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Abstract

In this paper, Linear Quadratic Regulator (LQR)controller is applied to the attitude
stabilization control of Kufasat. Using the linearized equations of motion for a rigid body in
space, the linearized stability, effectiveness and robustness of a linear quadratic regulator (LQR)
control design were compared with that of a Proportional-Integral-Derivative (PID) control
design. The detailed design procedure of the LQR controller is presented. Simulation results
show that precise attitude control is accomplished and the time of satellite maneuver is shortened
in spite of the uncertainty in the system.
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1-Introduction

The Iraqi student satellite project kufasat
was started at 2012. The launch of the
satellite is planned for late 2016. The main
tasks for kufasat will be to perform scientific
measurements. The project is sponsored by
the University of Kufa and it will be the first
Iraqi satellite. Kufasat is a nano-satellite
based on the cubesat concept. This means
that its mass is restricted to 1 kg, and its size
is restricted to a cube measuring 10x10x10
cm. It also contains 1.5m long gravity boom,
which will be used for passive attitude
stabilization. The satellite attitude control
problem includes attitude stabilization and
attitude maneuver. Attitude stabilization is
the process of keeping original attitude and
the attitude maneuver is the re-orientation
process of changing one attitude to another
[1] .In general, attitude stabilization systems
are classified as active or passive. The
simplicity and low cost of active magnetic
control makes it an attractive option for
small satellites in Low Earth Orbit (LEO).

A gravity gradient stabilized satellite has
limited stability and pointing capabilities so,
magnetic coils are added to improve both the
three axis stabilization and the pointing
properties. Magnetic coils around the
satellite’'s XYZ axes can be fed with a
constant current-switched in two directions-
to generate a magnetic dipole moment M
which will interact with the geomagnetic
field vector B to generate a satellite torque N
by taking the cross product[2]:

N=MxB (1)

This torque is used to control the rotation of
the satellite. The magnetic coils are
controlled using LQR controller. Gravity
gradient stabilization has been wused in
attitude control since the early sixties [3] ,
but accurate three-axis control has not been
achieved using gravity gradient stabilization
alone.  Gravity gradient stabilization
combined with magnetic torqueing, has
gained increased attention as an attractive
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attitude control system (ACS) for small
cheap satellites and is also proposed used in
this satellite [4].

A problem is that both the direction and the
strength of the geomagnetic field change and
magnetic control become non-linear and
time dependent. Attitude control with high
accuracy cannot be achieved because the
magnetic torques are constrained on a plane
perpendicular to the local magnetic field .In
this paper, a comparison between two
attitude control laws that have been
suggested used for kufasat. This paper
proposes PID and LQR controller.

2- Dynamic model

The mathematical model of a satellite is
described by the dynamic equations and
kinematic equations of motion [5 ].The
dynamic equation of motion for a satellite in
low earth orbit is

*T = Ly, + oy, X (1 Po, /1) )
where

bmb /Iis the angular velocity of body frame

relative to an inertial frame . Iis the moment
of inertia matrix refer to body frame |,
I =diag[lx Iy L. bTis total torque
acting on satellite expressed in body frame
components, which is consist of gravity
gradient torque, magnetic torque and
disturbance torque.

bT = b1, + PT, + PTp (3)
Equation (1) can be expanded in
components; we have three dynamic

equations for the roll, pitch, yaw axes
respectively as follows:

Ty = oy + (I, — 1)) oy0, (4a)
Ty = dyly + (Ix — ) o0 (4b)
T, = 6,1, + (Iy — Iy) oy, (4c)
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Where oy wmy,m, are angular velocities of
body frame and Iyly,l, are the moment of
inertia in body frame and T,T,,T, are the
torques expressed in  body frame
components. These three equations are
known as Euler’s equations of motion for a
rigid body [6]. If the Euler angles ¢.0, y are
small in magnitude, the relationship between
body angular velocities and Euler angular
velocities may be approximated[7] as,

W] ¢+ wod
(‘)y] =|6- W, (5)
Dz 1.0 — W

Gravity Gradient Torque:

The gravity gradient torque, using a small
Euler angle approximation and taking
principal axes as reference axis is given [3]

by:

= 303 (I y)
TGy =302(, — )0 (6)
TGZ = O

Where Tex , Tey , Ta; are the gravity gradient
torque about the Roll , Pitch , Yaw axis,
respectively .

Magnetic Field Torque:

The magnetic coil produces a magnetic
dipole when currents flow through its
windings, which is proportional to the
ampere-turns and the area enclosed by the
coil. The torque generated by the magnetic
coils can be modeled as:
T2 = mP x BP (7)
Where m" is the generated magnetic moment
inside the body and BP = [BEBPBD|™ . is
the local geomagnetic field vector

[z

where Ny is number of windings in the
magnetic coil, ik is the coil current and Ag

NyigAy

NyiyAy
N,i,A,

mP =m{ + mb+ md =
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is the span area of the coil. The magnetic
torque can be represented as:

Tmx mYB‘V — m,By
Ty | = |m;B, — myB,, (8)
Tz myBy — myB,

Where Trmx , Tmy , Tmz are the magnetic
torque about the Roll , Pitch , Yaw axes ,
respectively , and mx , my , mz are the
corresponding of the magnetic moments and
By , Bo , By is the earth’s magnetic field
affects the Roll , Pitch and Yaw axis
respectively .After adding equation (6) and
equation (8)to equation (4) the final form of
linearized attitude dynamic model of the
satellite including gravity gradient torque
and magnetic coil torque written in body
frame components becomes

- 4-000(1
oo (-
(mwa - sze)/Ix

2 —
o (_ M) 0 + (m,B,
IY
—myB,)/ly
(Pitch) (9b)

(mo(lx 1y+lz))¢ +
(Yaw) (9c)

Y+
(Roll) (9a)

Z))¢ + (wo(lx Iy+1,), -

\T/ — (_ ‘D%(Ilyz_lx)) v —
—myB,)/I1,

If the states are given as:

(mxBe

X1 = [?];x4 = [¢]  (Roll)
X, = [0];xs =[]  (Pitch)
x3 = [V] x¢ = [¥] (Yaw)

, then the linear system can be expressed as a
state space model taking the form:

x=Ax+Bu (10)
y = Cx+ Du (11)
then equations (9 a,b,c) can be represented
as a state —space model as :
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[ 0 0 ] 1 0
| 0 0 0 0 1
I 0 0 0 0 0
40?(1, -1 w,(I
I’ 0(’y 2) 0 0 0 o @l
- B
- 30i(I, —1,)
| 0 0 0 0
| L
0 0 Wil -L)  w,(L-1,+1,) 0
I I,
x 0 ] 0
ml ] o 0 o |
I le | o 0 0 | ™
3
[w|*] 0 ByL -Byt I-[zy] (12)
x5 l—Bw/Iy 0 B, lyJ z
lxel | o1, -B,/I, 0

3- PID controller design

A Proportional-Integral-Derivative
controller (PID controller) is the most
widely used controller with feedback
mechanism. It is one of the simplest control
algorithms, and in the absence of knowledge
of the underlying process, PID controller is
often the best choice.

A typical structure of a PID control system
is shown in Figure.l, where K, is the
proportional gain ,Kq is the derivative gain ,
and K; is the integral gain. By appropriately
adjusting theses gains , the desired output
can be achieved .It can be seen that in a PID
controller, the error signal e(t)is used to
generate the proportional, integral, and
derivative actions, with the resulting signals
weighted and summed to form the control
signal u(t)applied to the plant model.

+l
u(®

+

-

K ()

() e(t) ¥(®)

Process

'C,_“'c(l)d(t)

+

de(®)
d dt

PID Controller

K

>

Fig (1) PID Controlled System

A mathematical description of the PID
controller is [8] :
u(®) =K, (e(t)dt + Ti [e(®)dt+ Ty dz(tt)) (13)

where u(t)is the input signal to the plant
model , the error signal e(t) is defined as e(t)
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= r(t) — y(t) , and r(t) is the reference input
signal. In equation (13), the proportional
action is related to the present error and it is
used to reduce the rise time. The integral
action is based on the past error and it is
used to reduce the steady state error .
Finally, the derivative action is related to the
future behavior of error and it is used to
increases the stability, reduces the overshoot
and improves the transient response.

The PID controller is tuned by selecting
parameters Kp, Ki , and Kd, that give an
acceptable closed-loop response. A desirable
response is often characterized by the
measures of settling time, oscillation period,
and overshoot, to mention a few. Many PID
tuning methods have been proposed over the
years, ranging from the simple, but most
famous Ziegler-Nichols tuning method, to
the more modern simple internal model
control (SIMC) tuning rules by Skogestad .
In this work all gains of PID controller tuned
automatically in Simulink environment. The
block diagram of the Simulink set up for the
attitude control using PID controller is
shown in Figure (2).

E Phi Set Point
. itcl
Theta Set Point. > e theta
» PD(s) | uthen theta >

E Psi Set Point

PID Controller

P u

PID(s)

Pitch
Yow
- > DI

PID(s)

Satellite Model

Fig (2) SIMULINK diagram of satellite
model with PID controller

4- LQR controller design

The Linear Quadratic Regulator (LQR) is a
powerful technique for designing controllers
for complex systems that have stringent
performance requirements. The standard
theory of the optimal control is presented in
[8,9,10]. Under the assumption that all state
variables are available for feedback, the
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LQR design method starts with a defined set
of states which are to be controlled. In
general, the system model can be written in
state space equation as in equation (10)
x=Ax+Bu (10)
Where:x € R" and u € R™ denote the state
variable, and control input vector,
respectively. A is the state matrix of order
nxn ; B is the control matrix of order
mXxXm .

Controllability:

The conditions of controllability may govern
the existence of a complete solution to the
control system design problem. The solution
to this problem may not exist if the system
considered is not controllable [8].The system
described by Equation (10) is said to be state
controllable at t = t,if it is possible to
construct an unconstrained control signal
that will transfer an initial state to any final
state in a finite time intervalt, <t < t;. If
every state is controllable, then the system is
said to be completely state controllable. The
system given by equation (10) IS
completely state controllable if and only if
the vectors B, AB, .. A" B are linearly
independent, or the n xn matrix[B, AB, ...
A" Blis of rank n [8] .

Weighting matrices Q and R determination:

The weighting matrices Q and R are
important components of an LQR
optimization process. The compositions of Q
and R elements have great influences of
system performance. The designer is free to
choose the matrices Q and R, but the
selection of matrices Q and R is normally
based on an iterative procedure using
experience and physical understanding of the
problems involved. Commonly, a trial and
error method has been used to construct the
matrices Q and R elements. This method is
very simple and very familiar in LQR
application. However, it takes long time to
choose the best values for matrices Q and R.
The number of matrices Q and R elements
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are dependent on the number of state
variable (n) and the number of input variable
(m), respectively. The block diagram of the
Simulink set up for the attitude control using

LQR controller is shown in Figure (3).
LQR Controller

\
dxdy=Ax+Bu
y=Cx+Du

Rollrate

i, Fichrate

T Ll

Yawrate

Angle RRate

Fig (3) SIMULINK diagram of satellite
model with LQR controller

5- Simulation

In this paper, several simulations of the
proposed controller have been done. The
parameters values used for kufasat are listed
in Table (1):

Table (1) kufasat parameters

Parameter Value

Satellite height 600km

Weight 1kg

Size 10 x 10 x 10 cm

Moments of inertia Ix = 0.1043, ly= 0.1020, Ix =

0.0031 kgm2

Boom length 15m

Orbit angular | 1.083*10"-3

velocity

Maximum magnetic | 0.1 Am2

moment

Magneto-torquer 3 perpendicular magnetic
coils

Desired Euler values | [000]

[0 v]
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6- Conclusion

In this paper, LQR controller for attitude
control of kufasat is developed and its
performance compared with the
conventional PID controller. From the
analysis it is observed that

1- The LQR controller was able to meet
the  design  goals, minimum
overshoot, minimum rise time and
minimum steady state error.

2- The LQR has better performance in
terms of percentage overshoot and
rise time. It is observed that LQR is
controllable and more stable than
PID controller when the system is
under effect of AMC. In addition to
the time of satellite maneuver is
shortened.

3- Even though, the PID controller
produces the response with lower
delay time and rise time, but it offers
very high settling time due to the
oscillatory behavior in transient
period. It has severe oscillations with
a very high peak overshoot which
causes the damage in the system
performance. The proposed LQR
controller can effectively eliminate
these dangerous oscillations and
provides smooth  operation in
transient period.

4- Due to an onboard power limitation
only one magneto-torquer coil can be
switched on at a time. A control
algorithm must be modified to allow
for the choice of the coil that will
achieve the best results, given the
local geomagnetic field vector.
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