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Abstract- In this work, Emotion Recognition for Iraqi Autism Individuals (EmoReIQ) is presented, a dataset
of Electroencephalogram (EEG) signals recorded during various sessions for Autism Spectrum Disorder (ASD)
participants. Since individuals with ASD often have difficulty understanding and expressing their own emotions,
which leads to difficulties in social interactions, communication, and overall well-being; therefore, recognizing and
understanding emotions is crucial for them during therapy sessions to provide appropriate support and interventions.
Developing, being done for the first time in Iraq country, a dataset that is more specific to the cultural and linguistic
context of Iraqi ASD individuals will help treat and try to get them to safety. EEG signals from 28 ASD participants
were recorded while they were exposed to visual emotion-eliciting stimuli that evoked one of the five emotions (calm,
happiness, anger, fear, and sadness) in different experiment sessions. The classification algorithm, Artificial Neural
Network (ANN), is applied and analyzed for emotion recognition. EEG signals were recorded using BrainAccess, a
portable and wireless kit that allows the use of effective Brain-Computer Interface (BCI) techniques in everyday
applications. A dataset construction protocol is proposed, with emotional stimuli specifically designed to evoke the
emotional responses of ASD individuals. EEG data preprocessing and analysis framework is developed to select
and combine various EEG-based emotional-relevant features efficiently. With the proposed ANN classifier model,
the mean accuracy values are 78.86%, 83.32%, and 72.98% for valence, arousal, and dominance respectively. The
EmoReIQ dataset is validated and outperforms state-of-art datasets.
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I. INTRODUCTION

The emphasis on using assistive technology for people with physical or mental conditions, limiting movements, senses, or

activities is increasingly popular within various technology solutions. Assistive technology refers to any device, software, or

equipment designed to help individuals with disabilities or impairments perform tasks that might be difficult or impossible

[1]. With the help of Internet of Things (IoT) hardware and software components, these technologies can provide smart

diagnosis systems at home, school, or medical centers to improve communication, mobility, sensory integration, and other

areas of daily living [2]. Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder; individuals with ASD often

have difficulties with communication, social interaction, and sensory processing; therefore, assistive technology has a

promising prospect to address these challenges. Due to the unique and diverse nature of ASD, it can be challenging even

for medical experts to estimate an individuals emotional state through therapeutic sessions accurately. One of the advanced

assistive technologies for ASD is Brain-Computer Interface (BCI) applications, which can provide social interaction and

feedback, support emotional regulation, and improve communication skills. This direct bridge between the machine and

the human brain has many applications, especially in the medication field for autism or disabled cases; for instance, the
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use of Electroencephalography (EEG) sensing technology works by recording the brain’s electrical activity information.

The EEG signals can be analyzed to provide information about brain conditions and can potentially be used to develop

assistive technology devices to help individuals with ASD. EEG technology is particularly appropriate for emotion recog-

nition for those who cannot speak clearly, have physical disabilities, or whose facial expressions and body postures are

impossible to interpret [3], which is the case with ASD. This technology is a non-invasive BCI that uses external sensors

(electrodes) placed on the scalp, making it generally safe and widely applicable. To make EEG technology applicable, the

evolution of Artificial Intelligence (AI) can provide a better understanding of the functional operation of the human brain,

creating intelligent machines that can mimic human thinking and actions using various techniques, including Machine

Learning (ML). On the other hand, the Deep Learning (DL) technique, a subset of ML, uses an Artificial Neural Network

(ANN) to mimic the neuron network structure of the human brain and its learning process, it show outstanding performance

for various studies employing classification techniques [3].

This paper presents the EmoReIQ dataset that explores the possibility of classifying emotion with EEG technology for ASD

individuals. The remainder of this paper proceeds as follows: Section II explains the potential of using EEG technology for

emotion recognition systems and the main steps to implement such systems. Section III literature reviews the most common

emotional dataset and related research papers that use machine learning algorithms for classifying emotions. Section IV

illustrates the proposed experimental design, data acquisition protocol, and information for the participants included in

constructing the EmoReIQ dataset. Section V shows the roadmap for classifying emotion, including the preprocessing of

EEG signal, proposed emotion-relevant features extracting method, features selection method and the used ML model.

Results are discussed in Section VI, and the conclusion in Section VII.

II. EEG TECHNOLOGY FOR EMOTION RECOGNITION

The high temporal resolution of EEG signals allows the detection of changes in brain activity within milliseconds, making

EEG well-suited for studying emotional responses that happen quickly and may be missed with other techniques [4]. EEG

signals can provide personalized emotion recognition based on individual brain activity patterns. The EEG technique has

fixed electrode placement systems used in neurophysiological studies; one of them is the international 10-20 system shown

in Fig.1, a standardized method for locating electrode positions relative to anatomical landmarks on the scalp. The electrodes

are placed at specific locations corresponding to different brain regions. Characters like: F, T, C, P, and O, refer to the

frontal, temporal, central, Pelvic, and occipital areas, respectively. Even numbers (2,4,6,8) refer to electrode positions on the

right hemisphere. Odd numbers (1,3,5,7) refer to electrode positions on the left hemisphere. EEG waveform is characterized

by different frequency sub-bands, which are called EEG rhythms (Delta (δ), Theta (θ), Alpha (α), Beta (β), and Gamma

(γ)), each one associated with a mental state or a specific activity [5].
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Figure 1: International 10-20 system, above head view.

However, developing and implementing an EEG-based emotion recognition system typically involves deciding the number

of used electrodes/locations and defining and analyzing characteristics of a particular EEG frequency sub-band. There are

four fundamental steps. The first is data acquisition, which collects EEG data from participants while they experience

different emotional stimuli or scenarios. This data serves as the foundation for training and testing emotion recognition

algorithms. The second step involves filtering, signal normalization, artifact removal techniques, and any necessary pre-

processing of the EEG signal to remove noise and artifacts. The physiological artifacts of eye movement and blinking

Electrooculogram (EOG) and movement of the head and muscle Electromyography (EMG) are mostly considered for

studies of BCI [6]. The next step is extracting features from the EEG data relevant to emotional states. Among several

extracted features, the most emotion-relevant features are selected, which have better emotion classification performance.

In the fourth step, the extracted information is now used to train and test the ML model after annotating the EEG data

with corresponding emotional labels.

For ASD individuals, emotions are important since they refer to their internal reactions, including their ability to focus,

remember, attain objectives, recognize priorities, feel motivated to gain knowledge, interact with others, enhance their

learning abilities, regulate their mood, and stay motivated to put in the effort. A 3D emotion model is illustrated in Fig. 2,

which combines three emotion dimensions valence, arousal, and dominance [7]. Valence refers to the positivity or negativity

of emotion, ranging from pleasant (positive valence) to unpleasant (negative valence). Arousal, on the other hand, refers to

the level of physiological activation or stimulation associated with an emotion, ranging from low arousal (calm and relaxed)

to high arousal (excited and agitated). Dominance ranges from submissive to dominant, indicating the level of control that

a person possesses over a particular emotion. For example, Anger and fear emotions have similar negative valence and

high arousal values, but different dominance values differentiate them; anger emotion has a higher dominance than fear
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Figure 2: Three-dimensional valence-arousal-dominance model.

III. RELATED WORK

Several studies created their own datasets for emotion recognition using EEG technology methods, achieved different

levels of success, and became more and more popular due to available commercial off-the-shelf EEG wirelessly recorded

devices and the use of powerful AI techniques. The Database for Emotion Analysis using Physiological Signals (DEAP)

dataset [1] is a valuable resource for emotion research. It contains physiological data collected from 32 participants (18

males and 14 females, aged between 19 and 37) who watched a set of 40 music videos that induced a range of emotional

responses. DEAP records EEG data at a sampling rate of 512 Hz using 32 active AgCl electrodes. It also measures

several physiological signals, including Galvanic Skin Response (GSR), Blood pressure, Heart Rate Variability (HRV), skin

temperature, respiration, EMG, and EOG. DEAP measures emotions through EEG signals using the 3-D scale: valence,

arousal, and dominance, besides the liking and familiarity evaluation. After watching each video, participants were asked

to provide emotional ratings using the Self-Assessment Manikin (SAM) [8] to give labels (valence, arousal, dominance,

liking, and familiarity) for the watched videos.

DEAP provides researchers with a rich source of information to study the relationship between physiological signals and

emotional states, making it a valuable tool for emotion recognition and it has been used in several studies [9]. The most

applied emotion classifier on the DEAP dataset is the Support Vector Machine (SVM) classifier, with a high classification

accuracy of 89.45% in the study [10], due to the use of Gaussian Process Latent Variable Models (GP-LVM), through

which latent points were extracted as dynamical features to train the classifier.

In the study [11], MAHNOB-HCI is a multimodal dataset that records data for emotion recognition and implicit tagging

experiments. The recorded signals are EEG, GSR, ECG, respiration, skin temperature, face and body videos using six

cameras, eye gaze, and audio signals. A total of 27 participants are included in the rate for 20 emotion-specific stimuli

video clips.

SAM scale was used in [8], to facilitate the self-assessments of valence and arousal scales, with a rating scale between

1 and 9. The authors stated that they achieved emotion classification by fusion of the two best modalities, EEG and Eye

Gaze, with a classification accuracy of 67.7% and 76.1% for arousal and valence scales respectively.

The study [12] achieved an emotion classification accuracy of 73% for valence and 72.5% for arousal when using the

MAHNOB dataset. The fusion of EEG and facial expression modalities for implicit, affective tagging is implemented.
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In decision-level classification fusion, Regression-Estimated Weights Fusion (W-REG) combined with Recursive Feature

Elimination (RFE) obtained the best results of 73% for valence and 72.5% for arousal.

The SEED dataset provided by [13] contains two parts: EEG data in addition to eye movement data. EEG data from 15

participants (7 males and 8 females, with an average age of 23 years) was recorded using 62 EEG electrodes using the ESI

NeuroScan system with a 1000 Hz sampling rate, each participant watching 15 film clip stimuli trails for only a valence

label with three values (-1 for negative, 0 for neutral, and +1 for positive). SEED uses deep belief network (DBN) SVM,

linear regression (LR), and KNN models to compare the performance of EEG-based emotion recognition.

The study [14] suggests using a novel Group Sparse Canonical Correlation Analysis (GSCCA) method for EEG channel

selection and emotion recognition using the SEED dataset. They found that the GSCCA model could reach an emotion

classification accuracy of 82.45% with only 20 EEG channels, while the Support Vector Machine (SVM) classifier needed

to use 62 channels to get the same results.

Another more recent dataset, DREAMER (Database for Emotional Analysis in Music and Electroencephalogram Record-

ings) [15] is a comprehensive resource designed for research in emotion recognition, particularly focusing on the audio-visual

stimuli content, EEG brain activity, and ECG records. EEG records were sampled at 128 Hz using an Emotiv EPOC headset

with 16 electrodes. DREAMER with self-assessment emotional responses from 23 participants (14 males, 9 females, aged:

22 – 33) who watched a set of 18 short music videos designed to induce different emotions within three dimensions:

valence, arousal, and dominance. This dataset has been used as a benchmark dataset for comparing different emotion

recognition approaches.

Authors in [16] obtained an average emotion classification accuracy of 86.23%, 84.54%, and 85.02% for valence, arousal,

and dominance labels respectively, on the EEG data of DREAMER. This study outcome with a novel Dynamical Graph

Convolutional Neural Network (DGCNN) which can dynamically learn the effective relationship between EEG channels,

to get more discriminative EEG feature extraction, and improve the overall emotion recognition process.

The study [17] experiments with the use of a Broad Learning System (BLS) for enhancing features for the GCB-net (Graph

Convolutional Broad Network) classifier, results reached high accuracy of 86.99%, 89.32%, and 89.20% on valence, arousal,

and dominance dimensions respectively.

Another study [18] proposes a combination of Long Short-Term Memory (LSTM) and 1D-CNN architecture to improve

the emotion recognition performance while exploiting the significance of various modalities provided by DREAMER and

AMIGOS datasets such as Galvanic Skin Response (GSR), EEG, and ECG. With the multi-modal fusion of the DREAMER

dataset, this study achieves a maximum of 90.8% emotion classification accuracy.

Authors in [19] suggest using only a valence label for deciding either positive or negative emotion; they use a logistic

regression-based recursive feature selection technique based on featuresâ performance and computational efficiency, with

Linear Support Vector Classifier (LSVC) as an emotion classifier, they evaluate their proposed method using the Area

Under the receiver operating characteristic Curve (AUC) performance parameter, DREAMER valence outcome with 0.83

score of AUC.

Another multimodal dataset for affect, personality, and mood on individuals based on neurophysiological signals EEG,

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 59

www.ijict.edu.iq
http://creativecommons.org/licenses/by/4.0


www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 7, Issue 3, December 2024

ISSN:2222-758X
e-ISSN: 2789-7362

ECG, and GSR is the AMIGOS dataset [20]. AMIGOS experimental data is collected within two protocols; the first one,

a total of 40 participants (17 and 12 female) with a mean age of 28.3, watched 16 short emotional video clips, each with

less than 250 sec. Participants self-assessed basic emotion space valence, arousal, dominance, familiarity, and liking. The

second one investigates the impact on the participants when being in groups watching a long emotional video (duration

> 14 minutes), which has an important effect on the valence and arousal levels. In general, when the participant is in a

group, he/she shows a higher level of valence (high positive emotions), a higher level of arousal for high-arousal clips, and

a lower level of arousal for low-arousal clips than when alone. AMIGOS recorded EEG data using 14 electrodes (channels)

on an Emotiv EPOC Neuroheadset measuring device, and the data were preprocessed with a sampling frequency of 128

Hz.

A Deep Convolutional Neural Network (DCNN) is applied in [21], to evaluate the arousal and valence on detection of

ECG features (time-domain, frequency domain, nonlinear) and GSR features (Mean, standard deviation, max, min, kurtosis,

skew) of AMIGOS dataset. The authors suggest using DCNN, which involves a sequence of fully connected CNN layers

that are used to automatically extract features utilizing fuzzy filters to reduce noise and extract morphological patterns in

peaks of the ECG and GSR signals. Classification accuracy of DCNN based on GSR signals shows a value of 0.71% for

both valence and arousal. Meanwhile, the classification accuracy of DCNN based on ECG signals shows a value of 0.68%

for valence and 0.81% for arousal.

Another study on the AMIGOS dataset, [22] suggests using bidirectional Long Short-Term Memory Recurrent Neural

Network (LSTM-RNNs) for automatically capturing the best temporal features from EEG signal, then fed to Deep Neural

Network (DNN) classifier to predicate emotion along with a decision level fusion strategy. The experimental results show

that bidirectional LSTM-RNNs can achieve an emotion classification accuracy of 67.8% and 73.5% for valence and arousal

respectively.

The abovementioned datasets have major limitations in not being personalized to an individual’s unique EEG brain activity

patterns, there is a lack of standardization in terms of experimental protocols, stimuli, and emotion induction methods

across different datasets, and the limitation of being a single-session EEG records that capture a snapshot of emotional

states dismisses evolving nature of emotions over time. These datasets also do not examine their strategies for individuals

with mental health disorders such as ASD. Studying emotion recognition variations has implications for fields of mental

health, education, and psychology; emotions can vary among individuals due to several factors:

1) Genetics influences the development of the brain, which can affect how it processes emotions. Furthermore, neuro-

diversity, which describes the diversity and variation of cognitive functioning in individuals, may include conditions

like autism [23], which can result in unique patterns of emotion recognition and processing.

2) Cultural, personality, and temperament differences also impact how individuals perceive and express emotions, as well

as different life experiences can shape the brain’s ability to recognize and respond to emotions.

3) Context and situational factors can also influence brain activity patterns. For example, emotions recognized in an

experimental setting differ from those recognized in real-world situations.
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IV. EXPERIMENTAL DESIGN AND DATA ACQUISITION

The EmoReIQ was conducted and tested with 28 ASD individuals participating from Baghdad, Iraq. EEG signals are

recorded for each one in a separate experiment. All experiments follow the same protocol, five different sessions for each

participant on different days. Each session consisted of 5 trials, the trial is a short video clip destined to a specific emotion,

and the emotion stimuli for these trials were completely different. For the emotion recognition process, the intersection

of the 3D emotion domain Valence-Arousal-Dominance (V-A-D) is utilized to give several emotions; in this work, five

emotion measurements (calm, happy, anger, fear, sad) are chosen. Calm is (PV, LA, HD): Positive valence, low arousal, high

dominance. Happy is (PV, HA, HD): Positive valence, high arousal, high dominance. Anger is (NV, HA, HD): Negative

valence, high arousal, high dominance. Fear is (NV, HA, LD): Negative valence, high arousal, low dominance. Sad is (NV,

LA, LD): Negative valence, low arousal, low dominance. These emotions are appropriate and sufficient during ASD therapy

sessions. EEG signal recording, preprocessing, and emotion classification were performed using MATLAB (vR2023a).

A. Instruments

Stimuli were played using a Samsung Galaxy Note 10 Android tablet positioned in front of the participant, with a

resolution of 1280 by 720 pixels. Additionally, a PC is employed to monitor and record EEG data captured by a wearable

EEG headset. The headset connects wirelessly to the PC via Bluetooth. For each video, the data stream is saved in a single

file, including the necessary details for later processing. EEG was recorded at a sampling rate of 250 Hz using BrainAccess

portable EEG solution Fig. 3, including a cap with 8 dry-contact EEG electrodes plus reference and bias electrodes. The

electrode location of BrainAccess is based on the 10-20 international system, with the possibility of adapting the electrodeâs

location, making it suitable for other applications. BrainAccess is lightweight (70 grams), head shape-conforming cap, and

no-gel electrodes make them comfortable compared to other traditional EEG devices, which is crucial in applications for

individuals with neurological conditions, including ASD.

Figure 3: BrainAccess cap with dry-contact EEG electrodes.
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B. Participant

To protect personal privacy, the participants’ names are hidden; in Table I, the participant’s information is listed, including

ID, gender, and age.

TABLE I
PARTICIPANTS STATISTICS

Subject ID Gender Age
Subj01 male 6
Subj02 female 7
Subj03 male 6
Subj04 male 4
Subj05 male 4
Subj06 male 12
Subj07 male 8
Subj08 male 7
Subj09 male 7
Subj10 male 9
Subj11 male 10
Subj12 male 6
Subj13 female 7
Subj14 male 5
Subj15 male 10
Subj16 male 5
Subj17 male 6
Subj18 male 6
Subj19 male 8
Subj20 male 8
Subj21 male 9
Subj22 male 9
Subj23 male 8
Subj24 male 7
Subj25 male 7
Subj26 female 8
Subj27 male 7
Subj28 male 10

C. Stimuli Selection

The video clips are carefully selected, considering that they are presented to young children, among them those with

ASD, scenes manually selected from commercially produced movies. Each video elicits precisely only one emotion (calm,

happy, anger, fear, sad); for example, avoid scenes of blood while presenting fear videos so as not to evoke disgust. The

videos are chosen to be understood without speech or explanation to be understandable to different cultural groups. Since

ASDs are involved in these emotion recognition experiments, the videos are chosen not to be too long, so they do not
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feel fatigued or lose focus. The details of the chosen video clip stimuli are listed in Table II. The valence, arousal, and

dominance values for each video stimuli are determined by asking for ratings from volunteers who did not take part in the

experiment and were unaware of the purpose of it to make the emotions evaluation valid and authentic. They perform the

SAM [8] for each video clip with scale numbers between 1 and 5. The values or labels of valence, arousal, and dominance

for each video are then fused using the Mean Opinion Score (MOS) as shown in Table II. The assessment of videos for

valence, arousal, and dominance should not present a high variation, the relative standard deviation (RSD), the ratio of

standard deviation to mean, is also measured. The lower RSD is preferable, with low variability between ratings, proving

that the video election is right and it presents one target emotion.

TABLE II
Video List with (MOS) and (RSD) for each Valence, Arousal, and Dominance scale

Video ID Target Emotion Duration (sec) Valence (MOS, RSD)∗ Arousal (MOS, RSD) Dominance (MOS, RSD)
Vid01 Calm 26 4.26, 0.176 1.85, 0.195 3.71, 0.195
Vid02 Happy 35 4.57, 0.112 4.78, 0.194 3.73, 0.184
Vid03 Anger 47 2.33, 0.131 4.46, 0.106 4.33, 0.181
Vid04 Fear 30 2.27, 0.154 4.69, 0.133 1.53, 0.161
Vid05 Sad 38 1.58, 0.147 2.03, 0.151 1.34, 0.184
Vid06 Calm 36 3.817, 0.197 2.05, 0.334 3.75, 0.209
Vid07 Happy 34 4.68, 0.102 4.05, 0.119 4.10, 0.187
Vid08 Anger 41 1.67, 0.170 4.49, 0.128 4.13, 0.192
Vid09 Fear 31 1.93, 0.145 4.24, 0.166 2.08, 0.167
Vid10 Sad 30 1.44, 0.132 1.51, 0.169 1.93, 0.184
Vid11 Calm 31 3.63, 0.164 1.52, 0.300 3.58, 0.169
Vid12 Happy 37 4.24, 0.101 3.82, 0.188 3.90, 0.130
Vid13 Anger 43 1.43, 0.189 4.51, 0.115 3.89, 0.167
Vid14 Fear 43 2.17, 0.198 4.66, 0.114 1.40, 0.193
Vid15 Sad 50 1.49, 0.124 1.82, 0.154 1.18, 0.198
Vid16 Calm 37 3.72, 0.133 2.166, 0.285 3.82, 0.190
Vid17 Happy 31 4.33, 0.127 4.78, 0.176 4.17, 0.166
Vid18 Anger 52 2.08, 0.120 4.65, 0.173 3.91, 0.172
Vid19 Fear 34 1.89, 0.115 3.58, 0.145 1.91, 0.194
Vid20 Sad 41 1.15, 0.109 1.91, 0.192 1.80, 0.150
Vid21 Calm 28 4.02, 0.135 1.9, 0.414 3.60, 0.245
Vid22 Happy 36 4.96, 0.118 4.81, 0.207 4.03, 0.138
Vid23 Anger 40 2.68, 0.180 3.62, 0.109 3.88, 0.194
Vid24 Fear 32 1.00, 0.116 4.11, 0.122 2.02, 0.117
Vid25 Sad 38 1.70, 0.132 1.61, 0.168 1.45, 0.165

Note: *Ratings as follows: 1: very low, 2: low, 3: medium, 4: high, and 5: very high.

D. Data Acquisition

The chosen electrodes locations are at FP1, FP2, F7, F8, F3, F4, T3, and T4 according to the international 10-20 system,

as depicted in Fig. 4, which are the most significant EEG locations for recognition emotion according on our main findings

in [24]. The reference and bias electrodes are placed at O1 and O2 locations. Each participant was asked to watch the

emotional video clips and to keep minimum movement or eyeblink, participants were in a relaxed state to record as much
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noise-free EEG data as possible. Each participant is included in five sessions, each session with five video clips for a

particular emotion (calm, happy, angry, fearful, sad). The recording protocol starts with displaying a 5-sec fixation cross

image, then displaying a varying-duration effective video clip separated from the next video clip by another 5-sec fixation

cross image, which is used as the baseline to reset the stimuli effect.

Figure 4: EEG electrodes location indicated with red circles, reference, and bias with blue circles.

V. EMOTION CLASSIFICATION PROPOSED METHOD

Recognizing emotions using EEG brain signals requires accurate and efficient signal processing and feature extraction

methods as mentioned in Section II. The main steps involved in the proposed model for constructing the EmoReIQ dataset

for this study are explained next and illustrated in Fig. 5.

Figure 5: Flowchart of the methodology of EmoReIQ dataset.
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A. EEG Preprocessing and Feature Extraction Method

After EEG data were recorded from participants while they experienced different emotional stimuli, the data must

processed to remove the undesirable signals including physiological artifacts such as EMG and EOG, and non-physiological

artifacts such as AC electrical lines interference and bad contact electrodes while keeping as much EEG information as

possible. To cater to the need to remove both physiological and non-physiological artifacts while retaining the EEG signals

within the particular band of interest, the delta and high Gamma features are dropped out. For bandpass filtering, A 2nd-

order Butterworth band Pass Filter (BPF) is applied to extract only the Theta, Alpha, and Beta EEG frequency bands

(i.e. 4-30 Hz) from the acquired EEG recordings. It is necessary to reduce the dimensionality of the input features to the

classifier to get lower computational power, as well as to improve classification system performance. Discrete Wavelet

Transform (DWT) decomposition, a type of time-frequency signal analysis, is utilized in this study to implement a features

extraction approach. In this wavelet decomposition method, the EEG signal is decomposed in coefficients for different

scales and drifts of a selected wavelet called "mother", the coefficients are filtered with a threshold by applying a Low-Pass

Filter (LPF) and High-Pass Filter (HPF) iteratively, then the filtered EEG signal is reconstructed using inverse-DWT. For

input signal x(n), the DWT is defined using:

DWT (p, q) = |p|− 1
2

∫ ∞

−∞
x(n)ϕ

(
n− q

p

)
dn (1)

Where p represents the scale factor, q represents the shift factor, and ϕ(n) is the wavelet function. A four-level-

decomposition Discrete Wavelet Transform (4-level DWT) function with Daubechies as the "mother wavelet" with six

vanishing moments (db6) is applied in this study. This results in two vectors for each decomposition level: Approximation

Coefficients (ACs), using the scaling function ϕ(n) to capture the low-frequency content of the EEG signal. Detail

Coefficients (DCs), using the wavelet function ψ(n) to capture the high-frequency content of the EEG signal. The successive

four decomposition levels produce five coefficients: DC1, DC2, DC3, DC4, and AC4.

B. Statistical Feature Selection Method

Common emotion-related EEG feature extraction methods after applying wavelet transform are statistical measures,

where features are extracted from the 4-level DWT coefficients at each decomposition level. Six statistical features, along

with their formalities, are illustrated in Table III and are used in this study.

C. Deep Learning Model

Once features are measured, the information is then prepared to be fed into the DL model for emotion classification.

This classifier identifies correlations between extracted EEG features and emotions. The exploited DL technique used in

this study is ANN, designed ANN architecture that is found to be suitable for the emotion classification task is shown in

Fig. 6. One input layer, two hidden layers (100/100 neurons), and one output layer. 60% of the total data is used to train

the ANN, adjusting its weights and biases to minimize the error between its predictions and the actual labels. 40% of the
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TABLE III
SELECTED STATISTICAL FEATURES

Feature Formula
Minimum value (min) min = Xmin

Maximum value (max) max = Xmax

Mean (µ) µ =
∑N−1

i=0 Xi

N−1

Variance (σ2) σ2 =
∑N−1

i=0 |Xi−µ|2
N−1

Energy (E) E =
∑N−1

i=0 |Xi|2

Log entropy energy (Elog) Elog =
∑N−1

i=0 log(X2
i )

total data, is used to evaluate the performance of the ANN after it has been trainet. The Tansig activation function is used

at the hidden layers. This architecture results in a minim loss function; the Least Mean Square Error (MSE) is chosen,

which measures the difference between the predicted label and the true label. The backpropagation training algorithm is

used to optimize the weights and biases of ANN. The classifier output is one of five combinations: (PV, LA, HD), (PV,

HA, HD), (NV, HA, HD), (NV, HA, LD), or (NV, LA, LD). This output is compared with valence, arousal, and dominance

label values for each video taken from MOS shown in Table II, and used as the ground truth; these labels are essential for

training and validating the ANN classifier. The MOS ratings of these labels ranged from 1 to 5 and are mapped into two

classes: low and high, with a 3.5 threshold.

Figure 6: Designed ANN

VI. RESULTS

The results reported in this study focus on the classifier accuracy for the valence, arousal, and dominance emotions

dimensions. Accuracy is measured using:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
× 100% (2)

Where TP: true positive decision, TN: true negative decision, FP: false positive decision, and FN: false negative decision

made by the classifier (predicated output label) compared to the actual data label. The higher TP and TN, the predicted
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label (positive/negative) is the same as the actual label (positive/negative), which means good classifier performance. A raw

EEG and artifact-free EEG segments from a random subject data are visualized in Fig. 7, to emphasize the strength of the

implemented 2nd order Butterworth BPF filtering along with the 4-level DWT method used for EEG feature extraction, it

is found that the 4-level DWT function was efficient in the proposed model for EEG-based emotion recognition. In Fig. 8,

the valence classification accuracy for each subject for the 8 electrode channels (FP1, FP2, F7, F8, F3, F4, T3, and T4),

averaged over 25 trials (5 sessions each with 5 trials).

Figure 7: (a) raw EEG segment , (b) artifact-free EEG segment.

Figure 8: Valence classification accuracy for 10 random subjects.

Similarly, Fig. 9 shows arousal classification accuracy and Fig.10 shows dominance classification accuracy findings.

Subj06 and Subj08 both exhibit a strong engagement with positive negative presented stimuli, with valence classification

accuracy reaching a maximum of 99.94% with the (Fp1) channel. This associates the valence emotional state with the left

frontal region of the brain. High valence values for some ASD subjects indicate that they perceive events and experiences

higher than others, no matter if these events are positive or negative. Other subjects, like Subj26, exhibiting low engagement

with the presented stimuli, seemed distracted confused during the recording session, resulting in a low valence classification

accuracy of 30.95%. The valence emotion state is important; during ASD therapy sessions, a therapist can create a more

responsive and effective treatment plan, enhancing positive emotions and managing negative emotions as much as possible.
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Figure 9: Arousal classification accuracy for 10 random subjects.

Figure 10: Dominance classification accuracy for 10 random subjects.

On the other hand, results show that arousal classification accuracies are higher compared with valence ones; Subj6

shows the highest arousal accuracy of 96.96%, which indicates a good response to the presented excitement alertness (high

arousal) stimuli or relaxation calmness (low arousal) stimuli. The highest mean arousal classification accuracy is presented

over channels (F3, F8, and Fp1), the frontal lobe. In general, dominance emerges to be the least well-defined dimension

compared to valence and arousal. This could arise from various factors, some of the elected emotional stimuli are not

well suited to ASD individual differences. Since ASD individuals have difficulties in social interactions, this can impact

their sense of control, feeling powerless. Also, the high levels of anxiety and stress of ASD individuals can interfere with

feelings of confidence and control. These factors make the labelled data used to train the classification model mismatched

with the actual truth labels. However, the maximum dominance classification accuracy is 94.15%, and the mean dominance

classification accuracy over all subjects is about 72.98%.

Table IV summarizes the differences between existing emotional datasets and EmoReIQ constructed in this study. As

observed, other datasets do not include ASD participants; EmoReIQ specifically targets a homogeneous group of 28 ASD

individuals. It also planned to record EEG signals with a portable and lightweight device suitable for further daily life

applications. This study, compared with others mentioned in Table IV, utilizes a reduced set of EEG electrodes while

achieving a high emotion classification performance.
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TABLE IV
Comparison of EEG Datasets and Methods Used

Dataset #Subj Including mental #Trials /length (sec) # EEG Channels /Fs EEG headset/weight Emotion states Classifier Findings (EEG modality only)
conditions?

DEAP [1] 32 No 40 / 60 32 / 512 Hz Biosemi active valence, arousal, dominance, Gaussian NB Accuracy: Valence (57.6%)
II / 1.1 kg liking, familiarity Arousal (62%) Liking (55.4%)

MAHNOB-HCI [11] 27 No 20 / 34-117 32 / 256 Hz Biosemi active valence, arousal, SVM Accuracy: Valence (57%)
II / 1.1 kg dominance, predictability Arousal (52.40%)

SEED [13] 15 No 10 / 240 62 / 1000 Hz ESI NeuroScan positive, negative, DBN, SVM, Best accuracy: 86.08%
neutral LR, KNN

DREAMER [15] 23 No 18 / 65-393 14 / 128 Hz Emotiv EPOC / 170g valence, arousal, SVM Best accuracy: 61.84%
dominance

AMIGOS [20] 40 No 16 / <250 14 / 128 Hz Emotiv EPOC / 170g valence, arousal, dominance, Gaussian NB, Mean F1-score: 0.572
liking, familiarity SVM

EmoReIQ 28 Autism 25 / 26-50 8 / 250 Hz BrainAccess / 70g valence, arousal, ANN Average Accuracy: Valence (78.86%)
dominance Arousal (83.32%) Dominance (72.98%)

VII. CONCLUSIONS

In this work, an analysis of emotions evoked by visual stimuli is presented with autistic individuals. The construction of

the EmoReIQ dataset includes EEG recordings from 28 participants during 5 sessions, each watching 25 video clips elicited

carefully to evoke specific emotions. EEG recording was done using a portable and lightweight device with a minimum

number of EEG electrodes that would allow for a wide range of BCI applications. The performance of the ANN classifier

is evaluated for the valence, arousal, and dominance emotion scales. Raw EEG signal is preprocessed, and a 4-level DWT

is implemented as a feature extraction method. Based on the best performance, specific statistical features are selected

from EEG data to give the most emotional-relevant information. The findings suggest that Theta, Alpha, and Beta EEG

frequency bands reflect important aspects of brain activity including emotional responses. The experimental results show

that the use of a minimum number of 8 EEG channels can provide efficient emotion recognition rates while preserving cost,

minimizing hardware weight, and fast initialization and processing time. ANN classifier model resulted in mean values of

78.86%, 83.32%, and 72.98% for valence, arousal, and dominance respectively.
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