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This research include the application of some statistical technique for
studying the time series of the average monthly humidity as an output series with
one of the variables which affect on it, which is the series of the average monthly
relative rainfall as an input which is measured at the meteorological station of
Duhok the techniques used are the modeling by an(ARIMA) model as well as the
dynamic regression model. So that the perfect dynamic regression model selected
was suitable for determining the future forecasting values.

Introduction

The series of the humidity and relative rainfall were
examined and determined that they are stationary in the
mean and the variance, also both the auto correlation and
partial auto correlation function were studied for the
humidity and relative rainfall series and determined that
there is an observed correlation for these phen350mena;
therefore, a suitable model was determined for both
series from order ARMA(1,1). Relative the dynamic
regression models (it is that model which take the time
into account),the modeling of the dynamic regression
shows how is that output result from the input and that is
depends upon:

1-the relation of the lag time with the input and

output.
2- The time composition for the turbulence series.

Then the model which was identified by the statistical
measures as well as the cross correlation function for the
residual between the residual series (a;) of the input
series, it was found that these two series are independent
and the model of the transformation function was
suitable. As well as the examination of the auto
correlation for the residuals series (a;) by the statistical
test shows that all values were insignificant and it is
prove that the turbulence series is a white noise series. In
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this paper we compare between series (af) and series
(") and we conclusion that the correlation between

two series (¢, ) and series (a," ) is significant.

DYNAMIC REGRESSION (DR)
Preliminary

A Dynamic Regression model is a regression model
which allows lagged value of the explanatory variable(s)
to be included, the relationship between the forecast
variable and the explanatory variable is model using a
transfer function. A DR model states how an output (Yy)
is linearly related to current and past value of one or
more input (Xy¢, Xat, Xayt,...), it is usually assumed that
observations of the various series occur at equally
spaced time intervals. While the output may be affected
by the inputs, a crucial assumption is that the inputs are
not affected by the outputs this means that we are
limited to single equation models [6].

1.1 TRANSFER FUNCTION [1],[2],[6]

For simplicity we will discuss just one input. The
ideas which developed here are easily extended to
multiple inputs if Y,depends on X;in some way we may
write this as
Y=f(X) 1)

Where f(.) is some mathematical function. The
function f(.) is called a transfer function. The effect of a
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change in X; is transferred to Y;in some way specified
by the function f(.).In general, however, there are other
factors causing variation in Y, besides changes in the
specified input, we capture those other factors with an
additive stochastic disturbance (N;) that may be auto
correlated N; represents the effects of all excluded inputs
on the variability of Y; . The input — output relationship
may also have an additive the constant term(C) .This is a
buffer term that captures the effect of excluded inputs on
the overall level of Y, thus we are considering models
of the form:

Y=C + f(X;) + N
Where Y,: is the output
X is the input

C: is the constant term.
f(Xy): is the transfer function

N is the stochastic disturbance which may be auto

()

correlated
N, is assumed to be independent of X
input [\ output

Xq—[ transfer function]—Y;

1-2 IMPULSE RESPONSE FUNCTION [5],[6]

We can write a linearly distributed lag transfer function
in back shift form by defining v(B) as

V(B)=vo+viB+v,B*+v;B*+...  (3)

where B is the backshift operator defined such that

B*X= X

We can write the transfer function f(X; as a liner
combination of current and past X, value:

Y= (X)) = VoXetVi XtV XtV Xist. .. (4)

Using equation (5),(4) may be rewritten as

Y= v(B) X..... (5)

Equation (5) is a compact way of saying that
there is a linearly distributed lag relationship between
change in X;andchanges in Y, .The individual v, weights
in v(B), (Vo , V1, Vo, V3, ... ) are called the impulse
response weights we canestimate that the Vy ,weights as
follows

N

Oy &
Vk:_fpaﬁ'(k)
(o}

o

(6)

Where p;ﬂ (k) estimates the cross correlation between

a, f

0, standard deviation of
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o, - standard deviation of &

1-3 DEAD TIME[5],[6]

Y:might not react immediately to a change in X,
some initial v weights may be zero. The number of v
weight sequal to zero (starting with vy) is called dead
time denoted as b, starting with v, there is one v weight
equal to zero (Vo= 0), so b=1.Alternatively if
Vo=V; =V, =0 and v; = 0 then b=3.

1-4 THE RATIONAL DISTRIBUTED LAG
FAMILY[5],[6]

The Koyck impulse response function is just one
member of the family of rational polynomial distributed
lag models. This family is a set of impulse response
functions v(B) given by

v(B) =W (B)B"  where 7)
o(B)

w(B) = wo + w;B +w,B* + ... +w,B"  (8)

5(B)=1-6B —-5,B>—..—5.B" (9)

Where h: represents the order of (w)

r: represents the order of (o)

Extending this frame work to m inputs, i=1,2,...,m, is
straight forward. The result may be written

compactly as

Y= ivi (B)X,

m bi
=y WiBBT, (10)
= 5@
15  BUILDING DYNAMIC REGRESSION

MODELS(DR) [3].[5], [6].

A dynamic regression (DR) model with one input
consists of a transfer function plus a disturbance. This
may bewritten as:

Y=c+v(B) + N,
Where
__0(B*)o(B)
#B )HBIATA
and
a;: is zero mean and normally distributed white noise
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1-6 PREPARATION AND PREWHITENING OF
THE INPUTS AND OUTPUTS SERIES
[11.[21.[5]

Rewriting this process, we may think of AR and

MA operators as a filter that, when applied to X,

produces an uncorrelated residual series

a, =6, (B)g, (B)X,
The series ¢, (in practice atA) is called the pre

whitened X;series now suppose we apply the same filter
to Yy this will produce another residual series

£ =6,'(B)4 (BY,

1-7 IDENTIFICTION
a) ESTIMATION OF THE IMPULSE RESPONSE
WEIGHTS [5]

Equation (7) shows that if we prewhiten the
input, and apply the same filter to the output, then the
v weights are proportion to the cross correlations of the
residuals from these two filtering procedures. in practice
we don’t know the parameters on the right side of
equation (7). Instead we substitute estimates of these
parameters obtained fromthe data to arrive at the
following estimated v weights.

. 1Ko
Vk —T

a

b) IDENTIFICATION OF (rsb) FOR THE
TRANSFER FUNCTIONI6]
We obtain the identity

v, =0; j<b

v, :51Vj71+52vj72+...5rvj,r+Wo; j=b

V=0V 140N ,+..0V; - W, j = b
+1, b+2, ...,b+s

V= OW, L HON Y, b

c)DISTURBANCE SERIES [5].

We generate an estimate of the N, series denoted by N,
the estimate disturbance series and it is computed as:
Ivt: Yi—v1(B)X;

— _Ws(B) b
= Vesm P
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This disturbance series ( N; ) in a dynamic regression
will often be autocorrelated.

@ (B)N, =46, (B)a, where
a; . is zero mean and normally distributed white noise

1-8 ESTIMATION [2],[3].[4]

At the identification stage we tentatively specify a
rational from transfer function model of orders (b,r,s),
and a disturbance series ARIMA model of orders (p,d,q)
We identified the following DR model

_w(B)B? O (B)
Y= (B) X+ one) (11)

At the second stage of our modeling strategy we
estimate the parameters of the identified DR model
using the available data. To estimate (11) we will use
initial values to refer to coefficient values can often be
found from identification stage information to estimate
the coefficients in w(B) and o6(B)the next step in
estimation is to compute the SSR(sum of squared
residua

SSR= 352
i=1

Is used to choose better model coefficients, by taking the
minimum SSR

1-9 DiagnosticCheck][1],[6]

We can Diagnostic Check time series model by
examining

a)Residuals Cross Correlation function (RCCF)r, 2

where

T (a) = %k:ms,... (12)

g
Where
Paa(i) - the cross correlation between a,a
a,. standard deviation

o, . standard deviation ofa

Nn—-K7> _=\rA =
Paa(k) = Yicq (@e—@)(Aevk a)lx=1,2,3,...(13)

n
Where 7, is only an estimate of parameter p, , we may
test the null hypothesis
Ho:px =0
HA P F 0
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If a; and a; are uncorrelated and normally
distributed, and one of these two series is white noise,
than 7, has the following approximate standard error
S(fi)=n"/2 (14)

Wheren is the smaller of the number of observation
for a, or a,

Another useful statistic involves a test on all K residual

CCEF coefficients as a set. Consider the

joint null hypothesis
Ho:ip1:P2 =pP3 = =Pk =0
Ha:p1 # py # p3 ... #*pi #0
By using Ljung and Box(1978) below
s=n?Tf (n—k)"1(m)?  (15)

Wheren: is the smaller of the number of observation for
a, or a;

s ~ x?for degree of freedom (K+1-m)

m: is the number of parameters estimated in the
transfer function part of the DR model. If the critical
value less than the y2 for degree of freedom (K+1-m),
we accepted the Hy .it means that the two seriesa, and
a, are independent.

b) Autocorrelation Check

we also check the adequacy of the ARIMA model
for the disturbance series in the DR model by examine
autocorrelation and partial autocorrelation of series a;
we test the null hypothesis
Ho:px =0
Ha:px #0 k=1,2,3,..K

Wrong transfer function model will also tend to
produce significant residual autocorrelations, even if the
disturbance ARIMA model is correct. We may also
perform a joint test with the null
hypothesis
Ho:po(a) = p1 (@)= p2 (@) =p3 (@)= ... = py (@)=0
Haipo(@) # p1(a) # pz(a) # p3(@) ... # pr(a) #0
The test statistic proposed by Ljung and Box(1978) is
Q*=n (M+2)Tf=1(n — k)" r¢ (@)

Under the null hypothesis Q*is approximately y2
distributed with K-m degrees of freedom, where m is
the total number of parameters estimated in the
disturbance ARIMA model. After calculate theCritical
value we compare it with the tabulated value if Critical
value is less than the tabulated value it means that the
good model.
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1-10 forecasting [1] ,[6]
We explain how forecasts of future value of Y, are
produced from the following DR model with M=1 input:
w(B)BY On (B
Y Ke T iy (16)
Now equation(16 ) may be written
& (B) Yi= W (B) Xip+ 6°(B) &

where
8 (B)=1-81B - ... -8 pquB” " = 5(B)Vp(B)
17)
W(B) = wo+wiB+ -+ wp,q,,BPTI =
Ve(B)w(B)
0*(B)=1-0;B — - — 0;,,BI*" = §(B)6(B)

Suppose the current time period from which
forecasts are to be made is period t=n called the forecast
origin. suppose also that we want to forecasts the future
value Y. where | > 1is called the forecast lead time.
Using (17) write the value for Y., as

You=61 V-1 + -+ SprasrYnsi—p—a-r +
WoXn+1-b + o+ WprasnXns1-b-p-d-n —

01 anti-1 — - — Og+rnii—qg—r + Anys (18)

Forecasts are made using only information
available through the forecast origin t=n. denote the
information in the set of data available at time n(Y,, Y.
yer s Xny Xn,...) as I. the forecast of Y., given I,
denoted a conditional expectation with square brackets.
The from (18) the DR model forecast of Y, is

*

1?n(l) = E(Ynyr 1 1) = [Yner 50 ilYnur—1 1 +
ot 8*p+q+r[Yn+I—p—d—r ] +W8 [Xn+1—b]
oW arn[Xnsi-p—p-a-n] =01 [@nsr-1] — - —
Ogsr Ansi—g—r] + [ Gnsi] (19)

The value of [Yy.;] and [X,.;] for j= 0 are the
observed values of each series. Similar the value of [an.;
] for j= 0 are estimated by the residuals (@, ;) of the
DR model. On the other hand, the value of [Y.;] and
[Xns] forj>0

Avre their forecasts ¥, (j) and X,,(j) , which are their
respective condition expected values. And for j > 0,[an.]
=0: At time n we have no estimate of a,.; in the form of
the DR model residuald,, . ; , so its expected value is
zero.

If the DR model in rational form has a constant
term we compute the forecast as:
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F=C(1-X o)1 -2 0is)(1 =22, 6,) .. (1 —
25 6im) . (20)

(1.11) forecast error variance[1],[6]
To find the variance of the forecast errors, we first

write the ARIMA model for X;
X, = [0x(B)/V¥*®,(B) (21)
Use (21) to substitute for X; in (16) we obtain
Ye =n(B)a; + Y(B)a; (22)
where
n(B) = ng +mB+ NB* + -
= w(B)0x(B)B"/5(B)V? B5(B)

and
W(B) = o +Y1B + Y,B* + - = 6(B)/V B(B)
where Yy, = 1

Both n(B) andy(B) may be of infinitely high
order. Using the definition of (B) , the n weights are
found by equating coefficients of like powers of B on
either side of this expression:

S(B)VA@5(B)n(B) = w(B)6x(B)B® (23)

Similarly, using the definition of (B) , the
weights are found by equating coefficients of like power
of B on either side of this expression:

veg(By(B)) = 0(B) (24)

Now use (22) to write the future value Y., where
t=n is the forecast origin, as

Your = No@nir + MAnip-1 + M2@nyp—2 + 0+
Ansr + P1apsi-1 + Poanr 2+ (25)

The forecast of Y4 IS

?n(l) =[Youl=man + my1@nq + -+ ja, +
Yri1ap-1 + - (26)

That is, any a; or a; value for t > n is neither known
nor estimated from a model residual, given the data
available through t = n. The expected value of these
terms is zero;(26) shows the remaining nonzero terms.
The lead | forecast error from origin n is
en(1) = Your - V(1)
thus, subtracting (26) from (25) gives the forecast error
en(D=no@ns1 + MAnyj—r + -+ N1 Quypt Ay +
Yrapr-1 o+ Y1 (27)

The forecast error variance for lead | from origin n is the
mathematical expectation
V(1) = E[eq(D]%
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2-1 Wherethe expected value of the forecast error is
zero. Therefore squaring (27) and taking expected
values gives preparation and prewhitening of the
inputs and outputs series

1)cross-correlation between output RH(Y,) and

input rainfall (X;). we plot the time series of it
by using software of Minitab (13.2) as in
figures(1),(2) respectively we show that the
series is stationary in mean and variance

V()= a2 Xizoni + a2 Xizon;  (28)
In finding this result we use the fact that a, and «; are
mutually independent and not auto correlated.

2) APPLICATION

This section contains applying section two. The first
method is testing of cross-correlation function between
prewhitening of the input denoted by rainfall and of the
output denoted by humidity (RH). We take the monthly
average of the meteorological station of Duhok for the
period (1992) to (2006), all data are shown in the
tables(1) in the appendix (A). The second method is it
used to test y?between two series of input and output by
using equation.

15 T T T T T T

o Probi *
+  Logi .
+ S8R * &
+
10F * o o 1
=
g
5 * @
=}
=
5 + a 7
+ G
¢
D 1 1 1 1 1 1
0 10 0 0 40 s 60 70
Honths

Figure(1):the time series plot of(RH)
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Figure(2):the time series plot of rainfall
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We plot (Autocorrelation function) ACF for the RH and
rainfall series in figures (3),(4) we show that the

seasonality period (8) months.
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Figure(4):(Autocorrelation function) ACF for

rainfall (4)

We take first difference for the data as shown in
the figures(5),(6) and plot ACF again for the differenced
time series about rainfall and (PACF) in a figures(7),(8).
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Figure (5): the plot for differenced
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Figure(6):the plot for differenced time series of(RH)
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Figure (7): (Autocorrelation function) ACF for
differenced time series of( rainfall)
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Figure(9): correlation coefficient between (af) and (

/5;“) determines the dead time for input(RH).It is clear
from the figure (9) that the dead time is (b=0) close to
zero which explains p,,(0) = 0 significant and all of
values near to zero, we can say that there is feedback
between output series (Y;) and input (X;). We find ACF
between residual series and series (atA ).we can clear
that below.

2) identification

2.1- estimation of the impulse response weights
We estimate of the impulse response weights

between input (X;) and output series (Y;) in the table

(4) below.

Table (4): the values of the impulse response of input
variable (rainfall X))

t Vv T \% t Vv t \%
0.0499 | 6 | -0.0005 | 12 | 0.0033 | 18 | -0.0282

1| 00194 | 7 | 0.0145 | 13 0.061 4| 19| -00178

2| 00089 | 8 0.01-188 14 0.0_103 20 0.0(;819

3] 00161 | 9 | 0.0050 | 15 0.0693 21

41 0.01558 | 10 | 0.0195 | 16 0.0625 22

5| 0.0225 | 11 | 0.00634 | 17 0.0‘169 23

2)identification of (r,s,b) for the transfer function

It is clear from the figure (9) taking one
change point will continue toward itself for a few
periods(s=5). It transfer to the other side thus than
(r=1) .the pattern can be written as:

v, _(w,-w.B —WZBZ—WgBS—W4B4—WsBS)Xt N, (29)
(1-4B)
3) disturbance series
We find disturbance series by using the equation
Ny =Y, —VX =V X ==V X 5 (30)
By using equation (30) we can obtain the
number of disturbance series which their values
less than the input and output series values(t=21)
so, we can apply them in program (3) in
appendix(B) the values in the table (5).

Table(5) :estimate values of disturbance series N;

~ ~ ~ ~ ~

t Nt T Nt T N( t Nt t Nt
1 | 83067 | 19 | 84527 | 37 | 18966 | 55 | Lo | 73 271.g1
2 | 13397 | 20 10'2644 38 | 11.867 | 56 11'2‘73 74 2'2193

7

3 20;[13 21 6.2558 39 10.634 57 | 5.6367 5 2.%72

- : 2274
4 0 | 22| cgopr | 40 | 66606 | 58 | oo | 76 | *2
- 14.288 - .
5 | paugs | 28 | 46793 | a1 | 1288 1sg | o 77 e.e;14
13.863 13.980 - : 14.25
6 4 || 6 || 18a7 | 0| 77065 | | 2
7 | 08759 | 25 | , 5ac | 43 | 3686 | 61 | Lo | 79 5%20
24.677 - - N
8 ST 126 | ooy | 44 | go1pp | 62 | 88708 | 80 3.3632
15.107 - N
9 20T 127 | s | 45 | 05373 | 63 | 28049 | 81 1.5158
10 | 13322 | 28 | 77617 | 46 | 18966 | 64 | o .o | 82 1157
15.023 : 7.492
11 | 0% | 29 | 22560 | 47 | 11867 | 65 | Jo0 | 83| Y
12 | 71083 | 30 | -0.346 | 48 - 66 | 85172 | 84 | 2967
' ' 12615 : 8

13 | 35126 | 31 | 1.6847 | 49 67 | -4315 | 85 | 19.04

4.1235

9
14| e | 32 10.§58 50 | 7.4006 | 68 | 4.4084 | 86 6.264
15 11'g30 33 | 76015 | 51 | 16043 | 69 | 657 | 87 | 0.842
5
- : 5.219
16 | 1oarg | 34 | 25706 | 52 | 3000 | 70 | oo |88 | °2
- 5 5,588
17 | yaugs | 35 | 44363 | 53 | 45073 | 71 | | 50| 89 5

18 9.382 36 54 72 | 89425 | 90 | 11.57

5.3716 26

7.8483
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Figure (10): ACF and from the disturbance series ( Ny,
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We plot ACF and PACF from the disturbance series
(N,) , as in the figures (10) and (11)

o
5 4
BT
g 15 o
o U -
(4] ﬂ2-—-—l—l—l—l—l—l—l—l
0 w s 1 T R r —l
£, O S
o U -
— 4 -
5 gz 4
t g 4
@
0 T T T
2 2z =
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7 0B 08 14 00 68 Hom AR

Figure (11): PACF and from the disturbance series (N,")

It is clear from the figure(11) that the disturbance
series (N)) is equal residual series
N¢= a;, thus the model of dynamic regression as

shown in the equation below:

_ Ww,—w,B-—w,B*>—w_B®—w,B*—w/B?®)
C a-s8)
(1)

Y

We estimate the values of the model by using
equation (31)
By using table(4) we find
Vo=0; V1 + Wo j=b

Vo= Wy

X, +a
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V1= 6, Vo— W,
Vo= O, Vi— W, j=b+l1,....bts

V3= 0,Vo— Wj

V4= O, V3— W,y

V5= O, Vs— Ws

V6= O, Vs

512 Ve/Vs=-0.0005/0.0225 =-0.222
Wp=Vp;=0.0499

Wy = O, Vo—V; =(-0.222)(0.0499)- (0.0194)= -
0.0304778

W, = d, Vi -V, = (-0.222)(0.0194)-(0.0089) = -
0.0132066

W3 = 0,V,— V3= (-0.222)(0.0089)-( 0.0161)= -
0.01808

Wy = 0, V3—Vs=(-0.222)(0.0161)-( 0.01558)= -
0.01915

Ws= 0, Va— V5 =(-0.222)(0.01558)-( 0.0225) =~
0.025958

Search to Minimize Sum of Squared Residuals

The next step in estimation is to compute the SSR
(Sum of Squared Residuals).

SSR = iaﬁ
t=1

Y:

(0.0499+0.0305B +0.0132066B * +0.01808B ° +0.01915B * +0.02595B

‘ (1+0.222B)

a =Y +0.222Y,; -0.0499 X, -0.0305 X,,;-0.0132066
Xi2 -0.01808 X3 -0.01915 X4-0.02595 X;5-0222a; (32)
We find the values of series (af ) by using equation (32)

and program (4) in appendix (B),The value as in the
table(6).

Table (6): the values of series (a,")

’_9)>
T
Fp)>

a |+

t
"pJ>
t
"pJ>
t
"9J>
t

1
0.0000
20
0.9160
39
-3.3955
58
1.1386
77
14.6687
96
-1.4370
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o SIR|R (22882 %88 4) Diagnostic Check
‘ i [ ~ o f . .
o a) Residuals  Cross  Correlation  function(RCCF)
5 2 © 9 o (L] & Tk (ayWe plotcross correlation between series (¢, )
[Te) < N ™ ~ N <
o 1INl || e|ld| || & |8~ . A . . ..
S 10 ® 3 S <@ and series (@, )as in the figure (12), it is clear that
o o there are significant values, this means that the
& & 3 5 S || o
~e R 8 (R B3| 8|88 |82 correlation between two series (¢, ) and series (a, )
&' [Te) © © <t - 3 t at
is significant.
o < Lo ~ < ™ 22 Fo - s s e e e e e
o |2 |nl3lelR|gS|s|8(8 S L
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Figure(12):cross correlation between series (¢, )
= 3 < = 2 3 and series (a,
:§%§$§g§s§§§ (@)
- - - o - By using Ljung and Box(1978) below
© ™ o0
Jlg|# 8888883 s=n2YK (n—k)"t(r)*=8.1
- This value is less than the y? critical value
< . ~ i3 = (11.07) for K+1-m=10+1-6=5 degrees of
™ NN~ (2] v (2 a =4 =} f d 0,
S|l@ e &5 b8 (R 2| B reedom at the 5% level. Therefore we do not
o N w 9 ~ -
‘ reject the stated Hy,
9 - S b) Autocorrelation Check
I3\ ~ < o o
[Le] (] ~ [ee] . .
SR8 8|8 &R 8| The test statistic proposed by Ljung and
— © o i — -
' ' Box(1978) is
= @ 2 N B Q*=n(n+2)¥X_(n—k)trf(@ =119
7o) NEE A RIS — v
— o | ™ o [¥e) < ~ © o T
N S o ~ S : i 2 criti
' this value is less than the y~ critical value
< s 8 < 5 (37.65) for K - m=26-1= 25 degrees of freedom
(2] .
8|8 8|3 N R e |8 § at the 5% level. Therefore we do not reject the
© - D v T
stated H,
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4)Forecasting

We explain how forecasts of future value of Y,
are produced from the following DR model with
equation below

Yi = 67 Yeat WoXe — WiXeq — WoXeo- WaXa- WaXea-
WsX¢.5 + &

the forecast is

In(D = 81 [ynl*+ WolXni1]= WiXn] — Wy [Xna]- W3
[Xn2l- Wa[Xns]- Ws [Xna] + @nsa

87 = 1+6; =1-0222 Where t=n =119
for | = 1, the forecast is
$110(1) =
0.778[Y110]+0.0499[X120]+0.0304778[X110]+0.013
2066[X115]+0.01808[x117]
+0.01915[X116]+0.025958[ X115] + a120
Therefore squaring (29) and taking
expected values gives
V() = o3 Xjzonf + o2 Xizon]
n(B) = no +n1B + nyB* + -
= w(B)6x(B)B"/5(B)V? B5(B)
No= Wo= 0.0499
n1=w;=-0.0304778
V() =02 X\Ztn? + 0
02 =5433.89
V() =62n¢ =13.53
SE=3.6
V(2) =62(n3 +n?) = 18.577
SE=4.31
The forecast for x; is
Xt = Apyp — Opyp-1 + OXy1-1
Xt = Apy — 0914204, ;_1 + 0.7955X 411

And The forecast for Y is

Y= Bear — OBta1-1 + OYer1-1
Y= Brer — 091428411 + 0.7955Y141-1

Table (7): forecasting X.;and Yy, and Dynamic regression

joy ()] o =

X | £ = £

E| B | B | 8x |E| &»x | 8FE
S| B g o 5| 8 o g
<|le |<le | &%

Jan. 729 | 101.463 | 66 | 60.6535 | 41.3421

< Feb. | 209.3 | 100.494 | 60 | 63.6289 | 53.2040
= Mar. | 188.6 | 92.162 47 | 61.5696 | 69.7538
N Apr. 35.9 94.081 56 | 55.4739 | 58.9298
May. | 142.6 49.055 40 | 54.4772 | 53.2323

Journal of University of Anbar for Pure Science (JUAPS)

163

Open Access

Oct. | 8.2 9542 | 44 | 37.8449 | 58.1119
Nov. | 100.4 | 4.061 | 55 | 38.1801 | 47.9720
Des. | 489 | 58.028 53.0353 | 48.0064
Des. 90.406 | 55 | 62.9801 | 53.9366
Jan. 106.214 | 61 | 65.3804 | 63.3803
~ | Feb. 91.721 | 65 | 63.0423 | 62.9003
§ Mar. 88.656 | 56 | 56.8185 | 62.8561
S | Apr. 44.103 | 57 | 54.7555 | 55.2476
S | May. 11.214 | 43 | 38.2354 | 51.7219
N 1 Oct. 2226 | 40 | 37.6134 | 36.9045
Nov. 53.536 | 59 | 52.1672 | 37.0295
Des. 87.022 | 59 | 62.6513 | 49.9403
Conclusion

1) ACF for the RH and rainfall series , we show
that the seasonality period (8) months, we.
suggest that the tentative model for the
differenced series is ARMA(1,1)

2) After using cross- correlation between series

(atﬂ) and series (af), it is clear that there are
significant values, which mean that the
correlation between the two series (¢, ) and

series (af) is significant, this is special case in

dynamic regression.

3) to examine the value is less than the y? critical
value (37.65) for K - m=26-1= 25 degrees of
freedom at the 5% level. Therefore we do not
reject the stated Ho,
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Addison —Wesley publishing company,Inc., Program (1): the values of (¢, ) variable input (rainfall)
The Advanced book program, California,USA.
gmacro
. aa.macro
Appendix (A) _ let c4(1)=-88
monthly average of the humidity and rainfall of the do k3=2:111
meteorological station of Dohuk for the period (1992) let c4(k3)=c2 (k3)- 0.7955%c2 (k3-1)+
to (2006) 0.9142%c4 (k3-1)
- > = - — - — enddo
g 5 E E 5 = T E 5 £ T E endmacro
> = 3| € >l E 8 | E © Program (2): values (,b’tA) for output
Jan. | D] L I b0 Jan. |0 L (RH)
Feb. | i || B Feb. | # | 1337 Feb. | 54 | 40 gmacro
Mar. | 11| 328 Mar. | # | 82.0 Mar. | 52 | 18 aa.macro
S Apr. [ 11] 182 |5 Apr. [ 6| 745 | [ Apr. | 59 | 11 let c5(1)=-1
S| May. |1 ]198 |3 May. [5]0.5 || May. | 33 [ 43 do k3=2:111
Oct. | /| ]00 Oct. | & | 39.1 Oct. | 40 | 16l let c5(k3)=cl(k3)- 0.7955*cl (k3-1)+
Des. | 1| 1984 Des. | % | 108.8 Des. | 75 | mg
Ti1 |1 |11 NI Tan. |1 1] 0] enddo
Feb. | 11| 2 Feb. | % | 83.5 Feb. | 78 | a3 endmacro
Mar. | ' | | 548 Mar. | & | 140.2 Mar. | 69 | 15 Program (3): estimate values of disturbance series N, by
Q[ Apr. [ 1119 || Apr. | 5] 36.0 || Apr. | 60 | 305 using matlab program
S May. || 8 [ May. | 6] 209 | Q| May. | 37 [ 37 Fori=1:111
Oct. | 1 1] 510 Oct. | 4.0 Oct. | 42 | 219 For k=1:21
Nov. | 1] 130 Nov. | 6] 3.0 Nov. | 61 | 712 . .
Des. | | || 25 Des. | 8] 9.2 Des. | 72 | 10 Z(1,K)= v(k)y*ul(i+21)-k);
Voo, [ TN Van. |1 L] end;
Feb. | 1 | 764 Feb. [ 0 | 71.8 Feb. | 71 | 85 end
Mar. | | || 186 Mar. | % | 77.3 Mar. | 49 | 303 fori=1:111
S Apr. || 1508 [ Apr. [ 8] 12.6 || Apr. | 60 |l s(i)=0;
S May. [ 11172 May. [2]0.0 || May. | 42 [ 169 for j=1:21
Oct. || ] 160 Oct. | 4| 14.8 Oct. | 34 | 83 P
Nov. | 1 | | 1wl Nov. | 7 | 11.2 Nov. | 68 | 1! s()=s(1)-z(i.J);
Des. | 1] 189 Des. | 5 | 58.6 Des. | 58 | 119 end
Van [ Peo, |t e Vi, |1 ] end
Feb. | | 1] 1109 Feb. | % | 26.3 Feb. | 64 | 109 fori=22:111
Mar. || 152 Mar. | % | 83.6 Mar. | 61 | 572 n(i)=y(i)+s(i-20)
wolApr. [ w78 Apr. [8]333]9g] Apr. | 52 ] 161 end
S May. [11]00|R[May. [8]0.0 || May. | 39 ] 415 . R
Oct. | 1] 00 Oct | % | 12.8 Oct. | 31 | 17 program (4): the values of series (a, )
Nov. | I 1] 212 Nov. | 4 | 66.8 Nov. | 44 | 07 gmacro
JDfHS- |78 ]fo- L 3176“5 JDaeﬂs- 50 | 129 aa.macro
Feb. | | | 717 Feb. | & | 100.5 Feb. | 60 | 15 let c3(5)=0
Mar. | | | 1 Mar. | & | 84.3 Mar. | 47 | %2 do kl=6:111
ol Apr. [ 1] %1 |2 Apr. [ %] 47.3 || Apr. | 56 | s let c3(kl)=cl(kl)+ 0.222*%cl (kl-1)-
S May. [ ]49 |Q [ May. [4]0.0]|&]| May. | 40 ] 82 0.0499*c2 (k1)-0.0304778*c2 (k1-1) -
Oct. ||| |55 Oct. [ 4]8.0 Oct. | 44 | 14 0.0132066*c2(kl-2)- 0.01808*c2(k1-3)-
Nov. | [ 1} 177 Nov. | % | 25.0 Nov. | 55 | 49 0.01915*c2 (kl-4)- 0.025958*c2 (k1-5) -
Des. L W Des. | 8 | 91.9 Des. 0.222%c3 (kl_l)
. enddo
Appendix (B) _ let k4=sum(c3 (k1) **2)
The software Minitab(13.2) is used in the print k4
following macro programs. endmacro
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