Open Access

On - MO - C-Multifunctions

Ala'a Mahmood Farhan

University of Anbar - College of Education

ABSTRACT

ARTICLE INFO

Received: 2 / 12 /2007 Accepted: 5 / 4 /2008 Available online: 19/7/2022 DOI:

Keywords:

 $\dot{M\Theta}$ - C –Multifunction , function.

Introduction

Let $f: X \rightarrow Y$ be a Θ - continuous function from a Topological space X in to

a Θ -T₂ space Y, if K \subset Y is compact, then K is Θ -closed in Y.

But f is Θ -continuous, so f^{-1} (K) is Θ -closed.

This means that the inverse of each compact set in Y is Θ -closed in X.

This motivates the definition of $M\Theta$ -C- function.

In This work , we generalized These ideas to Multifunctions .

If K is a subset of a Topological space , Then Cl(K) denoted the closure of K and K $^\circ$ denoted the interior of K .

2-Preliminaries

In this section we recall the Basic definitions needed this work.

(2-1) Definition [5]

Let X & Y be a Topological spaces , A multifunction F: $X \rightarrow Y$ is a correspondence from X to Y with F(x) a nonempty subset of Y for each $x \in X$.

(2-2) Definition [3]

If $F: X \rightarrow Y$ is a Multifunction, Then the Graph of F(G(F)) is the subset

 $\{(x\;,\,y):x\!\in\!X\;,\,y\!\in\,F(x)\;\}$ of X x Y $\;$.

(2-3) Definitions

if X and Y are Topological spaces and F: $X \rightarrow Y$ be Multifunction we will say that F has closed graph if G(F) is closed subset of the product X x Y [2].

A function F: $X \rightarrow Y$ has Θ -closed graphs iff for each $(x , y) \in X x Y^{-} G(F)$ these are sets

V∈ $\sum(x)$ in X (where $\sum(x)$ denoted the family of open subsets which contain x) and W ∈ $\sum(y)$ in Y (where $\sum(y)$ denoted the family of open subsets which contain y) with (cl (v) x cl (w)) ∩ G(F) = $\varphi[1]$.

(2-4)Definition [6]

Let D be a non empty set and let \geq be a binary relation on D we say that the relation \geq directs D iff the following three conditions hold :

1- for every $a \in D$, $a \ge a$.

2- if $a \ge b$ and $b \ge c$ then $a \ge c$.

In this work we introduce anew concept namely MO - C -Multifunction. These

are the Multifunction $F:X \rightarrow Y$ such that the inverse of every compact subset in Y is

 Θ - closed in X .We proved several Theorems about M Θ -C- Multifunction and we

study the relations of M Θ -C- Multifunction with other types of functions.

3- for each $a, b \in D \exists c \in D \ni c \ge a$ and $c \ge b$.

The pair (D, \geq) is called directed set.

A net in the space X is a function $f: D \rightarrow X$ where (D, \geq) is a directed set.

(2-6) Definition [1]

we will say that Multifunction F: $X \rightarrow Y$ has a Θ sub closed graph if for each $x \in X$ and net $\{x_{\alpha}\}$ in $X - \{x\}$ with $x_{\alpha} \xrightarrow{\quad \theta \quad} x$ and net $\{y_{\alpha}\}$ in Y with $y \in F(x_{\alpha})$ for each α , and $y_{\alpha} \xrightarrow{\quad \theta \quad} y$ in Y, we

have $y \in F(x)$.

(2-7) Definition [2]

we will say that a Multifunction F: $X{\rightarrow}Y$ has (closed , $\Theta\text{-closed}$, compact) point image if F(x) is (closed , $\Theta\text{-closed}$, compact) in Y for each $x{\,\in\,}X$.

(2-8) Fact [1]

Let $F: X \rightarrow Y$ be Multifunction from a space X into a space Y, Then F has

 Θ - closed graph iff $\,F$ has a Θ - sub closed graph and $\Theta\text{-closed}$ point image .

(2-9) Definitions

^{*} Corresponding author at: University of Anbar - College of Education , Iraq.E-mail address: alaa_mf1970@yahoo.com

1- A Topological space (X , T) is said to satisfy the Θ - T_2 - space if given a pair of distinct Pointes $x , y \in X \exists$ two Θ - open sets $U , V s.t x \in U$ and $y \in V$

and $U \cap V = \varphi$.

2- A Pointe x is said to be a Θ - limit Pointe of a set K if for every open set U with $x \in U$, $(cl(U) - \{x\}) \cap K \neq \phi$.

1- Let (X, T) be a Topological space , $K \subseteq X$ is called a Θ - neighborhood of a Pointe $x \in X$ if $\exists \Theta$ - open set $U \in T$ with $x \in U$ such that $U \subseteq K$.

(2-10) Definition [5]

Let F: $X \rightarrow Y$ be Multifunction from a space X into a space Y, if $K \subseteq Y$ then

- 1- $F^+(K) = \{ x \in X : F(x) \subseteq K \}$ this called upper inverse of K.
- 2- $F^{-1}(K) = \{ x \in X : F(x) \cap K \neq \phi \}$ this called lower inverse of K.

(2-11) Example

Let $X=\{a, b, c\}$ and $T=\{X, \phi, \{a\}, \{b\}, \{a, b\}\}\)$ be a Topology on a set X and Let $Y=\{1, 2, 3\}\)$ and $T=\{Y, \phi, \{1, 2\}\}\)$ be a Topology on a set Y, and let $F:X\rightarrow Y$ be Multifunction defined as following :-

F(a) = {1, 2}, F(b)=F(c)={2, 3}and let $K \subseteq Y$ $\ni K=$ {1, 2} then

 $F^{\scriptscriptstyle +}(K) = \{ x \in X : F(x) \subseteq K \} = a .$

 $F^{-1}(K) = x \in X : F(x) \cap K \neq \phi = \{a, b, c\} = X$. (2-12) Definitions [4]

1- A Multifunction F: $X \rightarrow Y$ on a Topological space X into a Topological space Y is a Θ - upper - semi - continuous (Θ - u . s . c) iff for each Θ -closed set K \subseteq Y Then F⁻¹(K) is Θ -closed in X further , F is a Θ - lower - semi - continuous

 $(\Theta - 1 . s . c)$ iff $F^{-1}(K)$ is Θ - open for each Θ open set $K \subseteq Y$ then F is Θ - continuous in case it is both $(\Theta - u . s . c)$ and $(\Theta - 1 . s . c)$.

2- A Multifunction F: $X \rightarrow Y$ is almost - Θ - upper - semi - continuous

(a $. \Theta - u . s . c$) iff for each $x \in X$ and each open set $V \subseteq Y$ with $F(x) \subseteq V$, $cl(F^+(V))$ is a neighborhood of x. Further, F is almost $-\Theta$ lower - semi - continuous (a $. \Theta - 1 . s . c$) iff for each open set $V \subseteq Y$ the set $cl(F^{-1}(V))$ is a neighborhood of each $x \in F^{-1}(V)$). Then F is almost Θ - continuous (a $. \Theta - c$) iff it is both (a $. \Theta$ - u . s . c) and (a $. \Theta - 1 . s . c$). (2-13) Definition [1]

1- A point x is in the Θ - closure of a subset K of a space X (x \in cl $_{\Theta}(K)$) if each $V \in \sum(x)$ satisfies K \cap cl(V) $\neq \phi$.

2- A subset K is Θ -closed iff $cl_{\Theta}(K) = K$.

3-MO - C-Multifunction

In this section we introduce a new concept , namely $M\Theta$ - C -Multifunction defined as follows :

(3-1) Definitions

1- Let F: $X \rightarrow Y$ be Multifunction we say that F is Θ - lower- MC-Multifunction iff for each compact $K \subseteq Y$, Then $F^{-1}(K)$ is Θ -closed in X.

((we will use $M^{\cdot}\Theta$ - C- Multifunction to denoted Θ - lower- MC- Multifunction)).

2- Let F: $X \rightarrow Y$ be Multifunction we say that F is Θ - upper- MC-Multifunction

iff for each compact $K \, \subseteq \, Y$, Then $F^{\scriptscriptstyle +}(K)$ is $\Theta {\operatorname{-closed}}$ in X .

((we will use $M^+\Theta$ -C- Multifunction to denoted Θ - upper- MC- Multifunction)).

3- If $F:X \rightarrow Y$ is Θ - upper- MC-Multifunction and Θ - lower - MC-Multifunction Then we say that F is M Θ -C-Multifunction.

(3-2) Theorem

If F: $X \rightarrow Y$ is Multifunction with Θ - sub closed graph then F is

an $M^-\Theta$ - C - Multifunction .

Proof :

Let K be compact subset in Y . we must prove that $F^{\, 1}\!(K)$ is $\Theta\text{-closed}$ in $\,X\,$.

Some subnet $\{y_{\alpha n}\}$ of $\{y_{\alpha}\}$ Θ - converges to some $y \in K$ this gives $y \in F(p)$, so $p \in F^{-1}(K)$, Then $F^{-1}(K)$ is Θ -closed in X.

(3-3) Corollary

If $F: X \rightarrow Y$ is Multifunction with Θ - closed graph then F is an $M^{-}\Theta$ - C - Multifunction .

(3-4) Remark

If $F: X \rightarrow Y$ is Θ - lower - MC-Multifunction then G(F) is not necessarily

 $\boldsymbol{\Theta}\text{-closed}$.

The following Theorem show if F: $X \rightarrow Y$ is Θ lower - MC-Multifunction from a space X into a locally compact Θ -T₂- space Y,Then G(F) will be Θ -closed

(3-5) Theorem

Let F: $X \rightarrow Y$ be M⁻ Θ - C - Multifunction with Θ closed point images from

a space X into a locally compact Θ -T₂- space Y then G(F) is Θ -closed .

Proof :

suppose $(x, y) \notin G(F)$, then $y \notin F(x)$ and so there exists disjoint sets U_1 , U_2 with $y \in U_1$ and $F(x) \subseteq U_2$, Further, There is a compact neighborhood W of y such that $W \subseteq U_1$, Then F⁻¹(W) is Θ -closed in X and $x \notin F^{-1}(W)$ thus there is an open set V such that $x \in V$ and $V \cap F^{-1}(W) = \varphi$, Hence V x W is a neighborhood of (x, y) which misses G(F) and so G(F) is Θ -closed.

(3-6) Theorem

If F: $X \rightarrow Y$ is (Θ - u . s . c) Multifunction from a space X into Θ -T₂- space Y Then F is M[•] Θ - C - Multifunction .

Proof :

Let K be a compact subset in Y, since Y is Θ -T₂space, Then K is Θ -closed in Y {A compact subset of Θ - Hausdorff space is Θ -closed [6]} since F is (Θ - u . s . c) Then F⁻¹(K) is Θ -closed in X, Then F is M Θ - C - Multifunction. (3-7) Corollary

Let F: $X \rightarrow Y$ be Θ - continuous Multifunction from a space X into

 Θ -T₂- space Y, Then F is M⁻ Θ - C - Multifunction

Before we state our next Theorem , we recall the following definitions :-

(3-8) Definitions

1- Let F: $X \rightarrow Y$ be Multifunction , we say that F is a lower compact Multifunction iff for each compact set $K \subseteq Y$, Then F⁻¹(K) is compact in X

2- Let F: $X \rightarrow Y$ be Multifunction , we say that F is a upper compact Multifunction iff for each compact set $K \subseteq Y$, Then $F^{+}(K)$ is compact in X. Then if F lower compact Multifunction and upper compact Multifunction then_we say that F is compact Multifunction .

(3-9) Theorem

Let F: $X \rightarrow Y$ be a lower (upper) compact Multifunction from a Θ - T₂- space X in to a space Y then F is M⁻ Θ - C(M⁺ Θ -C) – Multifunction – respectively.

Proof :

Let K be a compact subset in Y, since F is lower (upper) compact Multifunction Then $F^{-1}(K)$ & $F^{+}(K)$ is compact in X . since X is a Θ - T₂-space ,

Then $F^{-1}(K)$ & $F^{+}(K)$ is Θ -closed in X, then F is $M^{-}\Theta$ - C($M^{+}\Theta$ -C)-Multifunction.

(3-10) Corollary

Let F: $X \rightarrow Y$ be compact Multifunction from a Θ - T_{2} - space X in to a space Y Then F is $M\Theta$ - C - Multifunction.

(3-11) Theorem

Let F: $X \rightarrow Y$ be (a . Θ - u . s . c) with compact point image, and let F is

a Θ - upper - MC - Multifunction , and suppose that each $y \in Y$ has a base for as neighborhoods consisting of compact sets , Then F is $(\Theta - u \cdot s \cdot c)$.

Proof :

Let F is a $(a \cdot \Theta - u \cdot s \cdot c)$ with compact point image and let F is $M^+\Theta$ -C- Multifunction . we must prove that F is $(\Theta - u \cdot s \cdot c)$.

Let $F(x) \subseteq U$ be an open set , then from the hypothesis there exists a compact set W such that $F(x) \subseteq W^{\circ} \subseteq W \subseteq U$, then $F^{\scriptscriptstyle +}(W)$ is $\Theta\text{-closed}$ set containing $F^{\scriptscriptstyle +}(W^{\circ})$, thus $F^{\scriptscriptstyle +}(cl(W^{\circ})) \subseteq F(W)$ and so there is an open set V with

 $x \in V \subseteq F^{+}(cl(W^{\circ}))$, But $F(V) \subseteq U$, Then F is $(\Theta - u \cdot s \cdot c)$.

(3-12) Theorem

Let F: $X \rightarrow Y$ be (a . Θ - 1 . s . c) with compact point image, and let F is

 Θ - lower - MC - Multifunction , and suppose that each $y \in Y$ has a base for as neighborhoods consisting of compact sets , Then F is $(\Theta - 1.s.c)$

Proof :

•

Similar to the proof of Theorem [3-11]

(3-13) Theorem

Let F: $X \rightarrow Y$ be M[•] Θ - C- Multifunction from a space X into a compact space Y and let H : $Y \rightarrow Z$ be a (Θ - u . s . c) Multifunction from a space Y into a

 Θ - $T_2\text{-}$ space Z , Then HoF: $X{\rightarrow}Z$ is $M^*\Theta$ - C-Multifunction .

Proof :

Let K be a compact subset in Z , since Z is Θ - $T_{2}\text{-}$ space , Then K $\Theta\text{-}closed$ in Z since H is a (Θ - u . s . c)

, Then $H^{-1}(K)$ is Θ -closed in Y, since Y is compact, Then $H^{-1}(K)$ is compact in Y, since F is $M^{-}\Theta$ - C-Multifunction then $F^{-1}(H^{-1}(K) = (HoF)^{-1}(K)$ is Θ -closed in X then HoF: $X \rightarrow Z$ is $M^-\Theta - C$ - Multifunction. (3-14) Corollary Let F: $X \rightarrow Y$ be M Θ -C-Multifunction from a space X into a compact space Y and let $H : Y \rightarrow Z$ be Θ continuous Multifunction from a space Y into a Θ - T₂- space Z , Then HoF: X \rightarrow Z is M Θ -C-Multifunction . (3-15) Theorem Let F: $X \rightarrow Y$ be (Θ - u . s . c) Multifunction from a space X into a space Y and let $H: Y \rightarrow Z$ be $M^-\Theta$ - C- Multifunction , Then HoF: $X \rightarrow Z$ is $M^-\Theta$ - C- Multifunction . (3-16) Corollary Let F: $X \rightarrow Y$ be Θ - continuous Multifunction from a space X into a space Y and let $H:Y \rightarrow Z$ be M Θ -C-Multifunction ,Then HoF: $X \rightarrow Z$ is MO-C-Multifunction. (3-17) Theorem LeF: $X \rightarrow Y$ be M⁻ Θ - C- Multifunction from a space X into a compact space Y and let H : $Y \rightarrow Z$ be M⁻ Θ - C-Multifunction, Then HoF: $X \rightarrow Z$ is M⁻ Θ - C- Multifunction . Proof: Let K be a compact subset in Z, since H is $M^-\Theta$ - C-Multifunction then $H^{-1}(K)$ is Θ -closed in Y, since Y is compact then $H^{-1}(K)$ is compact, since F is $M^{-}\Theta$ - C- Multifunction then $F^{-1}(H^{-1}(K) = (HoF)^{-1}(K)$ is Θ -closed in X then HoF: $X \rightarrow Z$ is $M^-\Theta - C$ - Multifunction. (3-18) Corollary Let F: $X \rightarrow Y$ be M Θ -C-Multifunction from a space X into a compact space Y and let $H:Y \rightarrow Z$ be M Θ -C-Multifunction ,Then HoF: $X \rightarrow Z$ is an MO-C-Multifunction (3-19) Theorem Let F: $X \rightarrow Y$ be M⁻ Θ - C- Multifunction and let W \subset X then $F|W : W \rightarrow Y$ is $M^-\Theta$ - C- Multifunction . Proof: Let $g = F|W : W \rightarrow Y$ and let K be a compact subset in Y, since F is an $M^-\Theta$ - C- Multifunction, Then $F^{-1}(K)$ is Θ -closed in X .

Now $g^{-1}(K) = F^{-1}(K) \cap W$ then $g^{-1}(K)$ is Θ -closed in W . Then $g = F|W : W \rightarrow Y$ is $M \Theta - C$ -Multifunction. (3-20) Corollary Let F: $X \rightarrow Y$ be M Θ - C -Multifunction and let W \subset X , Then $F|W: W \rightarrow Y$ is MO-C-Multifunction . (3-21) Theorem Let F: $X \rightarrow Y$ be M⁻ Θ - C- Multifunction and let W \subset X, Then $(F|W)_p : W \rightarrow F(W)$ is M⁻ Θ - C- Multifunction . Proof : Similar to the proof of Theorem [3-19]. (3-22) Corollary Let F: $X \rightarrow Y$ be M Θ -C-Multifunction and let $W \subset X$, Then $(F|W)_p : W \rightarrow F(W)$ is M $\Theta - C$ -Multifunction . (3-23) Theorem Let F: $X \rightarrow Y$ be (Θ - u . s . c) Multifunction from a space X into Θ - T₂- space Y, and let H: Y \rightarrow Z be a lower compact Multifunction ,Then HoF: $X \rightarrow Z$ is $M^-\Theta$ - C- Multifunction . Proof : Let K be a compact subset in Z , since H is lower compact Multifunction, Then $H^{-1}(K)$ is compact in Y, since Y is Θ - T_2 - space, Then $H^{-1}(K)$ is Θ -closed in Y, since F is $(\Theta - u \cdot s \cdot c)$, Then $F^{-1}(H^{-1}(K) = (HoF)^{-1}(K)$ is Θ -closed in X then HoF: $X \rightarrow Z$ is $M^-\Theta - C$ - Multifunction. (3-24) Corollary Let F: $X \rightarrow Y$ be Θ - continuous Multifunction from a space X into Θ - T₂- space Y, and let H: Y \rightarrow Z be a compact Multifunction, Then HoF: $X \rightarrow Z$ is MO - C -Multifunction. (3-25) Theorem Let $F: X \rightarrow Y$ be a lower compact Multifunction from Θ - T₂- space X into Y, and let H : Y \rightarrow Z be a lower compact Multifunction, Then HoF: $X \rightarrow Z$ is M⁻O - C- Multifunction . Proof : Let K be a compact subset in Z, since H is a lower compact Multifunction then $H^{-1}(K)$ is compact subset in Y, since F is a lower compact Multifunction then $F^{-1}(H^{-1}(K) = (HoF)^{-1}(K)$ is compact in X, since X is Θ - T_2 - space then $(HoF)^{-1}(K)$ is Θ -closed in X , Then HoF: $X \rightarrow Z$ is $M^-\Theta - C$ - Multifunction. (3-26) Theorem Let $FX \rightarrow Y$ be ($\Theta - u \cdot s \cdot c$) Multifunction from a space X into Y, and let H : $Y \rightarrow Z$ be $(\Theta - u \cdot s \cdot c)$

Multifunction from a space Y into Θ - T₂- space Z, Then HoF: X \rightarrow Z is M[•] Θ - C- Multifunction . <u>Proof</u>:

Let K be a compact subset in Z , since Z is Θ - T_{2} -space then K is Θ -closed in Z , since H is $(\Theta$ -u . s . c) then $H^{\text{-1}}(K)$ is Θ -closed in Y , since F is $(\Theta$ -u . s . c) ,Then

 $F^{-1}(H^{-1}(K) = (HoF)^{-1}(K)$ is Θ -closed in X,Then HoF: X \rightarrow Z is M⁻ Θ -C- multifunction.

References

 James. E- Joseph. Multifunction and graphs, pacific, Journal of Math- vol, 79, No, 2, (1978).

- 2- Orhan Ozer, A note on Multifunction, Acta. sci. math. 46 (1983), 121-125.
- R .E. Smithson , sub continuity for multifunction , pacific , Journal- math. Vol. 61 No.1 (1975).
- 4- Yani . M,, Almost and weak continuity for multifunction , Bull . col . math . soc . 70 , 383 . 390 (1978) .
- 5- Shikawagi,k. multifunction, Niew Archive Voor Wiskunde (3), xx, (1972), 31 53.
- 6- Willard's .W. General Topology Addison
 Wesley, eading , mass , (1970) .

الدوال متعددة القيم MO-C

علاء محمود فرحان

Email: alaa_mf1970@yahoo.com

الخلاصة:

Y في K بحيث أن كل مجموعة متراصة مثل K في F : X o Y وهذه الدوال F : A o Y وهذه الدوال MO-C وهذه الدوال متعددة القيم f -1 (K) وقمنا بدراسة العلاقة بين الدالة متعددة القيم f -1 (K) وقمنا بدراسة العلاقة بين الدالة متعددة القيم MO-C وبعض أنواع الدوال الأخرى . MO-C وبعض أنواع الدوال الأخرى .