ON GENERALIZED τ^* - HOMEOMORPHISMS IN TOPOLOGICAL SPACES

Munir Abdul Khalik Aziz Afrah Mohammed Ibraheem

Open Access

Al-Mustansiriyah University-College of Education.

ARTICLE INFO

Received: 14 / 9 /2011 Accepted: 12 / 2 /2012 Available online: 19/7/2022 DOI:

Keywords: GENERALIZED τ*, HOMEOMORPHISMS IN, TOPOLOGICAL SPACES.

1. Introduction

In 1970, Levine [1] introduced the concept of generalized closed sets as a generalization of closed sets in topological spaces. Using generalized closed sets, Dunham [2] introduced the concept of the closure operator cl* and a new topology τ^* and studied some of their properties. Balachandran, Sundaram and Maki [3] introduced and studied g-continuous maps. Pushpalatha, Eswaran and Rajarubi [4] introduced and investigated τ^* -generalized closed sets. Eswaran and Pushpalatha [5] introduced and studied τ^* -generalized continuous maps in a topological spaces.

The notion homeomorphism plays a very important role in topology. By definition a homeomorphism between two topological spaces X and Y is a bijective map $f: X \rightarrow Y$ when both f and f^{-1} are continuous, so in this paper, we introduce a new class of sets called generalized- τ^* -closed set, and introduce a new class of maps called generalized-t*closed, generalized-t*-continuous and generalized-t*irresolute ,and study some properties about them. Also we introduce a new class of homeomorphisms called generalized- τ^* -homeomorphisms (g-τ*homeomorphisms) and a class of maps which is included in the class of $g-\tau^*$ -homeomorphisms and study the relation among it and homeomorphism, τ^* homeomorphism, g-homeomorphism and τ^* -g-

ORCID: https://orcid.org/0000-0001-5859-6212 .Mobil:777777

E-mail address: dean_coll.science@uoanbar.edu.iq

ABSTRACT

In this paper, we introduce a new class of closed sets called generalized- τ^* closed set, also introduce a new class of homeomorphisms called g- τ^* homeomorphisms and a class of maps which is included in the class of g- τ^* homeomorphisms, and study the relation between it and another mapping of homeomorphism ,and prove that the set of all g- τ^* -homeomorphisms forms a group under the operation composition of maps.

> homeomorphism , and prove that the set of all $g-\tau^*$ -homeomorphism forms a group under the operation composition of maps.

> Throughout this paper (X, τ) and (Y, σ) are topological spaces on which no separation axioms are assumed unless otherwise explicitly stated. For a subset A of a topological space X, cl(A), cl*(A) and A^c denote the closure, closure* and complement of A respectively.

2. Preliminaries

We recall the following definitions:

Definition 2.1. [1].

A subset A of a topological space (X, τ) is called generalized closed (briefly g-closed) in X if cl $(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X.

A subset A is called generalized open (briefly g-open) in X if its complement Ac is g-closed.

Definition 2.2.[2].

For a subset A of a topological space (X, τ) ,

(i) The generalized closure operator $cl^*(A)$ is defined by the intersection of all g- closed sets containing A.

(ii) The topology τ^* is defined by $\tau^* = \{ \ G : cl^*(Gc) = Gc \ \}$

Theorem 2.3.[2] For any subsets A and B of a topological space (X, τ)

(i) If $A \subseteq B$ then $cl^*(A) \subseteq cl^*(B)$.

(ii) If A is g-closed then $cl^*(A)=A$.

(iii) $cl^*(A \cup B) = cl^*(A) \cup cl^*(B)$.

(iv) $cl^*(A \cap B) \subseteq cl^*(A) \cap cl^*(B)$.

^{*} Corresponding author at: Al-Mustansiriyah University-College of Education;

Definition 2.4.[4].

A subset A of a topological space (X, τ) is called τ^* -generalized closed set (briefly τ^* -g-closed) if $cl^*(A) \subseteq G$ whenever $A \subseteq G$ and G is τ^* -open. The complement of τ^* -generalized closed set is called the τ^* -generalized open set (briefly τ^* -g-open).

Now we introduce a new class of sets called generalized τ^* -closed set (briefly g- τ^* -closed) ,and study the relation between this type of $g-\tau^*$ -closed set and each of closed, τ^* -closed, g- closed set and τ^* -gclosed set.

Definition 2.5.

A subset A of a topological space (X,τ) is called generalized- τ^* -closed set(briefly g- τ^* -closed) if $cl^*(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X. The complement of $g-\tau^*$ -closed set is called the generalized- τ^* -open set (briefly g- τ^* -open).

Proposition 2.6.

(i) Every closed (τ^* -closed) set is g- τ^* -closed.

(ii) Every g-closed set is $g-\tau^*$ -closed.

(iii) Every g- τ^* -closed set is τ^* -g-closed.

Proof: Let (X, τ) be a topological space.

(i) Let A be a closed set in X, such that $A \subseteq G$, G is an open set in X. Since A is closed, cl(A) = $A \subseteq G$. But $cl^*(A) \subseteq cl(A)$. Thus, we have $cl^*(A) \subseteq G$,G is open. Therefore A is $g-\tau^*$ -closed.

(ii) Let A be a g-closed set in X. Assume that $A \subseteq G$, G is an open in X. Then $cl(A) \subseteq G$, since A is g-closed. But $cl^*(A) \subseteq cl(A)$. Therefore $cl^*(A) \subseteq G$. Hence A is $g-\tau^*$ -closed.

(iii) Let A be a g- τ^* -closed in X, then there exist an open set G in X such that $cl^*(A) \subseteq G$ whenever A \subseteq G.Since every open set is τ^* -open (see[4]), then $cl^*(A) \subseteq G$ whenever $A \subseteq G$ and G is τ^* -open in X. Therefore A is τ^* -g-closed.

The converse of proposition(2.6) need not be true in general as seen from the following example.

Example 2.7. Consider the space $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}\}$. Then the set $\{a\}$ is not closed and not g-closed but $\{a\}$ is g- τ^* -closed.

Remark 2.8. From all the above statements ,[1] and [4] we have the following diagram:

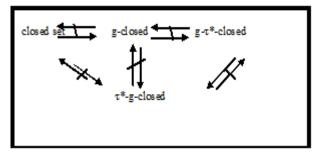


Diagram (1)

3. The generalized τ^* - Homeomorphism

In this section we introduce a new class of maps namely generalized- τ^* -closed, generalized- τ^* continuous , generalized- τ^* -irresolute, and generalized- τ^* -homeomorphisms. Also we study some of their properties and relations among them and other maps.

Definition 3.1.[6]

A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a generalized closed map (respectively generalized open map) if for each closed set (open set) V of X, f(V) is g-closed (gopen) in Y.

Definition 3.2.

A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a generalized τ^* -closed map (respectively generalized

 τ^* -open map) if for each closed set (open set) V of X, f(V) is g- τ^* -closed (g- τ^* -open) in Y.

A generalized τ^* -closed map is written shortly as g- τ^* -closed map.

Example 3.3. Let the spaces $X=Y=\{a, b, c\}$ with topologies $\tau = \{X, \phi, \{a\}\}$ and

 $\sigma = \{Y, \phi, \{b\}\}$. Define a map $f : (X, \tau) \rightarrow (Y, \sigma)$ by : f(a) = b, f(b) = a, f(c) = c. Then f is

g- τ^* -closed since the set {b, c} is closed in X, and $f({b, c}) = {a, c}$ is $g-\tau^*$ -closed in Y.

Proposition 3.4.

(i) Every closed (τ^* -closed) map is g- τ^* -closed map.

(ii) Every g-closed map is $g-\tau^*$ -closed map.

(iii) Every g- τ^* -closed map is τ^* -g-closed map.

Proof : Clear from Proposition(2.6).

Definition 3.5.[3].

A map f : $(X, \tau) \rightarrow (Y, \sigma)$ is called generalized continuous (g-continuous) if the inverse image of every closed set in Y is g-closed in X.

Definition 3.6.[5].

A map f : $(X, \tau) \rightarrow (Y, \sigma)$ is called τ^* generalized continuous (τ^* -g-continuous) if the inverse image of every g-closed set in Y is τ^* -g-closed in X.

Definition 3.7.

A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a generalized- τ^* -continuous map (written shortly as

g- τ *-continuous map) if the inverse image of every closed in Y is g- τ *-closed in X.

Proposition 3.8.

(i) Every continuous ($\tau^*\mbox{-}continuous)$ map is g- $\tau^*\mbox{-}continuous$ map .

(ii) Every g-continuous map is $g-\tau^*$ -continuous map .

(iii) Every g- τ^* -continuous map is τ^* -g- continuous map .

Proof: Clear from Proposition(2.6).

Theorem 3.9. Let (X, τ) and (Y, σ) be two topological spaces. Then $f: X \rightarrow Y$ is g- τ^* -continuous if and only if the inverse image of every open set in Y is g- τ^* -open in X.

Proof: Let U be any open set in Y. Then Uc is closed in Y. Since f is g- τ^* -continuous, f -1(Uc) is g- τ^* closed in X. But f -1(Uc)= (f -1(U))c. This implies that f -1(U) is g- τ^* -open in X.

Conversely, let V be any closed set in Y. Then Vc is open in Y. By assumption, f -1(Vc) is $g - \tau^*$ -open in X. But f -1(Vc) = (f -1(V))c, this implies that f - 1(V) is $g - \tau^*$ -closed in X. Hence f is $g - \tau^*$ -continuous. **Proposition 3.10.** For any bijective $f : (X, \tau) \rightarrow (Y, \sigma)$

the following statements are equivalent:

(i) f -1 is g- τ^* -continuous, f -1 : (Y, σ) \rightarrow (X, τ)

(ii) f is a g- τ^* -open map and

(iii) f is a g- τ^* -closed map.

Proof : (i) \rightarrow (ii): Clear from Theorem (3.9) ...

(ii) \rightarrow (iii): Let V be a closed set in X. Then Vc is open in X. By assumption, f (Vc) is g- τ^* -open in Y. But f (Vc) = (f (V))c ,this implies that f (V) is g- τ^* closed in Y. Hence f is a g- τ^* -closed.

(iii) \rightarrow (i): Let V be a closed set in X. By assumption, f (V) is g- τ^* -closed in Y.

But f (V) = f -1(f -1(V)) , and therefore f -1 is g- τ^* -continuous on Y.

Definition 3.11.[7].

A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a generalized irresolute (g-irresolute) if f - 1 (V) is g-closed set in X for every g-closed set V in Y.

Definition 3.12.

A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a generalized τ^* -irresolute (g- τ^* -irresolute) if f -1 (V) is g- τ^* -closed set in X for every g- τ^* -closed set V in Y.

Theorem 3.13. A map $f : (X, \tau) \rightarrow (Y, \sigma)$ is $g - \tau^*$ -irresolute if and only if f is $g - \tau^*$ -continuous.

Proof: Assume that f is $g-\tau^*$ -irresolute. Let V be any closed set in Y. By Prop.(2.6)(i), V is $g-\tau^*$ -closed in Y. Since f is $g-\tau^*$ -irresolute, f -1(V) is τ^* -g-closed in X. Therefore f is

g- τ^* -continuous.

Conversely, assume that f is $g-\tau^*$ -continuous. Let F be any closed set in Y. By Prop.(2.6)(i), F is $g-\tau^*$ -closed in Y. Since f is τ^* -g-continuous, f -1(F) is $g-\tau^*$ -closed in X. Therefore f is

g- τ^* -irresolute.

Definition 3.14.

A bijection $f : (X,\tau) \to (Y,\sigma)$ is called a generalized τ^* -homeomorphism (abbreviated g- τ^* -homeomorphism) if f is both g- τ^* -continuous and g- τ^* -open.

Proposition 3.15.

(i) Every homeomorphism (τ^* -homeomorphism) is g- τ^* -homeomorphism.

(ii) Every g-homeomorphism is $g-\tau^*$ -homeomorphism.

(iii) Every g- τ^* -homeomorphism is τ^* -g-homeomorphism.

Proof: Clear by Proposition (3.4) and Proposition (3.8).

The converse of the above Proposition need not be true in general, as seen from the following example.

Example 3.16. Let $X = Y = \{a, b, c\}$ with topologies

 $\tau 1 = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}, \sigma 1 = \{Y, \phi, \{b\}, \{a, b\}\}, \tau 2 = \{X, \phi, \{a\}\} \text{ and }$

 $\begin{aligned} \sigma 2 &= \{Y, \ \phi, \ \{a\}, \{b, \ c\}\}. \ \text{The mapping} \quad f1: \\ (X,\tau 1) \to (Y,\sigma 1) \ \text{which is defined by:} \ f1(a) &= b, \ f1(b) \\ &= a, \ f1(c) &= c \quad \text{is } g \text{-} \tau^* \text{-homeomorphism but not } g \text{-} \\ \text{homeomorphism since the set } \{a, c\} \ \text{is open in } X \ \text{while} \\ f1(\{a, c\}) &= \{b, c\} \ \text{is not } g \text{-} \text{open in } Y \ \text{.And the identity} \\ \text{map } f2: (X,\tau 2) \to (Y,\sigma 2) \ \text{is } \tau^* \text{-} g \text{-homeomorphism but } \\ \text{not } g \text{-} \tau^* \text{-homeomorphism since the set } \{b\} \ \text{is not} \\ \text{closed in } Y \ \text{while } f2 \ \text{-} 1(\{b\}) &= \{b\} \ \text{is } g \text{-} \tau^* \text{-closed in} \\ X \ . \end{aligned}$

Theorem 3.17. Let $f : (X, \tau) \to (Y, \sigma)$ and $h : (Y, \sigma) \to (Z, \eta)$ be two maps ,then

(i) hof is g- τ^* -continuous if f is g- τ^* -irresolute and h is g- τ^* -continuous.

(ii) hof is $g-\tau^*$ -continuous if f is $g-\tau^*$ -continuous and h is continuous.

(iii) hof is g- τ^* -irresolute if f and h are both g- τ^* -irresolute .

Proof: (i) Let V be a closed set in Z. Since h is $g-\tau^*$ -continuous, then h-1(V) is $g-\tau^*$ -closed in Y. Since f is $g-\tau^*$ -irresolute, then (hof)-1 (V) = f -1(h-1(V)) is $g-\tau^*$ -closed in X. Therefore hof is

g-τ*-irresolute.

(ii) Let V be a g- τ *-closed set in Z. Since h is continuous, then h-1(V) is closed in Y. Since f is

g-t*-continuous, then (hof)-1 (V) = f -1(h-1(V)) is g-t*-closed in X .Therefore hof is

g- τ^* -continuous.

(iii) Let V be a closed set in Z. Since h is $g-\tau^*$ -irresolute, then h-1(V) is $g-\tau^*$ -closed in Y. Since f is $g-\tau^*$ -irresolute, then (hof)-1 (V) = f -1(h-1(V)) is $g-\tau^*$ -closed in X. Therefore hof is $g-\tau^*$ -irresolute.

Remark 3.18. The composition of two $g-\tau^*$ -homeomorphism is not alway $g-\tau^*$ -homeomorphism as seen from the following example.

Example 3.19. Let $X = Y = Z = \{a, b, c\}$ with topologies $\tau = \{X, \phi, \{b\}, \{a, b\}\}$, $\sigma = \{Y, \phi, \{a\}\}$ and $\eta = \{Z, \phi, \{b\}, \{a, b\}\}$.

Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = b, f(b) = a, f(c) = c, and a map $h: (Y, \sigma) \rightarrow (Z, \eta)$ defined by h(a) = a, h(b) = c, h(c) = b. Then f and h are g- τ^* -homeomorphism but hof: $X \rightarrow Z$ is not g- τ^* -homeomorphism since the set $\{a, b\}$ is open in X while $f(\{a, b\}) = \{a, c\}$ is not g- τ^* -open in Z.

4. The class of $g-\tau^*$ -Homeomorphism

Biswas in [8] define the class of generalized homeomorphism (gc-homeomorphism) when f and f - 1 are g-irresolute .In this section we introduce a class of maps which is included in the class of $g-\tau^*$ -homeomorphism and denoted it by (g- τ^* c-homeomorphism), and study the relation between it and another homeomorphism.

Definition 4.1.

A bijection $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be g- τ^* c-homeomorphism if both f and f -1 are g- τ^* -irresolute.

We say that X and Y are $g-\tau^*c$ -homeomorphic if there exists a $g-\tau^*c$ -homeomorphism from X onto Y

Proposition 4.2.

(i) Every homeomorphism (τ^* -homeomorphism) is g- τ^* c-homeomorphism.

(ii) Every g-homeomorphism is $g-\tau^*c$ -homeomorphism.

(iii) Every $g-\tau^*c$ -homeomorphism is $g-\tau^*-$ homeomorphism.

Proof : (i) Let f : (X, $\tau) \to$ (Y, σ) be a homeomorphism .

Let V be a closed set in Y. Since f is homeomorphism, then f -1(V) closed in X. By Prop.(2.6.(i)) V is g- τ^* -closed in Y, and f -1(V) is g- τ^* -closed in X. Therefore f is g- τ^* -irresolute.

And ,let U be a closed set in X. Since f is homeomorphism, then f (U) closed in Y. By Prop.(2.6.(i)) U is g- τ^* -closed in X, and f (U) is g- τ^* -closed in Y. Therefore f -1 is g- τ^* -irresolute. Hence f is g- τ^* c-homeomorphism.

(ii) Let $f:(X,\ \tau)\to (Y,\ \sigma$) be a g-homeomorphism .

Let U be a closed set in X. Since f is ghomeomorphism, then f (U) is g-closed in Y. By Prop.(2.6.(ii)) U is $g-\tau^*$ -closed in X, and f (U) is $g-\tau^*$ closed in Y. Therefore f -1 is $g-\tau^*$ -irresolute

And ,let V be a closed set in Y. Since f is ghomeomorphism, then f -1(V) is g-closed in X. By Prop.(2.6.(ii)) V is g- τ^* -closed in Y, and f -1(V) is g- τ^* -closed in X. Therefore f is g- τ^* -irresolute. Hence f is g- τ^* c-homeomorphism.

(iii) Let $f:\,(X,\,\,\tau)\,\rightarrow\,(Y,\,\,\sigma\,$) be a g-t*c-homeomorphism .

Since f is $g-\tau^*c$ -homeomorphism, then f is $g-\tau^*-irresolute$ and by Theorem (3.13), f is

g- τ^* -continuous .

Let U be an open set in X, then Uc is closed in X.By Prop.(2.6.(i)) Uc is $g-\tau^*$ -closed in X. Since f is $g-\tau^*c$ -homeomorphism, then f -1 is $g-\tau^*$ -irresolute, then f (Uc) is $g-\tau^*$ -closed in Y.But f (Uc) = (f (U))c that mean f(U) is $g-\tau^*$ -open in Y. Therefore f is $g-\tau^*$ -open .Hence f is $g-\tau^*$ -homeomorphism.

Remark 4.3. The following example show that the converse of Prop. (4.2) is not true in general.

Example 4.4. Let $X = Y = \{a, b, c\}$ with topologies

$$\tau = \{X, \phi, \{a, b\}\}, \sigma = \{Y, \phi, \{b\}, \{a, b\}\}, \tau$$

 $2=\{X, \phi, \{a\}\}, \sigma 2=\{Y, \phi, \{b, c\}, \{a\}\},\$

 $\tau 3 = \{X, \phi, \{b\}, \{a, b\}\} \text{ and } \sigma 3 = \{Y, \phi, \{a\}\}.$

The identity mapping f 1: $(X, \tau 1) \rightarrow (Y, \sigma 1)$ is g- τ *c-homeomorphism but it is not homeomorphism since f1 -1({b}) = {b} is not open set in X, while {b} is open in Y.

The identity mapping f 2: $(X, \tau 2) \rightarrow (Y, \sigma 2)$ is g-τ*c-homeomorphism but it is not ghomeomorphism since $f2 - 1(\{a\}) = \{a\}$ is not g-closed set in X, while $\{a\}$ is closed set in Y.

And the mapping f 3: $(X, \tau 3) \rightarrow (Y, \sigma 3)$ which is defined by : f3(a) = b, f3(b) = a, f3(c) = c, is

g- τ^* -homeomorphism but it is not g- τ^*c homeomorphism since f3 -1({c}) = {c} is not $g-\tau^*$ open sets in X, while $\{c\}$ is $g-\tau^*$ -open sets in Y.

Proposition 4.5. The composition of two $g-\tau^*c$ homeomorphism is $g-\tau^*c$ -homeomorphism.

Proof : Let $f : (X, \tau) \to (Y, \sigma)$ and $h : (Y, \sigma)$ \rightarrow (Z, η) be two g- τ *c-homeomorphism .To prove h o f: $(X, \tau) \rightarrow (Z, \eta)$ is also g- τ *c-homeomorphism.

Since f and h are $g-\tau^*c$ -homeomorphism, then f, f -1, h and h -1 are g- τ^* -irresolute, then by Theorem (3.17(iii)), (h o f) is $g-\tau^*$ -irresolute and (f -10 h-1) = (h o f)-1 is $g-\tau^*$ -irresolute .Hence h o f is $g-\tau^*c$ homeomorphism.

Remark 4.6. Proposition(3.15) From , Example(3.16), Proposition(4.2) and Examples(4.4),we have the following diagram.

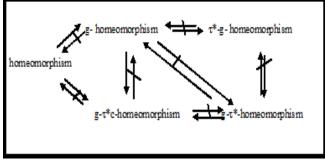


Diagram (2)

Now we will denote to the family of all $g-\tau^*c$ homeomorphism of (X, τ) onto itself by $g-\tau^*c-h(X, \tau)$,where $g-\tau^*c-h(X, \tau) = \{f \mid f : X \rightarrow X \text{ is a } g-\tau^*c$ homeomorphism }.

Theorem 4.7. The set $g-\tau^*c-h(X, \tau)$ is a group under the composition of maps.

Proof: Define a binary operation *: $g-\tau * c-h(X, \tau) \times g-\tau * g-\tau * c-h(X, \tau) \times g-\tau * g \tau^*c\text{-h}(X, \tau) \rightarrow g\text{-}\tau^*c\text{-h}(X, \tau)$ by

 $f * g = h \circ f$, for all f, h $\epsilon g - \tau * c - h(X, \tau)$,

and o is the usual operation of composition of maps. Then by Proposition (4.6), hof is

g- τ^* c-homeomorphism .Therefor hof ϵ g- τ^* c $h(X, \tau)$.Let I: $(X, \tau) \rightarrow (X, \tau)$ be the identity map belonging to $g-\tau^*c-h(X, \tau)$ servers as the identity element, and we know that the composition of

maps is associative . If $f \in g - \tau^* c - h(X, \tau)$, then f-1 \in g- τ *c-h(X, τ) such that f o f -1= f -1of =I and so inverse exists for each element belonging to $g-\tau^*c$ $h(X, \tau)$. Therefore g- τ *c- $h(X, \tau)$ is a group under the operation of composition of maps.

Theorem 4.8. Let $f : (X, \tau) \to (Y, \sigma)$ be a g- τ *chomeomorphism. Then f induces an

isomorphism from the group $g-\tau^*c-h(X, \tau)$ onto the group $g-\tau^*c-h(Y, \sigma)$.

Proof: Let we define a map θ : g- τ *c-h(X, τ) \rightarrow g- τ *c $h(Y, \sigma)$ by

 θ (h) = f o h o f -1, for every h ϵ g- τ *c-h(X, τ). Then θ is a bijection. Further, for all

h1, h2 ϵ g- τ *c-h(X, τ), θ (h10 h2)= f o (h10h2) of $-1 = (f \circ h1 \circ f - 1) \circ (f \circ h2 \circ f - 1) = \theta(h1) \circ \theta(h2)$.Therefore, θ is a homeomorphism and so it is an isomorphism induced by f.

Remark 4.9. By using theorem (4.8.) the space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{X, \phi, b\}$,

{a,b}} is not g- τ *c-homeomorphic to the space

 (Y, σ) where $Y = \{a, b, c\}$ and $\sigma = \{Y, \phi, \{a\}\}$, since f: $X \rightarrow Y$ which defined by f(a) = b, f(b) = a, f(c) = c is not g-τ*c-homeomorphism.

Remark 4.10. The following example show that the converse of theorem (4.8.) is not always true, that is there exist a map not $g-\tau^*c$ -homeomorphism induces as isomorphism.

Example 4.11. Let $X = Y = \{a, b, c\}$ with topologies τ $(\mathbf{v}, \boldsymbol{\phi}, (\mathbf{a}, \mathbf{b}))$ or

$$= \{X, \varphi, \{a, b\}\}$$
 and

 $\sigma = \{Y, \phi, \{b\}, \{c\}, \{b, c\}\}$. Let $f: X \to Y$ be an identity map. The g- τ^* -closed sets in X are $\{\{c\}, \{a, c\}, \{b, c\}\}$, and the g- τ^* -closed sets in Y are $\{\{a,c\},\{a\},\{a,b\}\}\}$. Then f is not

g- τ^* c-homeomorphism.

Let $hx : X \to X$ defined by hx(a)=b, hx(b)=ahx(c)=c, and $hy: Y \rightarrow Y$ defined by hy(a)=a, hy(b)=c,hy(c)=b ,then $g-\tau^*c-h(X,\tau) = \{1x, hx\}$ and $g-\tau^*c-h(Y, \tau)$ σ) = {1y,hy}. The induced homeomorphism f* : g- τ *c $h(X, \tau) \rightarrow g - \tau^* c - h(Y, \sigma)$ is an isomorphism since $f^*(hx) = fo(hx) of -1 = hy$, and

 $f^{*}(1x) = 1y$ is the identity on Y.

Theorem 4.12. The g- τ^* c-homeomorphism is an equivalence relation in the collection of all

topological spaces.

Proof: Reflexivity and symmetry are immediate and transitivity follows from Proposition(4.5).

Journal of University of Anbar for Pure Science (JUAPS)

REFERENCES

- Levine N., *Generalized closed sets in topology*, Rend.Circ.Mat. Palermo (2),19(1970), 89–96.
- [2] Dunham W., A new closure operator for non-T topologies, Kyungpook Math. J., 22 (1982), 55 60.
- [3] Balachandran K., Sundaram P.and Maki J., On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. (Math.) 12(1991), 5-13.
- [4] Pushpalatha A., Eswaran S.and Rajarubi P., τ*generalized closed sets in topological spaces, Proceedings of World Congress on Engineering 2009 Vol II WCE 2009, July 1 – 3,(2009), London, U.K., 1115 – 1117.
- [5] Eswaran S.and Pushpalatha A., τ^* -generalized continuous maps in topological spaces, International J. of Math Sci & Engg. Appls. (IJMSEA)ISSN 0973-9424 Vol. 3, No. IV, (2009), pp. 67 – 76.
- [6] Levine N., A decomposition of continuity in topological spaces; Amer.Math.Monthly,68 (1961), 44-46:
- [7] Bhattacharyya P. and Lahiri B. K., Semigeneralized closed sets in topology, Indian J. Math 29 (1987), 376-82.
- [8] Biswas N., On some mappings in topological spaces, Bull. Calcutta, Math. Soc. 61 (1969), 127-135.

حول التشاكلات المعممة - *t في الفضاءات التبولوجية

منیر عبدالخالق عزیز افراح محمد ابراهیم

E.mail: <u>dean_coll.science@uoanbar.edu.iq</u>

الخلاصة:

في هذا البحث قدمنا نوعا جديدا من المجموعات المغلقة اسميناه بالمجموعة المعممة-*t المغلقة ، وقدمنا ايضا نوعا جديدا من التشاكلات اسميناه التشاكل المعمم-*t ، وصف من التطبيقات الذي يكون متضمن في صف التشاكل المعمم-*t ، درسنا العلاقة بينه وبين تشاكلات اخرى. كما برهنا ان مجموعة كل التشاكلات المعممة-*t تشكل زمرة تحت عملية تركيب الدوال.