New- Intuitionistic Generalized - Closed Sets in Intuitionistic Topological Spaces

1	e e e e e e e e e e e e e e e e e e e	A A	3	١
	ر ا	Ô		
ור J	U		P	S

Younis J. Yaseen

Asmaa G. Raouf

Tikrit university - College of Education.

ARTICLE INFO

Received: 5 / 1 /2012 Accepted: 15 / 10 /2012 Available online: 19/7/2022 DOI:

Keywords:

- intuitionistic generalized closed sets in intuitionistic topological spaces, T* - intuitionistic generalized open sets in intuitionistic topological spaces. ABSTRACT

The aim of this paper is to introduce a new class of sets called T^* intuitionistic generalized closed sets and T^* intuitionistic generalized open sets in
intuitionistic topological spaces and study some of their properties.And it is
topology defined by $T^* = \{U: lcl^*(\overline{U}) = (\overline{U})\}$. This paper had been generalized of
Pushpalatha, A. Eswaran, S. and Rajar, P. (2009) " T^* - generalized closed sets in
topological spaces ".

the closure of A (respectively the generalized closure operator is defined by the intersection of all Ig-closed contining A, and A^c represent closure of A and complement of A to an intuitionistic topological spaces (*ITS*) on T^* by cl^{*}(A))

II . PRELIMINARIES

We recall the following definitions which are needed in our work

- Let X be a non-empty set, and let A and B be IS having the form A = ⟨x, A₁, A₂⟩; B = ⟨x, B₁, B₂⟩ respectively. Furthermore, let {A_i:i ∈ I} be an arbitrary family of IS in X, where A_i = ⟨x, A_i⁽¹⁾, A_i⁽²⁾⟩, then:
 - 1) $\widetilde{\emptyset} = \langle x, \emptyset, X \rangle; \widetilde{X} = \langle x, X, \emptyset \rangle.$
 - 2) $A \subseteq B$, iff $A_1 \subseteq B_1$ and $A_2 \supseteq B_2$.
 - 3) The complement of A is denoted by \overline{A} and defined by $\overline{A} = \langle x, A_2, A_1 \rangle$.

$$\cup A_i = \langle x, \cup A_i^{(1)}, \cap A_i^{(2)} \rangle, \cap A_i = \langle x, \cap A_i^{(1)}, \cup A_i^{(2)} \rangle. [2].$$
An

intuitionistic topology (IT, for short) on a nonempty set X, is a family T of IS in X containing $\tilde{\phi}, \tilde{X}$ and closed under arbitrary unions and finitely intersections. The pair (X,T) is called an intuitionistic topological space (ITS, for short) [3]. A subset A of intuitionistic topological spaces (ITS, for short) (X,T) is said to be generalized closed (g-closed) if I cl(A) \subseteq U whenever A \subseteq U and U is I-open in X [7]. A subset A of ITS (X,T) is said

I. Introduction

The concept of generalized closed set is given by Levine, N. [7] using generalized closed sets. Dunham, W. [4] introduced the concept of the closure operator cl^{*} and a new topology T^* and studied some of their properties. Bhattacharyya, P. and Lahiri, B.K. [1]. Maki, H. Devi, R. and Balachandran, K. [9], Dontchev, J. and Maki, H. [5], Gnanambal, Y. [6] studied generalized semi-closed sets, semi generalized-closed sets. generalized semipre-closed sets, presemi generalizedclosed sets, generalized presemi-closed sets, pre-closed sets, semipre-closed sets and presemi-closed sets respectively. Raouf, G. A. [12] studied intuitionistic generalized closed sets and some kinds in intuitionistic topological spaces. In this paper, we obtain a new generalization of closed sets in the weaker intuitionistic topological space (X, T*).

Throughout this paper X denotes intuitionistic topological space on which no separation axioms are assumed unless otherwise explicitly stated For a subset A of an intuitionistic topologiacal space (ITS) X, I int(A), I cl(A),

cl* (A), I scl(A), I spcl(A), Ipscl(A) denote the intuitionistic interior, intuitionistic closure, intuitionistic closure*, intuitionistic semi-closure, intuitionistic semipre-closure, intuitionistic presemiclosure, and complement of A respectively. We denote

^{*} Corresponding author at: Tikrit university - College of Education; ORCID: https://orcid.org/0000-0001-5859-6212 .Mobil:777777

E-mail address: <u>dean_coll.science@uoanbar.edu.iq</u>

III. ^{T*}- Intuitionistic Generalized Closed Sets in Intuitionistic Topological Spaces.

In this section, we introduce the concept of T^* intutionistic generalized closed sets in intuitionistic topological spaces.

Proposition 3.1 Let (X, T) be ITS and let A be IS in X then $T^* = \{U: Icl^*(\overline{U}) = (\overline{U})\}$ is intuitionistic topology on X.

<u>Proof</u> 1. $\emptyset \in \mathbf{T}^*$ since I cl^{*}(X)=X.Moreover X $\in \mathbf{T}^*$ since I cl^{*}(\emptyset) = \emptyset

 \therefore Therefore $\emptyset, X \in T^*$.

2. Let $A, B \in T^*$ and let $A, B \subseteq U$ where U is any T^* -

I open set in X and $\mathbf{A} \cup \mathbf{B} \subseteq \mathbf{U}$ then

 $I \ cl^*(\overline{A \cup B}) = I \ cl^*(\overline{A}) \cap I \ cl^*(\overline{B}) \subseteq I \ cl^*(\overline{A \cap B}) = \overline{A \cap B} \ to$

prove that I cl* $(\overline{A \cup B}) = (\overline{A \cup B})$

 $(\overline{A \cup B}) \subseteq I \ cl^*(\overline{A \cup B}) \subseteq cl^*(\overline{A}) \cap cl^*(\overline{B}) = (\overline{A \cup B})$

 \therefore Therefore $A \cup B \in T^*$.

3. Let $A, B \in T^*$ and $A \cup B \subseteq U$ where U is any T^* -I open set in X, then I cl* $(\overline{A \cap B}) = I$ cl* $(\overline{A}) \cup I$ cl* $(\overline{B}) = cl^*(\overline{A \cup B}) = \overline{A \cap B}$

 \therefore Therefore $A \cap B \in T^*$.

Now, we are ready to give a definition of T^* -topology

Definition 3.2 [11] A subset A of ITS(X, T), the topology T^* is defined by $T^* = \{U: I cl^*(\overline{U}) = \overline{U}\}$.

Definition 3.3 A subset A of ITS (X, T) is called T^* intuitionistic generalized-closed sets $(T^*-Ig-closed)$ if $I cl^*(A) \subseteq U$ whenever $A \subseteq U$ and U is T^*-I open. The complement of T^* -generalized-closed set is called the T^* -generalized open set $(T^*-Ig-open)$.

<u>**Proposition 3.4**</u> Every I closed set in X is T^* -Igclosed.

<u>Proof</u> Let A be an I closed set in X. Let $A \subseteq U$ where U is any T*-I open set in X. Since A is an I closed then I cl(A) = A \subseteq U but I cl*(A) \subseteq I cl(A). Thus, we have I cl*(A) \subseteq U whenever $A \subseteq U$. Therefore A is T*-Ig-closed.

The converse of the above proposition need not be true as the following example shows.

to be semi generalized-closed (sg-closed) if $I \operatorname{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is I semiopen in X [1]. A subset A of ITS(X, T) is said to be generalized semi-closed (*q*s-closed) if $I \operatorname{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is I-open in X [12]. A subset A of ITS(X, T) is said to be presemi generalized-closed (psg-closed) if I pscl(A) \subseteq U whenever A \subseteq U and U is I-open in X [9] . A subset A of ITS(X, T) is said to be generalized presemi-closed (*g*ps-closed) if $I pscl(A) \subseteq U$ whenever $A \subseteq U$ and U is I preseme-open in X [12]. A subset A of ITS(X, T) is said to be generalized semipre-closed (gspclosed) if $I \operatorname{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is I-open in X [6]. A subset A of ITS(X, T) is said presemi-closed be (ps-closed) to if $I cl(I int(I cl(A))) \subseteq A$ [1]. A subset A of ITS(X,T) is said to be pre-closed (p-closed) if $I cl(I int(A)) \subseteq A$ [6]. A subset A of ITS (X, T) is said to be semi-closed if $I int(I cl(A)) \subseteq A$ [6]. A subset A of ITS(X, T) is said to be semipreclosed if $I int(I cl(I int(A))) \subseteq A$ [1]. The complement of the above mentioned sets are called their I-open sets, g-closed sets, sg-closed sets, gsclosed sets, psg-closed sets, gps-closed sets, gspclosed sets, ps-closed sets, p-closed sets ,s-closed sets, sp- closed sets respectively. For the subset A of ITS (X, T), the intuitionistic generalized closure operator I cl* is defined by the intersection of all I g-closed sets containing A [4]. For the subset A of ITS (X, T), the semi-closure of A(I scl(A)) is defined as the intersection of all I semi-closed sets containing A [6]. For the subset A of ITS (X, T), the semipre-closure of $A(I \operatorname{spcl}(A))$ is defined as the intersection of all I semipre-closed sets containing A [5]. For the subset A of ITS (X, T), the presemi-closure of A(Ipscl(A)) is defined as the intersection of all I presemi-closed sets containing **A** [1].

and $\alpha_{20} = \langle \mathbf{x}, \emptyset, \{\mathbf{b}, \mathbf{c}\} \rangle$. then A is I sp-closed set, since I int (I cl(I int(A))) = A is subset of A. But A is not T*-Ig-closed, since for all T*-I open set in X are

A, C and

 $\alpha_7 \operatorname{I} \operatorname{cl}^*(A) = \alpha_1 \not\subseteq A, \operatorname{C} \operatorname{or} \alpha_7.$

The next example gives a T^* -I*g*-closed set, which is not I sp-closed set.

Example 3.10 Let $X = \{a, b, c\}; T = \{\tilde{\emptyset}, \tilde{X}, A\}$ where $A = \langle x, \{a\}, \{b, c\} \rangle$. spo $X = T \cup \{B, C, D, E, F, R, H, I, J, K, L, M, N, P, Q\}$,

where

$$\begin{split} &\mathsf{B}=\langle x,\{a\},\emptyset\rangle; \ \mathsf{C}=\langle x,\{a\},\{b\}\rangle; \ \mathsf{D}=\langle x,\{a\},\{c\}\rangle; \ \mathsf{E}=\langle x,\{a,c\},\emptyset\rangle; \ \mathsf{F}=\langle x,\{a,c\},\emptyset\rangle; \ \mathsf{F}=\langle x,\{a,c\},\{b\}\rangle; \ \mathsf{R}=\langle x,\{a,b\},\emptyset\rangle; \ \mathsf{H}=\langle x,\{b\},\emptyset\rangle; \ \mathsf{I}=\langle x,\{c\},\emptyset\rangle; \ \mathsf{J}=\langle x,\emptyset,\{b,c\}\rangle; \ \mathsf{K}=\langle x,\emptyset,\{b\}\rangle; \ \mathsf{L}=\langle x,\{b\},\{c\}\rangle; \ \mathsf{M}=\langle x,\emptyset,\{c\}\rangle; \ \mathsf{N}=\langle x,\{c\},\{b\}\rangle; \ \mathsf{P}=\langle x,\{b,c\},\emptyset\rangle \end{split}$$

and $Q = \langle x, \{a, b\}, \{c\} \rangle$. A is T*-Ig-closed, since for all T*-I open set in X that contain A are B, C and D then I cl*(A) = A is subset of B, C and D. But A is not I sp-closed.

Example 3.11 Recall example 3.7 we can get the following that T^* -Ig-closed set, but not I presemiclosed. psoX = T $\cup \{Z_3, Z_4\}$ Let $Z_1 = \langle x, \{a\}, \{b\} \rangle$ is T^* -Ig-closed. Since for all T^* -I open set in X is A, Z_3 and Z_4 then I cl^{*}(Z_1) = Z_1 are subset of A, Z_3 or Z_4 . But Z_1 is not I ps-closed.

We show in this example that I presemi-closed set, need not be T^* -I*g*-closed.

Example 3.12 Let $X = \{a, b, c\}$; $T = \{\tilde{\emptyset}, \tilde{X}, A, B\}$ where $A = \langle x, \{a\}, \emptyset \rangle$ and $B = \langle x, \{a, b\}, \emptyset \rangle$ $psoX = \{\tilde{\emptyset}, \tilde{X}, A, B, C\}$ where $C = \langle x, \{a, c\}, \emptyset \rangle$. Let $\overline{A} = \langle x, \emptyset, \{a\} \rangle$ is I presemi-closed set. But \overline{A} is not T^* -Ig-closed set, since the only T^* -I open set that contain \overline{A} are A and B then I cl* $(\overline{A}) = \langle x, \{c\}, \{a\} \rangle \not\subseteq A$ or B.

Example 3.13 Recall example 3.9 it is clear that Is*g*-closed set, but not T^* -I*g*-closed set. Since for all I semi-open sets $A \subseteq A, C, \alpha_1$ and α_2 then I scl(A) = A are subsets of A, C, α_1 and α_2 . But is not T^* -I*g*-closed. **Example 3.5** Let $X = \{a, b, c\}$; $T = \{\tilde{\emptyset}, \tilde{X}, A, B\}$ where $A = \langle x, \{b\}, \{a, c\} \rangle$, $B = \langle x, \{b\}, \emptyset \rangle$. Then B is T^* -Ig-closed set in X, since for all T^* -I open in X that contained B is Ig-closed set C and D where $C = \langle x, \{a, b\}, \emptyset \rangle$, $D = \langle x, \{b, c\}, \emptyset \rangle$ then I cl*(B) = B are subsets of C or D, but B is not I closed set.

<u>**Proposition 3.6**</u> Every Ig-closed set in X is T^* -Ig-closed set.

<u>Proof</u> Let A be Ig-closed set in X. Let $A \subseteq U$ where U is T*-I open in X. Then I cl(A) \subseteq U, since A is Ig-closed, I cl*(A) \subseteq I cl(A). Therefore I cl*(A) \subseteq U.

Hence A is T*-Ig-closed.

The converse of the above proposition need not be true as the following example shows.

Example 3.7 Let $X = \{a, b, c\}$; $T = \{\tilde{\emptyset}, \tilde{X}, A\}$ where $A = \langle x, \{a\}, \emptyset \rangle$. A is T*-I*g*-closed set in X, since the only T*-I open in X that contain A are Z₃ and Z₄ where $Z_3 = \langle x, \{a, c\}, \emptyset \rangle$, $Z_4 = \langle x, \{a, b\}, \emptyset \rangle$, and I cl* (A) = A which are subset of Z₃ or Z₄, but A is not I*g*-closed, since the only I open in X that contain A is A only, but cl(A) = X is not subset of A.

<u>Remark 3.8</u> The notion **T***-I*g*-closed set in ITS is independent from **I sp**-closed set, Is*g*-closed set, **I ps**closed set, **I pre**-closed set, **I***gs***-closed set**, **I***gsp***closed set, Ips***g*-closed set and **I***gps***-closed set**.

The following example shows that there is an I spclosed set, which is not T^* -Ig-closed set. Example 3.9 Let X = {a, b, c}; T = { $\tilde{\emptyset}, \tilde{X}, A, B, C$ } where A = $\langle x, \{c\}, \{a, b\} \rangle$; B = $\langle x, \{a\}, \{b, c\} \rangle$. and C = $\langle x, \{a, c\}, \{b\} \rangle$. spoX = T $\cup \{\alpha_i\}_{i=1}^{20}$, where

 $\begin{array}{l} \alpha_1 = \langle {\rm x}, \{c\}, \{a\} \rangle; \ \alpha_2 = \langle {\rm x}, \{a,c\}, \emptyset \rangle; \ \alpha_3 = \langle {\rm x}, \{b,c\}, \{a\} \rangle; \ \alpha_4 = \langle {\rm x}, \{a\}, \{c\} \rangle; \ \alpha_5 = \\ \langle {\rm x}, \{a,b\}, \{c\} \rangle; \ \alpha_6 = \langle {\rm x}, \{c\}, \emptyset \rangle; \ \alpha_7 = \langle {\rm x}, \{c\}, \{b\} \rangle; \ \alpha_8 = \langle {\rm x}, \{a\}, \{b\} \rangle; \ \alpha_9 = \\ \langle {\rm x}, \{a\}, \emptyset \rangle; \ \alpha_{10} = \langle {\rm x}, \{b,c\}, \emptyset \rangle; \ \alpha_{11} = \langle {\rm x}, \{c\}, \emptyset \rangle; \ \alpha_{12} = \langle {\rm x}, \{b\}, \emptyset \rangle; \ \alpha_{13} = \\ \langle {\rm x}, \{b\}, \{a\} \rangle; \ \alpha_{14} = \langle {\rm x}, \{b\}, \{c\} \rangle; \ \alpha_{15} = \langle {\rm x}, \{b\}, \{a,c\} \rangle; \ \alpha_{16} = \langle {\rm x}, \emptyset, \{a\} \rangle; \ \alpha_{17} = \\ \langle {\rm x}, \emptyset, \{b\} \rangle; \ \alpha_{18} = \langle {\rm x}, \emptyset, \{c\} \rangle; \ \alpha_{19} = \langle {\rm x}, \emptyset, \{a,b\} \rangle \end{array}$

Example 3.17 Recall example 3.10 it is clear that **A** is

 T^* -I*g*-closed set, but not I*g*s-closed set.

Example 3.18 Recall example 3.9 we see that $A = \langle x, \{c\}, \{a, b\} \rangle$ is Igsp-closed set, but not T*-Ig-closed set.

Recall example 3.15 show that \mathbf{A} is \mathbf{T}^* -I \boldsymbol{g} -closed set, but not I \boldsymbol{g} sp-closed set.

In the following example we show:

- 1- Ipsg-closed set, but not T*-Ig-closed set.
- 2- Igps-closed set, but not T*-Ig-closed set.

Example 3.19 Let X = {a, b, c}; T = { $\widetilde{\emptyset}$, \widetilde{X} , A, B} where A = $\langle x, \{c\}, \{a, b\} \rangle$ and B = $\langle x, \{b, c\}, \{a\} \rangle$ psoX = T $\cup \{\beta_i\}_{i=1}^6$, where $\beta_1 = \langle x, \{c\}, \emptyset \rangle$; $\beta_2 = \langle x, \{c\}, \{a\} \rangle$; $\beta_3 = \langle x, \{c\}, \{b\} \rangle$; $\beta_4 = \langle x, \{a, c\}, \emptyset \rangle$; $\beta_5 = \langle x, \{c\}, \{a\} \rangle$

 $\langle \mathbf{x}, \{\mathbf{b}, \mathbf{c}\}, \emptyset \rangle$ and $\beta_6 = \langle \mathbf{x}, \{a, c\}, \{b\} \rangle$. we can see that A is I

psg-closed and Igps-closed. But not T*-Ig-closed because the only T*-I open in X that contain β_7 is B I cl*(β_7) = $\langle x, \{b\}, \{c\} \rangle \not\subseteq B$.

Example 3.20 Recall example 3.7 it is clear that **A** is T^* -I*g*-closed set, but not Ips*g*-closed set.

Recall example 3.7

psoX = T \cup {Z₂, Z₃}, where Z₂ = $\langle x, \{a\}, \{c\} \rangle$ and Z₃ = $\langle x, \{a, c\}, \emptyset \rangle$. we can see that Z₁ = $\langle x, \{a\}, \{b\} \rangle$ is T*-Ig-closed set but not Igps-closed set.

Proposition 3.21 Let (X, T) be ITS, let A and B be IS in X then I cl^{*} $(A \cup B) = I cl^* (A) \cup I cl^* (B)$.

ProofSince $A \subseteq A \cup B$, thenI cl*(A) \subseteq I cl*(A \cup B) and since $B \subseteq A \cup B$, thenI cl*(B) \subseteq I cl*(A \cup B).ThereforeI cl*(A) \cup I cl*(B) \subseteq I cl*(A \cup B).

Also $I cl^*(A)$ and $I cl^*(B)$ are I closed. Therefore I cl^*(A) \cup I cl^*(B) is also a I closed, $A \subseteq I cl^*(A)$ and $B \subseteq I cl^*(B)$ implies $A \cup B \subseteq I cl^*(A) \cup I cl^*(B)$, Thus, I cl^*(A) \cup I cl^*(B) is I closed set containing $A \cup B$.

Since $I cl^*(A \cup B)$ is the smallest I closed set containing $A \cup B$ we have $I cl^*(A \cup B) \subseteq I cl^*(A) \cup I cl^*(B)$. Thus, $I cl^*(A \cup B) = I cl^*(A) \cup I cl^*(B)$. Recall example 3.10 we see that \mathbf{A} is \mathbf{T}^* -I \boldsymbol{g} -closed set, but not Is \boldsymbol{g} -closed.

 $SoX = T \cup \{B, C, D, E, F, R, Q\}$

In the next example we show that I pre-closed set need not be T^* -Ig-closed set.

Example 3.14 Let $X = \{a, b, c\}; T = \{\tilde{\emptyset}, \tilde{X}, A, B\}$ where $A = \langle x, \{a\}, \{b\} \rangle$, $B = \langle x, \{a, b\}, \emptyset \rangle$. po $X = T \cup \{C, D, E, F, G, H, I, J, K, L, M, O, S, W, N, P, Y\}$ where $C = \langle x, \{a\}, \emptyset \rangle; D = \langle x, \{a\}, \{c\} \rangle; E = \langle x, \{a, b\}, \{c\} \rangle; F = \langle x, \{a, c\}, \emptyset \rangle; G = \langle x, \{a, c\}, \{b\} \rangle; H = \langle x, \{a\}, \{b, c\} \rangle; I = \langle x, \{b, c\}, \emptyset \rangle; I = \langle x, \{b, c\}, \emptyset \rangle; K = \langle x, \{c\}, \emptyset \rangle; L = \langle x, \{c\}, \{a\} \rangle; M = \langle x, \{c\}, \{b\} \rangle; 0 = \langle x, \emptyset, \{b, c\} \rangle; S = \langle x, \emptyset, \{b\} \rangle; W = \langle x, \emptyset, \{c\} \rangle; N = \langle x, \{c\}, \{a\} \rangle; P = \langle x, \{b\}, \emptyset \rangle$

and $Y = \langle x, \{b\}, \{c\} \rangle$. D is I pre-closed set in X. But not T*-Ig-closed, since the only T*-I open set that contains D is B then I cl* (D) = F \nsubseteq B.

we show in the next example that T^* -I*g*-closed set, need not be I pre-closed set.

Example 3.15 Let X = {a, b, c}; T = $\{\widetilde{\emptyset}, \widetilde{X}, A\}$ where A = $\langle x, \{b\}, \{a, c\}\rangle$. poX = T $\cup \{Q_i\}_{i=1}^{20}$, where

and $Q_{15} = \langle x, \emptyset, \{a, c\} \rangle$. A is T*-I*g*-closed set, since the only T*-I open in X that contained A are A, Q_1 , Q_2 or Q_3 . But not I pre-closed.

In the following example we give an Igs-closed set, which is not T^* -Ig-closed set.

Example 3.16 Let $X = \{a, b, c\}$; $T = \{\tilde{\emptyset}, \tilde{X}, A, B\}$ where $A = \langle x, \{a\}, \{b\} \rangle$ and $B = \langle x, \{a, b\}, \emptyset \rangle$. Let $Z_1 = \langle x, \{a\}, \{b\} \rangle$ is *Igs*-closed set but not T^* -*Ig*closed since the only T^* -I open set in X that contain Z_1 are A and B then I $cl^*(Z_1) = \langle x, \{b, c\}, \emptyset \rangle$ are not subset of A or B. **Proposition 3.26** Let (X, T) be ITS and let C be IS in X then C is T*-Ig-closed and C \subseteq D \subseteq I cl*(C), then D is T*-Ig-closed set in X.

<u>**Proof**</u> Let C be a T^{*}-Ig-closed such that $C \subseteq D \subseteq$ I cl^{*}(C). Let U be a T^{*}-I open set of X such that $D \subseteq U$. since C is T^{*}-Ig-closed, we have I cl^{*}(C) \subseteq U.

I $cl^*(C) \subseteq I cl^*(D) \subseteq I cl^*(I cl^*(C)) = I cl^*(C) \subseteq U$. That is I $cl^*(D) \subseteq U$, and U is T*-I open. Therefore D is T*-Ig-closed set in X.

The converse of the above proposition is not true in general as the following example shows.

Example 3.20 Recall example 3.15 let $C = \langle x, \{a, c\}, \{b\} \rangle$ and $D = \langle x, \{a, c\}, \emptyset \rangle$. Then C and D are T*-Ig-closed set in X. Since for all T*-I open in X C, D \subseteq D then I cl*(C) = C and I cl*(D) = D is a subset of D. But C \subseteq D which is

not a subset of I cl*(C).

We end this paper by the following characterization.

<u>Theorem 3.23</u> Let (X, T) be ITS, let A be IS in X then A is Ig-closed if and only if I cl^{*}(A) – A is T^{*}-I open.

<u>**Proof**</u> Let A be Ig-closed in X, then $cl^*(A) = A$ and $cl^*(A) - A = \emptyset$ which is T^* -I open in X.

Conversely

Let $I cl^*(A) - A$ is T^* -I open in X. Since A is T^* -Igclosed so, by the theorem 3.23, $I cl^*(A) - A$ contains no non-empty T^* -I closed set in X. Then $cl^*(A) - A = \emptyset$ hence A is Ig-closed.

References

- Bhattacharyya, P. and Lahiri, B.K. "Semi generalized closed sets in topology" Indian J. Math. 29 (1987), pp. 376-382.
- [2]. Gao, J. Ganster, M. and Reilly, I. "Submaximality, Extremal disconnectedness and generalized closed sets" Houston, J. of Math. Vol. 24, No. 4 (1998), pp. 681-688.
- [3]. Cueva, M.C. "Semi-generalized continuous maps in topological spaces" Portugalie, Math. Vol. 52 Fasc. 4. (1995).

<u>Proposition 3.22</u> Let (X, T) be ITS, then the union of T^* -Ig-closed sets in X is a T^* -Ig-closed set in X.

Proof Let A and B be two T^* -I*g*-closed sets. Let $A \cup B \subseteq U$, where U is T^* -I open. Since A and B are T^* -I*g*-closed sets, I cl*(A) \cup I cl*(B) \subseteq U. But by Proposition 3.21 I cl*(A \cup B) = I cl*(A) \cup I cl*(B). Therefore I cl*(A \cup B) \subseteq U. Hence A \cup B is a T*-I*g*-closed sets.

The next theorem is a characterization of T^* - Igclosed set.

<u>Theorem 3.23</u> Let (X, T) be ITS and let A be IS in X then A is T*-Ig-closed if and only if I cl*(A) – A does not contain any non-empty T*-I closed set in X.

Proof Let A be a T*-Ig-closed set Suppose that F is a non-empty T*-I closed subset of X such that $F \subseteq I \ cl^*(A) - A$ then $F \subseteq I \ cl^*(A) \cap A^c$, since $I \ cl^*(A) - A = I \ cl^*(A) \cap A^c$. Therefore $F \subseteq I \ cl^*(A)$ and $F \subseteq A^c$ Since \overline{F} is a T*-I open set and A is a T*-Ig-closed, I $\ cl^*(A) \subseteq \overline{F}$. That is then $F \subseteq (I \ cl^*(A))^c$. Hence $F \subseteq I \ cl^*(A) \cap (I \ cl^*(A))^c = \emptyset$ That is $F = \emptyset$, Thus I $\ cl^*(A) - A$ contain no non-empty T*-I closed set in X.

<u>Conversely</u> A assume that $cl^*(A) - A$ contains no nonempty T*-Iclosed set. Let $A \subseteq U$ and U is T*-I open. Let $I cl^*(A)$ be not contained in U, then $I cl^*(A) \cap \overline{U}$ is a non-empty T*-Iclosed set of $I cl^*(A) - A$ which is a contradiction. Therefore $I cl^*(A) \subseteq U$ and hence A is T*-Ig-closed.

<u>Corollary 3.24</u> Let (X, T) be ITS and let A be IS in X then A is T^* -Ig-closed if and only if I cl*(A) - A contains no non-empty I closed set in X.

<u>Proof</u> By Theorem 3.23 and the fact that every I closed set is T^* -I closed set in X.

<u>Corollary 3.25</u> Let (X, T) be ITS and let A be IS in X then A is T*-Ig-closed if and only if I cl*(A) - A contains no non-empty I open set in X.

<u>Proof</u> By Theorem 3.23 and the fact that every I open set is T^* -I open set in X.

Mem. Fac. Sci. Kochi Univ. Math. 15 (1994), pp. 51-63.

- [10].Navalagi, G.B. "Semipre-continuous function and properties of generalized semipro-closed sets in topological spaces" Int. J. MMS 29,2 (2002), pp. 85-98.
- [11].Pushpalatha, A. Eswaran, S. and Rajar, P. "^{T*}generalized closed sets in topological spaces" pro. of W. con. on Engineering (2009), ISBN. 978-988.
- [12].Raouf, G. A. "On generalized homomeorphism between ITS" MSc. Tikrit uni. Thesis coll. of Education (2008).

- [4]. Dunham, W. "A new closure operator for non-^T₁topologies" Kyungpook Math. J. 22 (1982), pp. 55-60.
- [5]. Dontcher, J. and Maki, H. "On ⁰-generalized closed set" Int. J. Math. And Math. Sci. Vol. 22, No. 2 (1999), pp. 239-249.
- [6]. Gananambal, Y. "On generalized closed sets in topological spaces" Indian J. prue apple Math. 28, No. 3 (1997), pp. 351-360.
- [7]. Levine, N. "Generalized closed sets in topology" Rend. Circ. Mat. Palermo, 19, 2 (1970), pp. 89-96.
- [8]. Levine, N. "Semi-open sets and semi-continuity in topological spaces" Amer. Math. Monthly, 70 (1963), pp. 36-41.
- [9]. Maki, H. Devi, R. and Balachandran, K. "Assiciated topologies of generalized presemiclosed sets and presemi-generalized closed sets"

تعميم حدسي جديد للمجموعات المغلقة في الفضاءات التبولوجية الحدسية

يونس جهاد ياسين أسماء غصوب رؤوف

E.mail: <u>dean_coll.science@uoanbar.edu.iq</u>

الخلاصة

ان الهدف من هذا البحث هو اعطاء صنفين جديدين من المجموعات الحدسية وأسميناها تعميم المجموعات المغلقة الحدسية - "T المجموعات المفتوحة الحدسية - "T في الفضاءات التبولوجية الحدسية ودرسنا بعض صفاتهما.