
P- ISSN  1991-8941   E-ISSN 2706-6703           Journal of University of Anbar for Pure Science (JUAPS)     Open Access                                                     

2013,(7), (1 ) :164-171                              

 

461 

FINITE ELEMENT METHOD FOR TWO DIMENSIONAL 

COUPLED BBM-SYSTEM 

Ekhlass S. Al-Rawi*                 Muhannad A. Mahmoud** 

*University of Mosul  - College of computer science and Mathematics 

**University of Kirkuk  - College of Science. 

 

 

 

 

A R T I C L E  I N F O   A B S T R A C T  

Received: 21   /  8  /2012 

Accepted:  10 / 2 /2013 
Available online: 19/7/2022 
DOI:  

 

 In this paper the Matrix Equation for the two-dimensional nonlinear Coupled-

BBM system of type Boussinesq is obtained by using Finite element method. In this 

regard triangular element is used to get the results. Tsunami wave is used to test the 

efficiency of this method. The wave generation and evolution are described by 

numerical experiment.  
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1. Introduction. 

Boussinesq systems have been used in the 

study of a varity of water wave phenomena in 

ports, channels, coastal areas, and in the open sea. 

They have been also used in studies of tsunami 

wave generation and propagation [11]. These 

systems may be written  as : 
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These systems have been derived by [6] to 

describe irrotational free surface flow of an ideal 

fluid over a horizontal bottom. The independent 

variable  ),( yxX   represents the position, t is 

proportional to elapsed time, ),( tXvv  is 

proportional to the deviation of the free surface 

from its rest position, while u is proportional to 

the horizontal velocity of the fluid at some height.  
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The wellposedness and regularity of (1) 

are given in [4,5]. The existence of line solitary 

waves, line cnoidal waves, symmetric and a 

symmetric periodic wave patterns are proved in 

[2,7,9,10]. 

This paper deals with two-dimensional 

Coupled BBM-system of type Boussinesq. i.e. 
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where uv,  are mappings from ),0(   to  , 

),0(),0( LL   with boundary conditions: 

),0[,0,0 


tuv and the initial 

conditions are 


Xuuvv
tt

,, 0000
. [8] 

Theoretical and numerical aspects of these 

systems in the case of a horizontal bottom, i.e., for 

the systems (1) and (2), were studied recently 

in[6,8,12,13]. 

 Bona and Chen in [4] proved that, the 

initial-boundary value problem for the Coupled 

BBM-system in one space dimension with 

nonhomogeneous Dirichlet boundary conditions 
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at the endpoints of a finite interval is  locally well-

posed. In [1] we proved the convergence analysis 

of the solution of one-dimensional nonlinear 

Coupled-BBM system by using implicit finite 

difference method.. Coupled BBM-system on a 

smooth plane domain with  homogeneous 

Dirichlet boundary conditions, homogeneous 

Neumann boundary conditions  and to the 

(normal) reflective boundary conditions 

established in [13]. Existence of the solitary 

waves for these one-dimensional systems has 

been studied by Toland [3].  

The content of this paper is as follows:  

section two is devoted to deriving the matrix 

equation using finite element method. Triangular 

element is used in this regard. In section three of 

this paper. Generation and evolution of a Tsunami 

wave is used to examine the efficiency of the 

method. The conclusions of this paper are 

mentioned in the last section.   

 

2. Derivation of the matrix equation using the 

Finite Element  Method.  

Let  ju and jv  are the discretized solution which 

satisfies the system (2), then the system (2) is  

rewritten as: 
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Consider the Dirichlet boundary conditions 

),0[,0,0 


tuv , these become the 

essential boundary conditions for constructing the 

weak formulation for the system.  

Multiply equation (3a) by test function 

)(,1

0  Ww ,where ),(),( baba  and 

integrate over the finite element e . Then we get 

the following expression  
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For all Nj . Since w  satisfies essential 

boundary conditions, the boundary terms vanish 

after the integration by parts of the above equation 

and we get the following equation 
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Here )(tu j

s and e

j

s nstv ,...,1),(  are undetermined 

time dependent quantities and ),( yxN s are the 

interpolation functions. Then equation (4 ) 

Becomes 
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After multiplying  both sides of equation( 6)  by 

t  and moving the previous time solutions to the 

right hand side, we get the same of   matrix 

equation on each finite element e  as in the one 

dimensional case as follows  
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By the same approach, equation (3b) after 

multiplication by a test function w  and 

integration by parts become 
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Using equations (5). equation (8) 

become
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After multiplying  the both sides of equation( 9)  

by t  and moving the previous time solutions to 

the right hand side, we get the same of 

  matrix equation on each finite element e  as in 

the one dimensional case as follows  
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Where ee BA ,  as in equations (7) 
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The assembling of the global stiffness matrix from 

the finite element equation depends on the 

elements. Let ),(),,(),,( 332211 yxyxyx be the three 

components of the triangle. Then the 

following functions are interpolation functions of 

the triangular elements 
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eA Area of the triangle 

Choose the right triangle on each equilegthed 

cubic of length h. then we can obtain the local 

matrices ee BA , as follows 
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3. Numerical experiment 

In this section we present the results of a 

simulation of the propagation of a tsunami wave 

using  Finite Element Method that was analyzed 

in Section 2. In the case of Finite Element Method 

we use the standard Galerkin-finite element 

method with continuous piecewise linear elements 

on triangles with 1800 elements.  

The  generated wave by a source which is not 

necessarily axisymmetric, for example in the 2004 

Asian tsunami, the waves were generated by a 

fault line which is about 1200km long in a north-

south orientation. It is observed that the greatest 

strength of the tsunami waves was in an east-west 

direction [8]. The initial data in this sequence of 

tests be based on 
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where 10,8,1.0   m , [ 8].  

with homogenous Dirichlet boundary condition. 

The simulations are executed up to time t=10. u  

and v  values at y=15, t=8 with different values of 

x presented in table 1. In figure 1, the initial  wave 

profile of v and its surface plot are presented to 

give a view on the rectangular nature of the initial 

data. Similar plots  are presented with different 

time in figure 2.  The results shows that the waves 

have the same behavior with the results in [ 8], 

where the leading  wave in the positive and 

negative x-directions (east-west directions) are 

much bigger than that in the north-south 

directions. The waves in the north-south 

directions are very small. Also as in  [8] the 

maximum amplitude is 0.05 at t=0, and its 

decreases with the time. These observations are 

confirmed by graph in figures 2 and 3. 

 

Table 1: u  and v  values by finite element method at 

15y ,t=8. 

x  u  v  

0 0 0 

1 0 0 

2 -4.7513E-07 1.6657E-06 

3 -8.0045E-06 2.4963E-06 

4 -1.2363E-05 3.6175E-05 

5 -1.4721E-04 5.5621E-05 

6 -2.2523E-04 5.3383E-05 

7 -0.0017 8.111E-04 

8 -0.0026 0.0047 

9 -0.0107 0.0069 

10 -0.0151 0.020 

11 -0.0284 0.0266 

12 -0.0336 0.029 

13 -0.0216 0.0266 

14 -0.0153 0.0194 

15 -0.0221 0.0127 

16 -0.0185 0.009 

17 3.8615E-07 -0.0019 

18 0.0185 0.009 

19 0.0221 0.0127 

20 0.0153 0.0194 

21 0.0216 0.0266 

22 0.0336 0.029 

23 0.0284 0.0266 

24 0.0151 0.020 

25 0.0107 0.0069 

26 0.0026 0.0047 

27 0.0017 8.111E-04 

28 2.2476E-04 5.3222E-04 

29 1.5522E-04 5.811e-05 

30 0 0 
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Figure 1. plot of initial data ),,( oyxv  
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Figure 2. Solution describes the evolution of v at different 

time. 
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Figure 3. graph of 
)8,15,(xv

 , 300  x . 

 

4. Conclusion 

In this paper the matrix equation for two 

dimensional Coupled BBM-system by using finite 

element method has been proposed. Linear 

triangular element adapted in this regard. The 

results show that the method is good candidate to 

generate and evaluate these types of  waves.  
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 الخلاصة
فييهذب تفييفذب ي يياسهذ تا ييقيفب ذ ا  يينذذBoussinesqغييياذب ي ييهذب صيينف وذصيي ذ يي  ذذBBMذ فييهذاييلبذب تمييشذقيي ذباييق الذصفاف يينذب ص يي  فنذ   ييا ذ

ب  ا  ينذ    ي ذب ف ا اذب ص قهين.ذفهذالبذب  يالذق ذب قيفب ذب ف  اذأ صيليهذلإيجافذب ملذب فففيذ ل  ا .ذص جنذق   اصهذق ذب يقيفبصهاذخيقتيااذا يا  ذ
ذق  فذ ق  اذالهذب ص جنذب قيفصتذقجابنذعففين.
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