) the trial neural form of the solution is taken to be :

P- ISSN 1991-8941 E-ISSN 2706-6703
2013,(7), (1) :149-157

yt(x) =x + x (X — 1) N(x, p) .

The FFNN trained using a grid of ten
equidistant points in [0, 1]. Figure(3) display the
analytic and neural solutions with Levenberg -
Marquardt (trainlm) training. The neural results with
different types of training algorithm such as :
Levenberg — Marquardt (trainlm), conjugate gradient
(traincgp) , quasi — Newton (trainbfg) , Bayesian
Regulation (trainbr) introduced in table (5) and its
errors given in table (6), table(7) gives the weight and
bias of the designer network ,table(8) gives the
performance of the train with epoch and time .

Ibraheem and Khalaf [7] solve this example by
using (integration and interpolation techniques) and
Neural Networks and gave the maximum error value is
max | yexact - yNN | = 44.3729E-004 and solution
time is 3.8750 sec. and the result obtained by the
neural network given in figure 4.

8. Conclusion

From the above problems it is clear that the
method which proposed can handle effectively ODE
and provide accurate approximate solution throughout
the whole domain and not only at the training points.
As evident from the tables, the results of proposed
method are more precise as compared to neural
network suggested in [7].

It is very difficult to know which training
algorithm will be the fastest for a given problem. It
will depend on many factors including the complexity
of the problem, the number of data points in the
training set, the number of weights and biases in the
FFNN, the error goal, and whether the FFNN is being
used for pattern recognition (discriminant analysis) or
function approximation (regression).

In general, the practical results on FFNN show
which contain up to a few hundred weights the
Levenberg-Marquardt algorithm (trainim) will have
the fastest convergence, then trainbr and then trainbfg.
However, “trainbr" it does not perform well on
function approximation on problems. The "traincg",
algorithms have relatively modest memory
requirements in particular "traincgp”, but the
computation required does increase geometrically with
the size of the FFNN . The performance of the various
algorithms can be affected by the accuracy required of
the approximation.

Journal of University of Anbar for Pure Science (JUAPS)

152

Open Access

References

[1] I. A.Galushkin, " Neural Networks Theory", Berlin
Heidelberg , 2007.

[2] R. M. Hristev , " The ANN Book ", Edition 1,
1998.

[3] T.Villmann, U.Seiffert and A.Wismdller , " Theory
and Applications of Neural maps ", ESANN2004
PROCEEDINGS - European Symposium on Ann,
pp.25 - 38, April 2004 .

[4] L.N.M.Tawfig and R.S.Naoum , " On Training of
Artificial Neural Networks " , AL-Fath Jornal , No
23, 2005 .

[5] L.N.M.Tawfig and R.S.Naoum " Density and
approximation by using feed forward Artificial
neural networks ", Ibn Al-Haitham Journal for Pure
& Applied Sciences, Vol. 20 (1) 2007.

[6] A. K. Jabber ," On Training Feed Forward Neural
Networks for Approximation Problem ", MSc
Thesis, Baghdad University, College of Education
(Ibn Al-Haitham), 2009.

[7] K. I. Ibraheem and B. M. Khalaf , Shooting Neural
Networks Algorithm for Solving Boundary Value
Problems in ODEs , Applications and Applied
Mathematics: An International Journal , Vol. 6,
Issue 11, pp. 1927 — 1941, 2011.

Tablel: Analytic and Neural solution of example 1

g
518§
=
g— $ ¥ Outof FFNN yt(x)
= | W3
]
(=2 o
~| E| 5| | &
x| & £] | £ -%
> E © © -
S L.
~ - [—
B S 8D
cx"c%o{}'cxff
o S SO g D v
- o2 Sy TS D o
o cgcgl\umc
QCQ‘_O\l{c\q
< < W A g
- - (=] <
o — — o w
222 ha o
o
— REN-E -SR-S Es
T v W] o W] i = O) K
oclwwuwuI T wv
ocgogoYeolnhoy
— O e O e O e ™ = \G
— o o — o
e |28 (s 8
aNaDDadgoe 9o Y
SmeomeodR - Y S 9
Nisgsg oy s
O v G vt G i S v B i]
NT N NS K
(e B B B0 B B B I B
- o o - o

Open Access

(JUAPS)

lence

ty of Anbar for Pure Sc

IVersi

Journal of Un

P- ISSN 1991-8941 E-ISSN 2706-6703

2013,(7), (1) :149-157

©
c
©
<
[&] N[| - |©
S | giglelgle
G0-9 90-9 G0-9 G0-8 G0-8 90-8 90-8 L0-8) £ 138/8/8]8
STL6SS SE08PL 082810 €L8LTT L6SSSO 9€8€0€ 8SLY9S H.wwwwwﬂw wwcmﬂmww%% S10S00 £ I P g g P
STTI8EER'S | 9LL69S96°9 | TOELSPOL'L | ISBOITSY'T | LSPLOSIS'E | T€6TVEIEL | ILSEOVIV'E 608€5660°C =
c <
G0-° S0-9 'S M ml.o & X %
T61S800€9 | €STV6TLTITO | TTLLITHIOT 208650 86€69L6659 | T8VLS0ST00 | 89T0806LET | SSTIETSOI Z60TTh 6987702L = 213|853
6ILES000°0 | STELS000°0 | SS0L9000°0 8hE6£9STT 8896L000°0 | 958890000 | SO0EE8000°0 | LT69S700°0 LSPE8L66'S L8LOYIT0°0 m)
(o [«5]
01-9 90-9 90-9 60-9 0T1-9 T1-9 G0-9 G0-3 60-3 60-9 w m m SRIENSE
9ISVl [4520\1% Logsol1 99596L 0970 919L91 8LELT6 8TT8LI I1€S0¢€8 69776] mm bl b &b
L8LIYPSY'E | SILEOLY8O | 6TTVETEL'S | LLTOLVIL'E | 60EI8TLL'T | 9160S616°C | 89S688I1°C | 0ITTBIS8Y | LYPLBO6LS'T | £68¢v160°L m ,m,m R|2| &[S
b n_r.v ~lAN WD |©
91-9 91-9 91-9 90-9 91-9 90-9 G0-9 91-9 ..m .
1€0526 1€0s26 £900<8 0 8T6LYL 1€05T6 881L0C 0 PS88SIT £€900<8 a8 c ol alo
POIYHOTT'T | YOIVPOTTT | 607680hY'p TOEOLTIET | VOIVHOTT'T | 6VPSLYSS'9 IPILSILL'Y | 602680FV'y | 2 it m 5188
c = i
. | E|E|E|EE
L | F|FIF|FIE
o
(3]
T
i
2
m. L0-9
[USYESY 6t9TLS ESSHT0 01969 VC9UST YS60TS SIT61T PISUSS 8| —e dqured | 18971€
SLIV86YE'L | TT6E8I6Y'L | €V9SL8YI'L | SYILICI8'L | TI9SLETO'C | LSL88STT'T | TLSYSO09V'C | I19I8T8ILT (B Wmm (444351774
LT0V98 IFI0LE IL001P TPCLED IS6786 ESETT0 TCITSC YLISTT ks 285
SE6TSOSE'TL | €ITO8IGH'L | 8EVTOLYI'L | PTOEVIT8'L | SLS8SPIO'C | 0CTOLISTT'T | €IEIS6SY'C | S6EL8IOL'T 2 \W_A/m =X déoures | CO8ESLLYY
Ut81066 L6SSLU SSTCH0 UL6CT0 65TISS OFILT0 (A:L131]3 8PUSS6 S ¥&8% . yr6vST00°0
€SYO86YE'L | OLYPT8I6Y'L | LTITL8YYO'L | O08SLICI8'L | ISIELELOT | OVTOVSTT'T | LIE096SY°C | T8ISTISIL'T = ﬂm.m
— U0YLSL LTTPIL YTEUST TSUGED 86STLT LVT6VS LUTT6Y SUGSTS 3 \wm;m 60-9
088S86¢E'L | 69VT8I6H'L | 8STTL8YY'L | O088IICI8L | SIIPLETO'T | TO0OVSSTT'T | TBOS96SY'C | T8ISTBIL'T G AWJVAU Byqured L S¥8016
U0YLSL LTIPIL ETUUL0 TSU6E0D STOLVL LVC6VS S6YSTT SU6STS = PESL8699°1
088S86YE'L | 69VT8I6Y'L | LTITL8YY'L | O88LITT8'L | OLISLELOT | T60VSSTT'T | LIE096SY'C | T8ISISBIL'T m .m o M
- - - - - - - - o S 0= 90-°2
€0 ¥'0 50 90 L0 80 60 0T g &<*® wiures | SLOSHE
= $06680€8°6
N
2
o
[
~

153

P- ISSN 1991-8941 E-ISSN 2706-6703

2013,(7), (1) :149-157

Table 4: Weight and bias of the network for different
training algorithm

Weights and bias for trainlm

Net.IW{1,1} | Net.LW{2,1} | Net.B{1}
0.0521 0.8604 0.5134
0.9312 0.9344 0.1776
0.7287 0.9844 0.3986
0.7378 0.8589 0.1339
0.0634 0.7856 0.0309

Weights and bias for trainbfg

Net.IW{1,1} | Net.LW{2,1} | Net.B{1}
0.7112 0.4242 0.0292
0.2217 0.5079 0.9289
0.1174 0.0855 0.7303
0.2967 0.2625 0.4886
0.3188 0.8010 0.5785

Weights and bias for traincgp

Net.IW{1,1} | Net.LW{2,1} [Net.B{1}
0.9431 0.8978 0.6511
0.1127 0.4972 0.1336
0.6483 0.7713 0.6385
0.4808 0.0604 0.3849
0.0665 0.2625 0.7657

Weights and bias for trainbr

Net.IW{1,1} | Net.LW{2,1} | Net.B{1}
0.9158 0.6153 0.0321
0.1355 0.5831 0.8271
0.3321 0.6983 0.3400
0.8975 0.0293 0.8467
0.4996 0.5279 0.2461

yt

1.8

1.6

1.4

Figure 1: analytic and neural solution of example 1 using

Training-Blue

: trainlm training algorithm

Petfarmance is 1.93901e-023, Goal is 0

Stop Training

Figure2a. Learning curve of NN gave in [7] for Example
1

B
12 Epochs

154

28

Journal of University of Anbar for Pure Science (JUAPS)

Solution of d2y/dx2 =-y(2)+27y(1)

Open Access

26

T
=& Euact

=+ Mueral Metwarks

Figure2b. Curve of NN gave in [7] and exact for

Table5:

Example 1

Analytic and Neural solution of example 2
5 55
g g5 Out of FFNN yi(x)
= w3
w
o> o
£ = > 5
~—~ —_ o) =)
X c c c c
X < ‘= = = =
> —- o E e
~ - [—
— < \o
®© S 58}
w - (=3
— o0 o
— ~ o]
> = —
o NO S o ©
3 | 2|27 83| &¢
= > B B B
3] 7e) ©
Y [\ S
® v =
I N —
- (] (o]
2o 2224 5|
® 2 NE c% mg ﬂ-g
o S| 0 o = ®
| o0 oo C o T Xen e <
O v - — - ™= S8 N & ™
® oo R Xen TS ®R ~
| WA T m® - ®
< < = = =
Bl Be| D Saf B
MQ MQ oo% \0% °\$
o~ o) e Nen| T R0 [-]
.) e Noen| Ny DO O
O nNen|l el NN N "o
) en Nen| O "o o
len| en|) w N - “ o
=) =) = = =
Sl $aldd el 8
23 28| xf X x2
mn O | g T~ v o
Wil W Vv = w0 o
(e] e —en| ™ o AN~ T
V| Lwn Lwn Lwn © ~
T T T T T
< < = = =
Pol SwlBe Sl @
CEN ln% w% m# c\Z
< Q wn N en| N | = S
Tl N T N~ <t n
(e] - ey - O ™ ™ -
S| = g e [SN
W) |) |) WO v,
< < = = =

Open Access

Journal of University of Anbar for Pure Science (JUAPS)

P- ISSN 1991-8941 E-ISSN 2706-6703

2013,(7), (1) :149-157

L
c
e
£
Go-o G0-9 90-0 80-9 .m mmﬂ% p mmolo_ﬂ%% N%M%%M
0ST6bb 215796 oLpipg | OOTOSII090 | PGTISGOPLO | S | LESSTLYBYY | 2 SEEIN R asiclglalgl |12elalslsnle
- . y X V|o|o|lo| o | o Liolo|lo|o|o| a |8|o|o|o|o|o
OSLLISTE'T | 0LTzepLe'l | pergoLes | SSOTI0000 | SSE6L0000 | 7oppgrcey | 06VEI0000 1 = 22999 2 E|Z S 5
= £ = £ £
-9 =) = E| '® < = T
STSOL88T6Y | GO-9V98EST | 6OTLLITIT6 | 8OVITEESTH hmwme . mww@N LespesITIS | 2 £ & |9 S 19 5|9 s
. . . ° ° oo 5 |NA|d|s| | o o |Na||~lolo| 5 Olo|Nlo|N| o
PPOGYO00'0 | SOIERIONT | PPSETO00D | LSPBIOONO | yoyyvcry | seepgopry | EOO0SO000 | 275 5 S8 2(8] 2 5 EEEs AR
= 8 D9 Fn 22| & |drnqeeld 8 |DRISR% 2.
01-2 01-8 60-2 90-2 01-2 502 01-2 mww 2717171217 2 1517171717 2 1817171717 7| =
69¥920 171280 20985k 790z€1 LTL8LY 6690v€ LTI9%0 25 5|7 s % | S
EPOVLS99'6 | 08ET6SES'S | PP06SO89'I | PIEEETES'S | SOL06P69'E | 86TTILOT | SISSIILIT | T 'g| 2 8 2 8
&= 2|9 =3k S|= =2
509 G0-9 509 919 91-9 919 919 = | 3 |dolgyslal @ |de|ololmlel T |dalxlalonlx|S
81S9£0 95788p 60L9€ 91ST9¥ 1£0526 8LSTIE LYSL8E S | 28382 8|3 ZIBRIEEIE = 21888885
TPITOPEEC'E | GEBPEGLET | TEIBGETO'L | TOSTZOIIL | POIPROTTT | TISIIISS'S | LOG9OOEEE | 2 =[S|s|s| o | s Z/S|slslsle| |g|e|s|s|s|e
~. z pd pa
N~
@
o]
[
T
(V]
@
Q.
£9L£686 1550896 0SSE9TT 8061117 180€LSY £L¥899 = 90-2 - 90-2 50-9
07089999°0 | 799666VL°0 | E8TIVEIS'0 | £ES69888°0 | 9PBIELP6'0 | 06+89000'L X |z aqured | 90881 | Lo oo | B9SSSE L9ETHT
= [ETE 9L£T9001°C 6YOTELYS'E | TISIEE09'T
761986 £788EL0 6LETISL 8ELO9TP 6SE9810 S918L8Y e |38= .
87S69999°0 | SSIILOVL'0 | €8VPECTR0 | [LS68888°0 | 6LO6LELY6'0 | 9006¥666°0 5 \vﬁm m.v dboures | vwmwg TEPLISTLE | 86PYOY9SEL | 9TOVEETHOE
= [< ! . . .
PL0E8T9 0650891 SOSTER6 6L£8ST6 99FLPEE TILTT0 5 |>2E4 0£9zszsey | 2r00T00°0 | L69¥E000°0 | 8TZ09000°0
99999999°0 | 000000SL'0 | L8STSETS'0 | 888888880 | EI6LELF6'0 | 00000000'T S |nsgz
- |RRE 01-8 01-9 50-0
8ILT8IE L9LISTO 90L9LT 6888888 1€97S01 000000 S |5E5 sjqueis 18S110 [0o6pe | OPSLYLSTIS | Lo
L89£9999°0 | 9L6866VL'0 | IP6TSETS'0 | 888888880 | TPSIELF6'0 | 00000000'T S5, g sov6c18TT | osczsoce's | YELSE0000 | oo e
1999999 0000000 90L9LT 6888888 7€97S01 . 3852 5T
. o
99999999°0 | 000000SL'0 | TP6TSET8'0 | 888888880 | TPBIELFE'0 <1852 wues 1 0 wwwmﬂwwﬁw 0 oTS70
0 90 0 80 60 0T © T0STTOIT'T
el
©
T

155

P- ISSN 1991-8941 E-ISSN 2706-6703
2013,(7), (1) :149-157

Journal of University of Anbar for Pure Science (JUAPS)

Net.IW{1,1} | NetLW{2,1} | Net.B{1}
0.4559 0.6603 05711
0.2428 0.6805 0.6902
0.0019 0.8506 0.8956
0.6153 0.0373 0.2669
0.6612 0.6808 0.0686

Table 8 : the performance of the train with epoch and

time
TrainFcn Performgnce Epoch Time
of train
Trainlm 6.87e-32 530 0:00:08
Trainbfg 6.98e-19 1157 0:00:20
Traincgp 6.48e-08 26 0:00:00
Trainbr 8.47e-10 92 0:00:01
1 T T T T T T T T T
0.9} J
0.8 1
0.7} J
0.6} J
5 05F i
0.4 E
0.3} J
0.2 1
0.1F 1
0 r r r r r r r r r
0 01 02 03 04 05 06 07 08 09 1

X
Figure 3: analytic and neural solution of example 1 using

: trainlm training algorithm

156

Open Access

Performance s 3.73427e-008, Goalis

Training-Blus

m' I 1 1 I I 1 I
0 0 o 18 20 XH o

Stop Training 31 Epochs

Figureda. Learning curve of NN for Example 2 gave in
[7]

Saluton of d2y/d2 =1 PRI

14 T I \ T T T T T
=6 Evact : i b :
13 -+ INuera\ INetwurlfs ___ |
b
13 I J: TR I P I L [-
L it L L L A REELEE DR —
= 12 """" e qEEEmmEEEEE————— (oliat¥ i e B [l FE==== =
115 """" e h i« Hi :f """ FEEmes e B [l FE==== =
1] pemmeereeeeee --- .
104 }----- --- —
9/ N N N N N NN NN NN N
11 12 13 14 15 16 17 18 13 2

Figuredb. Curve of NN gave in [7] and exact solution for
Example 2

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access
2013,(7), (1) :149-157

LAl
i ey dalaeY) dlalall cialeall dagas 018 Jilise Jal Aol Jid dpedd L35) Lpac AKE anenal g8 Gaadll (e Cangl)
el) ol e Joemnl) A0Sl 35 5 dall o Jsemall 8 il Vs e QU85 ol () gd Cams canptil) Baa i sk

lincag sl dlgine alaal clbia Al @Il a8 s dao e (ol ducs Sl Lgaany Zabidad) Capnill ilae)sled (e 200 Gl 8 Liaadiiug
7] a3 e s il ASu)) 3 Uyl e da DA (e dayykal)

157

