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 More theories and algorithms in non-linear programming with titles 

convexity (Convex). When the objective function is fractional function, will not 

have to have any swelling, but can get other good properties have a role in the 

development of algorithms decision problem.In this work we focus on the weights 

method- (one of the classical methods to solve Multi objective convex case 

problem). Since we have no convex or no concave objective functions, and this 

condition is essential part on this method implementation, we these valid 

conditions under method as generator sets efficient and weakly efficient this 

problem. This raises the need to a detailed study of pseudoconvex idea, cause 

convex idea, Invex, pseudoinvex idea,…, etc. concepts. Offer a numerical example 

to show the valid by the conditions previously set generate all weakly efficient set 

our problem.  
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1.Introduction 

The possibility of mod conditioned by the 

reality is complex and, in most cases, the best 

representing model is determined by possibility 

consideration of more than one conflict objective. This 

leads to the problem no longer obtain an optimal 

solution and becomes a problem of decision making 

in. Through functions represented by a ratio. Of 

course, a quotient of functions is simply a nonlinear 

function. However, the structure ratio leads to 

establish some special properties that do not share the 

nonlinear functions in general, which motivates the 

study of such functions separately from the non-linear. 

Generally the functions are expressed of any other 

ratio as neither convex nor concave .That is why the 

result are great importance to extend the basic results 

of convex programming to less restrictive 

assumptions. Moreover within these functions, the 

most relevant those with associated with numerator 

and denominator. These dues to the good properties 

they possess. 
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where c, d ∈ R
n
, αi  , βi ∈ R, A ∈ Mmxn (R) and b 

∈ R
m
. We call X the set of opportunities of this 

problem,  ( i.e.  X = { x ∈ R
n
 / Ax ≤ b, x ≥ 0 } ). 

Which is bounded. In this problem, ranging 

from definitions of natural and efficient point weakly 

efficient point are given in Multi objective 

Programming. One way to solve this problem is to 

determine the set of efficient and weakly efficient 

solutions in a strictly t 

echnical, way not incorporating into the analysis 

any information about the preferences of central 

decision-maker. The purpose of such methods is to 

provide sufficient information of the efficient or the 

weakly efficient structure of the whole problem. One 

method of generation the classic efficient Multi 

objective linear problem is the Weights method. 

The method on converting the problem that 

scalar construct an objective function is sum of the 

objective functions starting weighted relative weight 

assigned to each of them. Thus, for each possible 

weight you get a problem subject to the restrictions of 

the original problem consisting a minimizing scale 

resulting function.[5] & [11]. 

Well, in this work problem. To do this, we have 

divided the work in to five sections as what is follow: 

In the next section we shall briefly show the 

method that we encountered in wanting to apply it to 

the case fractional linear. Section 3 provides the 

literature review of theory basis on generalized 
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convexity which is necessary to section fourth in 

which we establish the main result that, due to the non 

convexity of functions, the conditions under which 

they can ensure that the solutions of a weighted 

problem are Optimal solution of multi objective the 

original problem are rather weaker than those given in 

the case of convex functions. This also is reinforced by 

a counter example.  

Finally we will see, in section five, the conclusions of 

this work.   

 

2. Method of Weights 

To give the problem of Multi objective 

fractional linear programming problem (MFLP) 

Vector objective function, with φ (x) = (φ1 (x), ..., φp 

(x)) , and to give a weight vector λ∈ R
p+

 as not 

identically zero, considering the problem as the 

following weighted problem (Pλ ) 

 

)...(

0

..

min

p
x

bAxts

x
t


















 

If we denote by S ( Pλ ) set of solutions to this problem 

is clear S ( Pλ ) coincides with  

S (Pαλ ) for all α > 0. Therefore, loss of generality 

usually takes the standard weight vector. That is,  

if λ = ( λ1 ,..., λp ), then λi ≥ 0 , for all i = 1 ,..., p and 

1
i

i    . 

The following results are easy to show and can 

be found among others. To be set all together under 

one statement, including the following theorem.[9] 

2.1.Theorem 1. 

If x* is solution of the problem ( Pλ ), then x* is 

a weak point efficient of the original problem.  

If x* is solution of the problem (Pλ ) with all weights 

strictly positive that is, if  λi > 0 for all i = 1 ,..., p, 

then x* is optimal solution of problem Multi objective 

original. 

If x* is unique solution of problem (Pλ ), then x* is the 

optimal solution of original problem. 

 

Proof.  

The weakness of this method is found in the 

reciprocal of these results, since not all efficient 

solutions will be obtained under the scalar problems 

weighting. When we have secured the convexity of all 

functions objective reaches a certain reciprocal states 

that if  x* ∈ X is Pareto optimal, then there exists a 

weight vector is not necessarily strictly positive such 

that x* is the solution of the weighting scalar problem 

associated with this vector. [9]. 

However, the functions that make up our multi-

objective problem are not convex functions and 

therefore we can ask a question whether we can found 

under our conditions some kind of mutual, albeit 

weak, of previous results. We will do this by a result 

that is established in terms of low efficiency and 

problems without restrictions. This is possible thanks 

to special form of our functions are concave but not 

convex nor do enter within a classification to be more 

relaxed pseudolinear. 

 

3. Generalized Convexity 

Consider a general mathematical programming 

problem of minimizing whose objective function 

differentiable assume S ⊆ R
n
, 

min φ (x) 

s.t.  x ∈ S 

A first immediate generalization that emerges 

from the familiar definition of convexity is the 

quasiconvex idea. 

 

1.3. Definition 1.  

It is said that φ is quasiconvex if ∀ x, y ∈ S, ∀ λ ∈ 

(0,1), we have: 

φ (λx + (1 - λ) y) ≤ max (φ (x), φ 

(y)) 

A function is quasiconcave if -φ is φ and is said 

quasiconvex if quasiconvex and quasiconcave at a 

time. 

Since we are dealing with differentiable 

functions, we can make another generalization of 

convexity which is based on the characterization of 

convex functions differentiable. We are referring to 

the concept of pseudoconvexidad. 

 

2.3. Definition 2.  

It is said that φ is a function quasiconvex on S if 

∀ x, y ∈ S with  φ (y) < φ (x) then necessarily ∇ φ (x) 
t
 

(y - x) < 0. 

As with the quasiconvex idea, a function is 

pseudoconcave if your pseudolinear opposite is 

quasiconvex and if both pseudoconcave and 

quasiconvex.  

Generally, the pseudoconcave idea property is stronger 

than quasiconcave when the functions are 

differentiable. 
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Turning to the case, which is the fractional linear 

programming, when we have the ratio of two related 

functions,  

φ (x) = f (x) / g (x),  

Where denominator g(x) we assume strictly greater 

than zero, then the ratio φ (x) is a function 

pseudolinear and, consequently, quasilinear. [3] 

Many of the properties of linear programming in 

range natural functions are such fractional linear 

programming. Among them one of the most important, 

is the generalization of the sufficient conditions of 

optimality Kuhn-Tucker for such functions as shown 

in the following theorem. 

3.3.Theorem 2. 

Let S be a nonempty open set of R
n
 and are φ, hi with i 

= 1, ..., m  

functions defined actual S, that is, φ, hi : S ⊂ R
n
 → R.  

Suppose the problem  

min φ (x)  

s.t.   x ∈ X   

 … (1) 

 

Where X = ( x ∈ S ⊂ R
n
 / hi (x) ≤ 0, i = 1, ..., m).  

Suppose x* a workable solution 

call  I = ( i / hi (x*) = 0 ).  

Let φ pseudoconvex at x* and hi quasiconvex and 

differentiable at x* for i ∈ I. 

If x* verifies the Kuhn-Tucker conditions for (1), then 

x* is a global optimal solution of the problem. 

 Proof. [7] 

As we know, another property of convexity is 

the fact that it must 

φ (x) - φ (x*) ≥ (x - x*) 
t
 ∇ φ (x*) for all x, x* ∈ S.  

However, considered a class of functions for which 

there is a vector function [6] 

η: S × S → R
n
 such that φ (x) - φ (x*) ≥ η (x, x*) 

t
 ∇ 

φ (x*) for all x, x* ∈ S. More Craven later (1981) 

named these functions as functions INVEX.[2] 

4.3. Definition 3. 

Let φ: S ⊆ R
n
 → R a differentiable function in the set 

S open.  

Then INVEX if φ is a function η: S × S → R
n
 such 

that for all x, x* ∈ S, has to 

φ (x) - φ (x*) ≥ η (x, x*) 
t
 ∇ φ (x*). 

A generalization of the functions INVEX is in the 

definition of pseudoconvex defined functions.[1] 

5.3. Definition 4. 

Let φ: S ⊆ R
n
 → R a differentiable function in the set 

S open.  

Then φ as pseudoconvex if there exists a function η: S 

× S → R
n
 such that for all x, x* ∈ S have that η (x, 

x*) 
t
 ∇ φ (x*) ≥ 0 implies φ (x) - φ (x*) ≥ 0. 

In the same way that the functions 

pseudoconvex generalize the convex, the 

pseudoconvex INVEX generalize the functions. 

Martin (1985) established the most important result 

related to the functions INVEX, in which 

characterized these functions as follows:[8] 

a differentiable function φ is INVEX on S if and only 

if each critical point of φ is 

global minimum of in S. 

Because this function is verifying property 

pseudoconvex so, it is clear that we have the following 

implications: 

convex ⇒ pseudoconvex ⇒ INVEX ⇒ Pseudoconvex 

Therefore, in conclusion, as the functions are 

linear fractional pseudoconvex, we can also ensure 

that a function is a linear fractional INVEX function 

and, consequently, pseudoconvex. 

Let in the following section we establish the desired 

result of mutual of Theorem 1 for which we will use 

this property of fractional linear functions. 

4. Method of Fractional Programming Weightings 

Let's see Multi objective problem:  

when we apply the method of Weights. 

Given the Multi objective fractional linear 

problem (MFLP), as seen previously, each objective 

function φi is a pseudoconvex function, INVEX and 

pseudoconvex result. Naturally generalize the concepts 

of function and pseudoconvex INVEX for vector 

functions, and suppose now are an unrestricted vector 

problem: 

min (φ1 (x), ... , φp (x))  

s.t     x ∈ S    

 …(2) 

where S is the open set of R
n
 in which φ is 

defined. [10] 

pseudoinvex idea is imposing the condition for 

the vector objective function (2), theorem from the 

alternative of Gordan, arrive at a characterization of 

pseudoconvex functions. Furthermore, in the same 

way, due characterization to that, another result that 

exposes these authors is a certain converse of Theorem 

1is states: 

1.4.Theorem 3. 

Let x* weakly efficient solution to the problem (2). If 

φ (x) is a INVEX function in S, then there exists a λ ≥ 

0 such that x* is an optimal solution of weighted 
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problem 
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Where S is the set of defining the vector 

function φ = ( φ1, ..., φp ) which is a R
n
 open. We 

recall that the functions of this problem are 

pseudoconvex, In which it implies, as already 

mentioned, INVEX functions. Therefore we can say 

that (MFLPS) is a problem whose objective function is 

a vector INVEX function and pseudoconvex. 

So it makes sense in this particular case to apply 

Theorem 3 which characterizes weakly efficient points 

of the problem. For which you have to get a converse 

of Theorem 1 for this problem. 

 

2.4. Theorem 4. 

x* ∈ S is a weakly efficient point of problem 

(MFLPS), then exists λ ∈ R
p
, λ ≥ 0 is not identically 

zero such that x* is the solution of the problem scalar 

weights ( Pλ ). 

 

Proof. 

Given the (MFLPS), the objective functions of 

it are all fractional linear therefore, they are 

particularly, pseudoconvex. This implies, as 

mentioned, all functions are INVEX. Therefore the 

objective function of the problem, a vector view is a 

INVEX function. Therefore, we faced a problem of 

Multi objective unrestricted INVEX function aims. 

This implies, according to Theorem 3, if x* ∈ S is a 

weakly efficient point in the problem, what is more 

there exists a λ ∈ R
p
, λ ≥ 0  as not identically zero such 

that x* is solution of the problem scalar weights ( Pλ ).  

Therefore, using the weights method, we can 

reach conclusion that the same guarantees we obtain 

efficient solutions that always weights are all non-zero 

or the resulting solution was unique. Otherwise, the 

solution obtained may not be efficient but weakly 

efficient. The weakness of method is that, even by 

varying the weights in all weights possible, not 

assured of obtaining the whole efficient. If the 

problem has restrictions, then all the theory outlined 

above, we would achieve find the set of weak optimal 

solution of the problem by this method. 

However, we able to obtain this result even 

having a problem with restrictions?:The answer, as 

intuition, is negative. That is, given a fractional 

problem Multi objective linear restrictions, is not 

generally true that any weaknesses comes as efficient 

as optimal weighted problem. The rationale is clear: 

While the problem (MFLP) is a problem that's set of 

opportunities, X, is a coming convex set expressed by 

linear constraints, the set image of  X, φ (X), not 

necessarily a convex set in R
+
. The absence vector of 

weights λ such that x* solve ( Pλ ) is equivalent to the 

nonexistence of a supporting hyper plane of the 

feasible region in objective space φ (X) of problem x*. 

And this condition, a Multi objective fractional linear 

problem is quite common.  

 

Example 1. 

Consider the Multi fractional linear programming 

problem (maximum) : 

6

1

22

442..

3

23
,max

1

21

21

21

21

21

21

1



























x

xx

xx

xx

xx
xx

xx
x

ts

 

The point (1, 1 / 2) is an efficient point, and in 

particular weakly efficient. Figure 1b 

look at the whole picture of this problem. The image 

of all weakly efficient frontiers is φ (X) that is thicker 

in the figure and we can see that image of point (1, 1 / 

2) is part of the non-convex frontier. 

 
Figures 1a and 1b. Efficient point set of the problem 

of Example 1 in the decision space and space goals. 
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As already mentioned, the point (1, 1 / 2) is an 

efficient point, and in particular weakly efficient. 

However, this point cannot be obtained as solution 

weighting no problem. Si (1, 1 / 2) out of a problem 

solution ( Pλ ) then, in particular, verify the Kuhn-

Tucker conditions of this problem. 

The general weighted problem is of the form: 

6
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We can see that the point (1, 1 / 2) cannot be 

solving any of these problems since it verifies the 

Lagrange conditions thereof. 

If we notice the multipliers Lagrangian for this 

problem as μi , i = 1, ..., 4 to avoid confusion with the 

weights of the objective function, the Kuhn-Tucker 

conditions, which must ensure the optimum, taking 

into account that the unique active constraint in (1, 1 / 

2) is the second, they become the next system: 
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Substituting these conditions in (1 1 / 2), this system 

of equations becomes: 
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This system, combined with the fact that the vector ( 

λ1, λ2 ) is a vector of weights 

assume standard  

(λ1 + λ2 = 1) imply that λ1 = 99/148, λ2 =49/148 

and also that μ2 = 3 / 37. 

Therefore, if the point (1, 1 / 2) is a solution of a 

problem of weighting just to show that these weights 

must necessarily be λ1 =99 / 148 and λ2 = 49/148.  

But is it really the point (1,1 / 2) to solve this 

problem?. 

Given that the value of the objective function of 

this problem ( Pλ ) 

with λ = (99/148, 49/148), in (1,1 / 2) is worth ( 

0.256757 ) and that in (1 / 2, 3 / 2), which is a feasible 

point of the problem, the objective function takes the 

value 0.4155448 since we are maximizing, we 

conclude that the point (1, 1 / 2) is not solution of this 

problem ( Pλ ). Therefore, since these were the only 

weights possible to verify that the necessary 

conditions of optimal point (1, 1 / 2) we can say that 

this point cannot be found as optimal for any 

weighting problem remains, however, an efficient 

point of problem multi objective. 

5. Conclusions: 

In short, we want to establish the conclusions are 

established in this work of weights  

λ = (λ1 ,..., λp) with λi > 0 and 1
i

i   

The converse of these results has been 

established in the literature for problems convex. It has 

been to consider what happens in the case of no 

convex fractional functions when there is work just to 

develop. According to results, we have a problem only 

when we have ensured unrestricted Using the method 

of weights will travel throughout the whole weak 

optimal solution. 

It should be noted that, in solving a problem of 

the weighting, when the targets are fractional linear, 

while avoid the Multi objective nature of the problem, 

the nature of the linear fractional functions disappears. 

That is, the objective function of a problem ( Pλ ) is a 

function fractional but leaves verified the linearity of 

the numerator and denominator.Therefore, to be able 

to apply the method of weights to (MFLPP), we must 

be able to solve nonlinear fractional problems which 

can become a large scale by complication of the 

objective function. Using specific properties of linear 

fractional functions, [4] published a method to find the 

optimum of a sum of linear fractional functions. 

So, to find efficient solutions (MFLP), must be 

resolved problems (Pλ) for different families of strictly 

positive weights. To carry implement this resolution, 

we propose the use of the algorithm of [4].Anyway, 

this paper non-convexity of our functions which 

prevents us to ensure that we get this way the whole 

efficient. If we settle for weakly efficient points, allow 

some weight is zero (not all at once) and also, as seen, 

if our problem is unrestricted by this method will 

succeed in obtaining the full range of weak optimal 

solution. 
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 طريقة الاوزان لمسائل البرمجة الخطية الكسرية المتعددة
 جبارزينب كاظم                وليد خالد جابر

 الخلاصة :
.ا ظرر توااكررخ ا لنرطالنارر كا لنررطاكفرر اطا افررخكانرر ا(Convex)أكثر النظر ارروااخلنرخل اتاررواابررجالني تاررطاةارر النراارطاالترربا ظرروخا النالرر  ا

ا لرىاكراظ االنيلر اهرالابرجاكخ ان اظواأيالظافوخا اخنك ااتك النلصخبا لىارصوئصااار  اأرر يااكرخ اناروا خ ابرجااارخا ارخل اتاروااتقركلطالن ر ل .ا
لاثيرروااالنا ا ررطاي ترر ا اهررا ان  لفررطاا ا ررطالناظفارراا ابررجاأفوفررجااررا اهررخالنقرر ااخهررالاخاكررخ ا لنررطالنارر كاةارر اتل يررطالخاةارر ات  رر  اا اا ا ررطالزخال  

ا.ات النتفوهاما...النخاInvex function اخلنرا(Convex)صلطاهالالنق االاي ات ا  لفطاتفصلطانفك  النال  ا
 


